529

DISCUSSION
1.J. GOOD (Virginia Polytechnic Institute and State University):

Dr. Dalal discussed the application of the Dirichlet-process priors to continuous
problems. In my work on categorical data, I found it necessary to use mixtures of
Dirichlet priors (Good, 1965, 1967, 1976; Good & Crook, 1974; Crook & Good, 1980).
In Good (1978) