The roles of inductive modelling
and
coherence in Bayesian statistics

TOM LEONARD*
Queen’s University, Kingston, Ontario
University of Warwick

SUMMARY

The role of the inductive modelling process (IMP) seems to be of practical importance
in Bayesian statistics; it is recommended that the statistician should emphasise meaningful
real-life considerations rather than more formal aspects such as the axioms of coherence.
It is argued that whilst axiomatics provide some motivation for the Bayesian philosophy,
the real strength of Bayesianism lies in its practical advantages and in its plausible
representation of real-life processes. A number of standard procedures, e.g. validation of
results, choosing between different models, predictive distributions, the linear model,
sufficiency, tail area behaviour of sampling distributions, and hierarchical models are
reconsidered in the light of the IMP philosophy, with a variety of conclusions. For
example, whilst mathematical theory and Bayesian methodology are thought to prove
invaluable techniques at many local points in a statician’s IMP, a global theoretical
solution might restrict the statistician’s inductive thought processes. The linear statistical
model is open to improvement in a number of medical and socio-economic situations; a
simple Bayesian alternative related to logistic discrimination analysis often leads to better
conclusions for the inductive modeller.
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1. THE ROLE OF BAYESIANISM IN THE REAL WORLD
An overwhelming majority of practical statistical problems fall into a
particularly general category. The statistician S is frequently required to
investigate a real-life process Ry and to extract some meaningful conclusions
from his investigation. He might for example be faced with a large-scale set of
medical data, and a team of medical experts, and might wish to assist in the
diagnosis of the main causes of a particular disease. Alternatively, he may be
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concerned with a production process, e.g. for synthetic fibres, and be required
to either forecast future output or to help detect ways in which the process can
be improved. As a third example, he may be working in an educational testing
environment, with the task of identifying students who could usefully attend
particular colleges.

The Bayesian philosophy provides an excellent conceptual background
for §’s investigation of Rj. As each fresh piece of information about R?
becomes available to S, he is able to use it to refine his overall appreciation of
Ry. Whilst he might try to do this in a completely intuitive way, Bayesianism
will frequently assist him in crystallising his complex thought processes, and in
keeping his ideas on a sensible track.

It is one of the main themes of this paper that, whilst mathematical
theory and Bayesian methodology play valuable /ocal/ rdles in helping to
clarify §’s thought processes at a variety of points in his investigation of Ry,
they should not be expected to lead to a meaningful global solution to the
problem of how § should approach his overall investigation of R,.

Even if it were technically possible to construct a feasible ‘global’ theory,
we feel that such a solution would be inevitably restricted by the boundaries of
its own assumptions, and could serve to constrict the inductive reasoning
which is so vital to our understanding of the real world, and which no
deductive theory can properly represent. For example, it is frequently the
appearance of something completely unexpected which leads to new
discoveries and important innovations. If our theory were insufficiently
innovative to incorporate the possibility of all unexpected occurences in
advance, then it might merely serve to disguise the potential discovery in a
manner contrary to the general principles of science.

Similarly, if S wishes to develop a mathematical model as a device for
extracting real-life conclusions from the data, then theory on its own would
need to assume an enormously superhuman capacity to always select an
inductively sensible model from a set of alternatives specified in advance. By
examining the data, getting a good feel for its properties and its background,
and interacting between the data, the client, tentative models and analyses,
and possible real-life conclusions, S will often be able to use his inductive
thought processes to help him to extract rich and meaningful conclusions
from the data, which might well have remained undiscovered if he had
followed a more formal philosophy.

In this inductive modelling process (IMP) which should be viewed as the
basis of statistical practice. Whilst mathematical theory and Bayesian
methodology will provide invaluable assistance at many local points of IMP, a
more global concentration on these aspects may well lead S to either work in a
theoretical vacuum or to become restricted by theoretical formalisms.
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2. FORMAL AND INFORMAL JUSTIFICATIONS OF BAYESIANISM

The statistician S will typically need to convince his client of the possible
benefits of Bayesian procedures when compared with other e.g. frequentist
procedures. How should he seek to do this? It seems to us that S should
simply try to convince his client that (a) Bayesianism often leads to a much
more reasonable conceptual representation of aspects of Ryand that (b) when
applied to local problems, Bayesian methodology frequently leads to superior
practical results (e.g. (i) multi-parameter estimation, (ii) problems involving
nuisance parameters).

A number of authors (e.g. De Groot, 1970, pp. 71-76; Savage, 1954 and
de Finetti, 1975) have devised axiom systems which, if acceptable to S, lead to
the conclusion that he must act like a Bayesian, e.g. by representing his
information by a probability distribution. Whilst some Bayesians might view
such axiom system simply as a helpful description of the Bayesian approach,
others (e.g. the Lindley-Smith-Dickey-Hill school) view such ‘axioms of
coherence’ as compelling reasons for acting like a Bayesian and might even be
tempted to employ such extremely appealing verbal arguments as ‘Well, if you
don’t act like a Bayesian then you must be incoherent!’.

Most such axiom system seem acceptable from a formal point of view
and it would appear sensible to act like a Bayesian if R, were simple enough to
permit this. However, whilst many arguments in favour of Bayesianism based
upon axiomatics possess substantive appeal, and whilst it would be pleasant if
the axiomatic justifications turned out to possess a firm scientific basis, they
may provide as convincing a justification as we might have hoped for.

In discussing ways of justifying Bayesianism, it might be useful to
consider a particular set of axioms in detail. The set described by DeGroot is
probably one of the easiest to follow; it is not confused by any notions of
betting and its assumptions are similar in strengh to those suggested by most
previous authors. They appear to have been suggested by DeGroot himself
more as a description of the Bayesian approach then as a justification of it;
they are related to the work of Villegas (1964).

The axioms consider a space Q (which could for example be viewed as the
space of all possible states of Ry) with a sigma-field , of events, where any two
elements A and B of , can be compared using the notation A < B to indicate
that S considers B to be more likely than A, 4 ~ B to indicate his opinion that
A and B are equally and A < B to indicate that either A > B or A ~ B; For
the final axiom we require the definition

Df.: A quantity X is a uniformly distributed random variable on the

interval [0,1] if for any two sub-intervals I, and I, of [0,1],

[X € I)] < [X € L]if, only if, A\ (I)) < \ (1), where \ (/) denotes the length of
the interval 1.
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The five ‘axioms of coherence’ are
Axiom 1: For any 4 and B, either A <B, or A > B, or A~\B.

Axiom 2: For any A,, A,, B,, and B,, such than A,NA,=B,NB,=¢
and A, <B; fori=1,2, then A,UA, < B,;UB,. If in addition
either A; <B;or A,<B,then A;UA,<B;UB,.

Axiom 3: Forany A, ¢ < A. Furthermore ¢ <.

Axiom 4: If A, > A, > is a decreasing sequence of events and B is
[o.9]
some fixed such that A; = Bfori = 1,2,.... then Q A; = B.

Axiom 5: There exists a uniformly distributed random variable X on
interval [0,1]. '

The first three of the above axioms would probably seem reasonable to
statisticians of most philosophies. Attempts should therefore be made to
satisfy them, at least approximately, in local situations where an overemphasis
would not detract S from the main purpose of his IMP, e.g. to induce real-life
conclusions from the data. They lead to an approach described by DeGroot as
‘relative likelihood’, but do not in themselves give the slightest hint of a
probability distribution on Q.

The fourth axiom may be viewed as a regularity condition which ensures
that the probability distribution, induced by Axiom 5, is countably additive
rather than finitely additive.

The fifth axiom and its implications are of paramount importance. It
introduces the notion of an auxiliary experiment (e.g. the spin of a roulette
wheel) which yields an (objectively) random number X in the interval [0,1].
The statistician S is expected to be able to compare events in  with events on
[0,1]. DeGroots’s theory then leads to the construction of a unique probability
distribution over Q which represents S’s feelings about elements of Q and
hence provides us with the result that S is actually acting like a Bayesian.

Implicit in DeGroot’s formulation is the assumption that the first four
axioms relate to any (measurable) subsets of the union of @ and [0,1] as well as
of Q itself. It seems obvious that it is this implicit axiom (5a) which is primarily
responsible for inducing the probability distribution on € since it maps subsets
of Q into the interval [0,1] in a mathematically rigorous way. It also seems that
axiom 5a is virtually as strong as the final result and that we are therefore very
nearly saying ‘‘if you want to act like a Bayesian then you must act like a
Bayesian’’!.

Consequently, whilst axiom 5a and the final result both possess
considerable inductive appeal for Bayesians, the axioms do not in themselves
appear to add anything beyond a useful interpretation of Bayesian thinking,
in terms of an auxiliary experiment. The axioms should certainly never be
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used as a justification for Bayesianism or as a device for convincing non-
experts. It would be more reasonable to refer to the justifications discussed in
(@) and (b) above.

When S is engaged in his IMP, he may find it useful to employ the ideas
of coherence as a conceptual background, to help him think upon Bayesian
lines. If however he sticks too closely to axiomatics then he may lose sight of
the primary objective of his investigation e.g. to extract real-life conclusions
from the data. He should not permit coherence to restrict his creative and
innovative ideas and he should concentrate more closely on appreciating the
practical situation at hand. A good inductive appreciation of Rl’ with a
background culture of Bayesian coherence is to be preferred to an over rigid
approximation to coherence and a lack of appreciation of R Iz

The philosophy of coherence may be viewed in similar spirit to the ideas
of Birnbaum (1962), which probably comprised one of the best single
contributions to theoretical statistics. Birnbaum proved that the sufficiency
principle and the conditionality principle together imply the likelihood
principle, a far-reaching result which enables the purist to disregard many
frequentist procedures integrating across the sample space.

The conditionality principle possess similar appeal to Axiom 5a described
above, and whilst acceptable in an idealistic sense, it is primarily responsible
for Birnbaum’s result that statisticians should follow the likelihood principle.
When S is engaged in his IMP he may find it too restrictive to stick rigidly to
the conditionality principle. For example, a responsible S would, as a general
norm, obtain a good feel for his data before inducing a family of sampling
distributions for his observations.

A related practical difficulty associated with Birnbaum’s approach is that
it is a conditional philosophy, given the truth of an underlying model for the
observations. Any debate which conditions on the truth of an underlying
model may be well wide of the target in the light of the philosophy ‘‘All
sampling models are ultimately wrong and should simply be introduced as
subjective, mathematical devices, in order to induce real-life conclusions from
the data’’. This philosophy is an essential ingredient of our whole concept of
IMP; it seems to provide us with one of the few sensible ways of engaging in a
modelling process, and immediately detracts attention from philosophies
which depend upon the truth of an underlying model.

3. JUSTIFIFYNG REAL-LIFE CONCLUSIONS
Once S had induced a real-life conclusion from the data and his
appreciation of Ry, he might wish to compile evidence in support of his
conclusion, so that he can convince his client and other experts that it is both
viable and meaningful. For example, in a paper to be published elsewhere,
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(but discussed in the verbal presentation of this material), Leonard, Low and
Broekhoven (1978) describe a conclusion which is not in immediate
concurrence with existing medical opinion. They have found that, whilst a
high risk of fetal asphyxia in babies does not in fact appear to be noticeably
associated with prematurity it does appear to be strongly associated with
babies who possess a much lower birthweight than might be expected, for a
given degree of prematurity.

These are several possibilities open to S, for example.

(a) To test his underlying model against the data, using a conventional
significance test. ’

(b) To informally evaluate his model and conclusions by checking them
out against future observations.

(¢) To informally check out his real-life conclusions égainst the present
data set, look for patterns in the conclusions, and consider their
status in connection with existing scientific knowledge on related
topics.

(d) To discuss his conclusions in detail with his client, to see if they fit in
sensibly with his existing views, or whether the latter can be sensibly
modified to accomodate his conclusions.

(e) To refer to the level of expertise of his own inductive judgement.

I feel that (@) shouid not be regarded as completely adequate, though
significance tests may be useful as intuitive devices. Firstly, situations could be
envisaged where the model is inadequate, but the specific conclusions are still
viable. For example, a very tentative model could be used to stimulate
plausible creative ideas by S, or the real-life conclusions might only depend
upon particular aspects of the model. More importantly, significance tests do
not appear to possess too much formal justification. For example, Leonard
(1979) shows that for large sample sizes, significance levels may be sensibly
replaced by value depending on the sample size. For further discussions of
significance testing see Leonard and Ord (1976), and Leonard (1977 and
1978).

The alternative (b) appears to provide a useful check. However, the
number of future observations will typically be finite and probably never
particularly large. Also, by the time they have been collected R, will probably
have evolved into an updated situation, and the usefulness of any underlying
model undetermined. Just as the practical viability of the theoretical concept
of consistency may be critically exposed in the context of the philosophy ‘‘the
greater the amount of information the greater the chance of contradiction (of
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the original model)’’, the usefulness of predictive validation seems affected by
the possible deviation of future observations from the situation currently at
hand, whenever there are enough future observations to provide a case for a
through validation.

Whilst (¢) and (d) also provide useful checks, we feel that in the last
analysis S can only refer to (e) and recognise that both Rpand his investigation
of it are basically subjective. He can only really attempt to justify his
conclusions by simply indicating that he has carried out a subjective and
honest investigation of Rpand that his conclusions appear to be sensible.

We have thus arrive at the straightforward proposition that statistical
practice is a subjective process which is highly dependent upon the expertise,
honesty, and experience of the statistician, just as the practice of, say,
medicine, law, psychology, economics, and indeed most branches of science,
is also subjective and highly dependent -upon similar qualities of experts in
those areas.

In particular, the statistician will only be able to adequately complete his
IMP if he possesses the mathematical skills and level of creativity which will
carry him through the numerous local and innovative procedures which IMP’s
typically require. People working from a ‘‘cookbook’’ of recipes will typically
find difficulty with JMP’s and should therefore be discouraged from playing a
leading réle in large-scale investigations. The ultimate success of Bayesian
statistics will depend upon whether we can bridge the gap between theory and
practice and link theoretical innovation with practical relevance.

4. CHOOSING BETWEEN DIFFERENT SAMPLING MODELS

During his IMP, S may wish to use a formal Bayesian procedure to help
him to measure his opinions about a finite number of sampling models. A
number of authors (e.g. Dickey 1975, and Harrison and Stevens, 1976) have
proposed a general approach to this problem, based upon sharp hypotheses
and mixed models. However, whilst Schwarz (1978) has developed an
approximate method for large sample sizes, which does not depend upon the
choice of prior distribution, the general approach experiences some technical
difficulties for smaller sample sizes. When more than two or three models are
involved in the mixture it also appears to us to place too much emphasis on the
search for a ‘true’ sampling model, and to be somewhat overcomplex and
insufficiently motivated towards the extraction of meaningful real-life
conclusions from the data. An informal consideration of alternative models in
the light of real-life aspects may be more appropriate, i.e. we view the
Bayesian mixed model approach as often assuming too much of a ‘global’
nature to provide an inductively useful service for S.

Suppose that S wishes to choose between a binomial sampling model with
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probability § and sample size n for a frequency x and an alternative sampling
model with probability mass function py(x). For simplicity, we suppose that
Dpo(x) is completely specified; assume also that whenever the binomial
sampling model holds, 6 possesses the beta prior distributions.
(0| a,B) = M 0=1(1-01(0<60 < 1;0 <a,f <) n
I' (@ (8)

Following the general approach referenced above, the posterior
probability that model p, holds, given that either p, or the binomial sampling
model holds, is then denoted by ‘

PR @

$o= ———
oR. + 1

where ¢ is the corresponding prior probability, and R, is the ‘Bayes factor’
which satisfies

R. = po(x)/D(a,B) ©))

where

D(a.f) = I'(n+1)T'(a+PB) I'(a+x)T'(B+nx) @

F'x+DIT'(-x+1)T(a+6+nm(@(B)

Whilst (2) provides a formal and coherent Bayesian solution to this
problem, it is so sensitive to the choice of prior distribution for 6 that it would
be viewed as impractical in many situations. Suppose, for example, that « is
moderately large and is increased by a single hypothetical prior observation to
o + 1. Note from (4) that

D(a+1,3)
D(a,B)

= (ep + (1-0) §)/¢ 3

wherep = x/n, é=a/(a + B),and ¢ = n/(a+8+n).

Therefore under our minor adjustment to the prior the Bayes factor in (3)
should be divides by the quantity in (5), which will always lie between p/¢ and
unity. For example, with the proportion p equal to 9/10 and the prior mean £
equal to 1/10, the divisor could be as high as 9, radically, affecting the
posterior probability in (2).

Paradoxically the sensitivity is at its greatest at n— oo , with p, «, and 8
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fixed, so that p — 1. In this case, the Bayes factor in (3) will tend to either zero
or infinity irrespective of the prior, but the rate of convergence will become
particularly sensitive, as increasing o by unity is equivalent to dividing the
Bayes facior by the maximum possible value of p/¢.

The sensitivity described above is not unique to the present special case.
For example, Lindley (personal communication) has informed us that there
are a further sensitivity problems when investigating whether or not to take
observations to be normally distributed. Other problems concerning this type
of approach are discussed by Atkinson (1978).

We are drawn to the viewpoint that it may be inductively more sensible to
choose a sampling model by considering various aspects of Ry, and the data,
and by generally following the philosophy outlined in the last paragraph of
section 1 rather than by referring to a coherent Bayesian procedure with
possible misleading conclusions. Note that sensitivity problems cccur very
generally in a number of other areas of Bayesian estimation and inference;
some of these will be discussed in forthicoining publications by J.Q. Smith and
J. Kadane.

5. THE ROLE OF BAYESIAN PREDICT!VE DISTRIBUTIONS
A number of authors, e.g. Aitchison Tunsmore (1975) view
predictive distribution as playing a leading rcle in ®~-~ian methodology. It is
cur own view that whilst many standard pradic s ributions, e.g. based
n conjugate prior cistribuidicns, play o rel.

- . iced situarions where
sampling model and prior o siribttion can be . co. o orecified, they may

§ more limited importancs woen 8is engaged .o o pracacal details of his
{4, This conclusion is primarily basad <z the folisyiig reasons:

1T

£
%]
T
o

g

{a) Many predictive distributions can be as sensitive to the ci.cice of
prior as the Bayes factors discussed in sectica 4, For exaruple, if
(1) provides the posterior distribution for & probability 8, then the
quantity D{c,8) in (4) is just the predici:ve probabiiity that a
binomial frequency, with prebability § and sample size ». 15 equal
to x. Therefore if o is increased to « + 1, this predictive
probability will multinlied by a factor of up tc p/E wherep and £
now respectively denote the predicted proportion x/n and the
posterior mean «/{« + 3).

{b) The statisticlan S will typically remain uncertain about the
correctness of his sampling model, and many cenventional
predictive distributions fail to take account in this uncertainty.

Suppose, for example, that we analyse a set of data which appear to be
roughly normally distributed, that the practical situation (e.g. quality control)

38
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requires us to predict the probability that a further observation will be
negative, and that the proportion of negative observations is 0.27. We then
derive a standard predictive ¢-distribution under normal and conjugate
assumptions and find that our predictive probability, conditional on our
choices of sampling and prior models is 0.15. The latter is however a highly
conditional probability and it might therefore be highly misleading to quote it
as a useful result. Whilst our intention might suggest that a better (subjective)
predictive probability lies between 0.15 and 0.27, many formal procedures for
judging it more precisely would also be highly dependent upon any
assumptions made.

Our general philosophy that ‘‘all sampling models are ultimately wrong’’
(see the last paragraph of section 3) leads us naturally to the philosophy that
‘“all predictive distributions based upon particular sampling models are
ultimately wrong’’. Conclusions based upon them sould be treated with
caution.

We view many conventional predictive distributions as a bit on the over-
formalistic side; indeed many standard predictive distributions do not
obviously lead to any further inductive understanding of Ry beyond that
already provided by the sampling distributions from which they are generated.
Many probabilities calculated from predictive distributions can only be
considered to lead to reasonable practical predictive probabilities if these fit in
closely with raw probabilities calculated from the data, or if there is some
further inductive reason for using them. However, an alternative type of
predictive distribution yielding greater scope to the inductive modeller will be
discussed in section 7.

6. SOME PRACTICAL ADVICE ON THE LINEAR MODEL
We now discuss some practical aspects of the linear model, and consider
dependent variables y, satisfying

E@y) = Bo + leq + ...+ Bpxip
(6

but where, for g<p< m, x,...,x;, are statistical observations rather than
fixed constants, and where X;,.,,...,X;, are functions of x;y,...,x;,. The y; could
denote the salaries of m individuals, and x,...,x;, could measure socio-
economic factors relating to these individuals. Alternatively, y; could
represent blood pressure, with X.,...,x;, measuring g different medical
symptoms.

It is nm.y practical experience, and the general experience of colleagues in a
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consulting capacity, that there are a large number of practical situations where
the underlying assumptions of the linear model seem appropriate, but where a
modelling procedure of this nature turns out to be rather inadequate. This is
particularly true of many socio-economic and medical data sets whenever
there is a large amount of random fluctuation between the vectors
X; = (Xi,...,X:,). In such circumstances it is often virtually impossible to arrive
at any sensible model of the form defined in (6), whatever functional forms
are chosen for Xg.q,...,X;, and whatever estimation procedures (e.g. least
squares, weighted least squares, or Bayes) is employed.

The data sets referred to might be viewed as possessing insufficient
information to present the possibility of useful conclusions. Alternatively, a
novice might feel tempted to add more and more explanatory variables in
attemption to obtain a meaningful model. However, the simple Bayesian
procedure described in section 7 and relating to logistic discrimination
analysis very frequently leads to useful conclusions which would often be
missed by the linear statistical modeller.

For a number of data set of this type, we have experienced a residual sum
of squares which remains steadfastly close to the total sum of squared for
virtually any model specification of the type defined in (6). This is because the
X; vectors are subject to so much random variation that it is almost impossible
to use any set of fitted values to provide reasonable numerical predictions of
the dependent variables i.e. the information content of the data is not of a
predictive nature. Whilst inductive conclusions might still be available via the
linear model, they will frequently be of limited scope owing to the extreme
inadequacy of the model. For example, difficulties (b) involving predictive
distributions, as discussed in section 5, will be highlighted in this context.

Whilst linear models present difficulties when the information content of
the data is not a predictive nature, the same data sets often contain some very
worthwhile information of a probabilistic nature which can be extracted via
the methodology of section 7. The latter will also be enable S to model terms
corresponding to X;g4,...,X;, in @ direct (rather than, say, stepwise) fashion;
for example it will help him to induce the presence of any complicated
interaction effects without needing to engage in a long search.

Consider for simplicity the special case where ¢ = 1 and x;; = x.
Suppose that the points (y;, x;) are plotted on a scatterdiagram for i=1,...,m.
Whilst these points will seldom lie close to any particular curve for the type of
data set under consideration, the frequencies of y’s falling in any particular
intervals will often change in a meaningful way as x increases, as long as this
interval is chosen to be wide enough. Therefore, whilst fitted values under any
linear model might give poor numerical predictions of the y;, it might be
possible to use the data to help predict probabilities for intervals in which,
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say, a further observation y,.,; might lie, so that the data possess a quality of a
probabilistic rather than a predictive nature. In other words, knowledge of a
further explanatory variable x,.,; might affect S’s probabilities about y,,; but
not provide him with enough information to be able to numerically predict
Y+ to any degree of accuracy.

It is my experience that data sets possessing information of this
probabilistic rather than predictive nature a occur frequently in socio-
economic and medical contexts, and that the linear model frequently possesses
very limited scope for the analysis of such data sets. For example, many
applications of the linear model to economics, sociology and medicine, might
benefit from further consideration.

7. A BAYESIAN IMP

In the situation discussed in the previous section, where the information
content is of a probabilistic rather than a predictive nature considerable
headway may often be made upon categorising the dependent variable y. This
will clearly lead to some loss of sampling information, but the loss need not be
at all substantial, (owing to the highly random nature of the explanatory
variables), as long as the dependent variable is categorised in a sensible way.
For example, in the medical context of Leonard, Low and Broekhoven, three
categories, referred to as ‘low’, ‘medium’ and ‘high’, with the boundary
points based upon further medical considerations, were adequate to permit
the extraction of some meaningful conclusions from the data.

If the dependent variable is split into s categories, then the vectors
X1,--.,Xn are effectively sectioned into s subpopulations Ay,...,A,, where the
elements of A; are those x’s for which the corresponding y lies in category j.
We let ny,...,n, denote the numbers of x’s falling in the respective
subpopulations A;,...,A,.

Since the x’s are themselves vectors of statistical observations, the x’s in
each sub-population A; may be viewed as comprising a random sample from a
distribution, say with density f; (x). The form of this density may be
inductively modelled by S in the light of the corresponding x’s and his
appreciation of Ry. This provides a vital part of S’s IMP in this context; he
needs to model the s densities f3,...,f.. Suppose now that S wishes to be able to
predict probabilities for a further dependent variable y,.;, given a further
vector of explanatory variables x,..;. Then the probability that y,,., falls into
the j** category, given that x,,.; = x is given by

M =1, (7
Eiq kak(x)

where =; Jdenotes the corresponding prior probability, However, in the

prob (A;[x) =
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absence of knowledge of x, S will frequently be prepared to set. =;=n,/m for
Jj=1,...,s, in which case we have

nfA{x)

prob (A;|x) = ———————
Lianfi(x)  (=1,...,9) ®

The formula in (8) may be applied in a simple way to data sets whose
information content is of a probabilistic nature; it seems to fit in neatly with
the concept of IMP. It provides a standard procedure for many regression
problems which could be used as an alternative to analyses based upon the
linear model.

Note that the expression on the right hand side of (8) plays the rdle of a
regression function. We for example have

log [prob (A;|x)/ prob (A«|x)] = log (n,/n,)
+ log f(x)/fi/(X) )]

This result is employed in logistic discriminent analysis. For example,
Anderson (1974) mentions that multivariate normal assumptions for the f;
lead to a quadratic discriminant of regression function on the right hand side
of (9).

Under our general IMP, S is expected to simply induce f,...,f; from the
x’s and Ry. Our point is that no further modelling will then be required
because appropriate substitutions in (8) will complete the specifications of the
predictive probabilities. During this process, S will need to interact between
scatterdiagrams of the x’s in the different sub-populations and his other
experience and he will therefore be able to take full account of the
probabilistic-type information content of the data. This inductive modelling
will enable him to obtain predictive probabilities via (8), By considering
graphical plots of the latter against different explanatory variables he is then
in a position to extract real-life conclusions from the data.

Note that the above IMP automatically models the form of the regression
function and hence the presence of any interaction effects, even if these are of
a complex nature. As a simple example, multivariate normal assumptions for
the f; lead to cross-product terms on the right hand side of (9), which may be
viewed as the interaction terms in a logistic regression. They now become
completely determined upon identification of the f;, providing a much more
straightforward modelling procedure, then, say, standard stepwise procedures
for the linear model. For non-normal f; the interactions can assume a much
more complex nature, but S has a very straightforward way of inducing them.
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We recommend replacing any unknown parameters in the f; by suitable
points estimates (e.g. maximum likelihood or Bayesian). This should be
frequently superior to the coherent Bayesian procedure of integrating each f;
in (8) with respect to the corresponding prior distributions of the parameters,
since the latter will suffer similar sensitivity problems to those discussed in
sections 4 and 5.

There are a number of ways of checking the probabilities in (8) against
the data set. For example, boundaries on x could be determined for each j
such that prob (A;|x) is greater than a specified value. Then the proportions of
actual x’s falling inside these boundaries could be enumerated, and they will
all ideally be greater than the specified lower bound for the predictive
probability. Added credibility will also be given to the IMP if the curves of
prob (A, | x) against x evolve in a sensible way for increasing j.

The above approach has been found to yield practical conclusions in a
variety of different situations, than would appear possible under a standard
linear model approach. Similar methodology was employed by Leonard, Low
and Broekhoven in their medical context.

8. THE SKEWED-NORMAL DISTRIBUTION

The statistical modeller is frequently faced with data with both a positive
and negative tail, and which indicate a definite skewness. There are
surprisingly few probability distributions in the literature for adequately
modelling skew data when the latter are scattered on the whole real line. The
following properties would however seem to be desirable for a family of two-
tailed distributions which provide skew alternatives to say, the normal or ¢-
distribution:

(i) A meaningful set of at least three parameters, with convenient
functions of the parameters representing location, spread and
skewness.

(ii) A useful symmetric distribution as a special case.

(iii)  The property that whilst the two tails can be different they should
be ‘similar in nature’, in the sense that different functional forms
assumed for the tails might suggest a difference which was not
exhibited by the data.

(iv)  The form of the likelihood function, given n observations, should
not permit the observations in one tail to unduly influence the
estimated thickness of the other tail.

v) Straightforward ad hoc and Bayesian estimation procedures for
the parameters.
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(vi)  Easily tabulated interval probailities.

(vii) Reasonable regularity conditions for the density e.g. a continuous
first derivative at all points.

All the above properties are satisfied by the skewed-normal distribution,
with parameters g, 03, 03, and density

N /7)o, +0) exp[-Y2 0, 2(x-p)*] forx< u
p (x|p,0%, 0% = (10)
N (2/7) (014 02) L exp[-Y2 0, 2(x-u)?] forx= pu

This distribution possess mode px and probabilities o,/(6; + o0;) and
g,/(0; + 0,) either side of the mode. Its technical properties, including a
Bayesian analysis, will be reported in more detail elsewhere.

9. SUFFICIENCY, OUTLIERS AND COHERENCE

In many statistical problems, the existence of a sufficient statistic of small
dimensions implies in effect that the sampling distributions is a member of the
exponential family. Therefore any discussion of the inductive reasonability of
the concept of sufficiency must be closely related to a debate on the adequacy
of the exponential family of distributions.

The general concept of sufficiency could be criticised on the grounds that
a sufficient statistic typically reduces the number of pieces of information we
can extract from the data, i.e. from the sample size to the dimension of the
sufficient statistic. The data are therefore reduced to a form where they can,
say, only describe one or two aspects of the sampling distribution, e.g.
location and spread, but may tell us nothing about, or even disguise, other
important aspects of the sampling distributions, e.g. possible bimodality or
thicker tails than might be experienced with the exponential family.

Consequently, in situations where we might wish a formal analysis to tell
us as much as possible about the sampling distribution, the concepts of
sufficiency and the exponential family of distributions do not seem to be
completely adequate. The formal Bayesian could, for example, be tempted to
refer to the interesting approach of O’Hagan (1979) and employ outlier-prone
and outlier-resistant sampling distributions in an attempt to cope with
outliers.

On the other hand, sampling distributions yielding sufficient statistics
typically possess meaningful characteristics and meaningful parameters. They
seem to fit in well with the concept of IMP since S should always examine the
data carefully and get a good feel for its properties before inducing a sampling
distribution. He could for example investigate bimodality and outliers
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intuitively rather than referring to the formalisms of a more complicated
sampling model.

The statistician would probably do best to compromise between these two
extremes. He could start off by referring to meaningful sampling
distributions, with simple sufficient statistics, and to practical judgements of
the data, with the objective of concentrating on the extraction of real-life
conclusions from the data. However, he will sometimes find that his induction
is unable to provide him with a clear enough picture. In this case slightly more
complicated sampling distributions and an analysis taking formal account of
further aspects of the data would sometimes be very useful.

As an example of the above approach, the skewed normal distribution in
(10) is frequently applicable to (clearly unimodal) data with two tails. It can be
employed as a useful device for locating the mode of the underlying
distribution and for investigating its skewness. Its parameters are meaningful
in this context; it provides a simple modification of a member of the
exponential family. For example, when p is known, statistics of the form

L (x-p)?and z (xi-p)?

ix;<u ix;>p
are jointly sufficient for ¢% and 3.

The skewed-normal distribution would clearly be inferior in a formal
sense to a distribution with ‘t-type’ tails if there we enough outliers in the data
to suggest that its tails might be too thin. However, an adherent of /MP could
still start off with the skewed-normal distribution and interact betwen
tentative analysis based upon it, and the data, to see if the outliers affected the
important real-life conclusions which could be induced from the data. For
example, S could firstly try an analysis withouth the outliers, and then
compare it with a further analysis with outliers present. Only if he convinces
himself inductively that the outliers actually make a real difference should he
consider a more formal (local) analysis based upon a complicated distribution
with thicker tails. He is in this way able to increase his chances of extracting
conclusions which might otherwise become confused by over complications.

The procedure outlined above is not obviously formally coherent, but we
seem to have described a good example of a situation where a strict demand
for formal coherence would appear to be inductively inappropriate.

10. MULTI-PARAMETER PROBLEMS AND PRIOR STRUCTURES
Consider next a general formulation where S’s n x 1 observation vector x
is thought to possess a sampling distribution f (x|6) depending upon a g x 1
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vector § = (f4,...,0,)7 of unknown parameters. In such multi-parameter
situations, S might be concerned about Stein-type effects and lack of
smoothness of the maximum likelihood estimates, and might therefore wish to
employ shrinkage estimates for the 6,. (See, for example, a method proposed
by Leonard, 1973, for smoothing the probabilities in a histogram).

Following a general procedure discussed by Leonard (1972), S might seek
a g x 1 vector a = (ay,...,a,)" of transformed parameters such that he is
prepared to take the prior distribution of « to be multivariate normal, say
with mean vector p and covariance matrix C. When p and C are known a
Bayesian shrinkage estimate for « is given by the posterior mode vector «,
wich satisfies the equation

6 log f(x| )
o

Cl(a-p) (11

=

R

For example, when all the elements of u are equal to a scalar u, and Cis a
scalar multiple of the identity matrix, the elements of « will be a priori
exchangeable and (11) will roughly speaking provide Stein-type shrinkages of
their maximum likelihood estimates towards a common value u.

However, S is typically faced with the problems of choosing suitable
special forms for u and C and evaluating any hyperparameters appearing in
these special forms (these forms may be referred to as prior structures). The
situation will often be far too complex for S untangle if he confines himself to
strictly coherent Bayesian procedures. We recommend that he should instead
assess his prior structures by interacting between his prior feelings, possible
special forms for x and C, tentative estimates obtained from (11), any real-life
conclusions he can induce from these estimates, his overall experience of Ry,
and cooperation with his client.

S will find it difficult to assign specific values to any hyperparameters
appearing in his prior structures. A typical prior structure may be expressed in
the form u=u(\,) and C=C(\;), once S has induced the dependence of the
mean vector and covariance matrix on hyperparameters \, and A\,. For any
such prior structure under consideration S should estimate A, and \, from the
data and any prior information which might be available. We are however
rather uncertain about the existence of convenient prior information for
hyperparameters in complex models like this, except in special cases or when
the prior information is itself data based. It is generally much more
straightforward to avoid complicated and possible confusing distributions at
the second stage of the prior model, and to simply estimate A\, and \, from the
data by maximising their ‘marginal likelihood’.
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{1, Agy |X) = Ef(x]a)] (12)

where the expectation on the right hand side is with respect to «, given u and
C.

In summary, S may induce the functional forms of u(\,) and C(\,) by
following the general philosophy of IMP, and may then estimate \; and \, via
a data-based procedure. Obviously, particular practical considerations might
lead to refinements of this scheme.

Whilst it would be difficult to demonstrate formal coherence of the above
procedure, it seems likely to often prove useful in a real-life sense when
compared with more complex coherent procedures.

11. NON-PARAMETRIC DENSITY ESTIMATION

The approach described by Leonard (1978) to the non-parametric
estimation of a density fits with the philosophy of IMP since it enables S to
allow for real-life considerations as part of theoretical local analysis. For
example, a hypothesised density can be introduced as a prior estimate, then
the theoretical method can be used to provide a posterior estimate which can
be considered inductively by S, to see where it differs from his null hypothesis,
and to consider whether these differences are due to real-life aspects. He could
also try out different hypothesised densities as part of his IMP, and generally
interact between his prior specification, his posterior results, and possibly
meaningful conclusions. The approach seems to be more useful than many
previous frequentist procedures based on kernel functions, since these tend to
place a bit more emphasis on data-fitting, rather than on the diagnosis of
meaningful conclusions.

Note that Leonard uses a prior and posterior likelihood approach rather
than a strictly Bayesian approach since this avoids certain technical problems
over function spaces. We in general see nothing wrong in following an
alternative philosophy if it is based upon similar prior information and leads
to similar conclusions.

12. DISCUSSION

The concept of coherence has played an invaluable theoretical role over
the years by highlighting the inadequacies of many frequentist procedures.
However, the Bayesian philosophy is now firmly established and accepted as
one of the few viable theoretical approaches to Statistics. It should therefore
now look beyond debates with other philosophies, and theoretical discussions
on the foundations, and emphasise its practical viability in non-trivial
contexts, e.g. large scale data sets where the client provides background
informaticn from his own discipline. When broader considerations are taken
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into account the role of coherence no longer seems paramount, and much
more emphasis should be place on the IMP aspects of statistics. Whilst
existing coherent methodology is useful at a variety of local points of IMP,
the theoretical structure should be kept to a level of intellectual complexity
where it assists the statistician to induce real-life conclusions from the data.
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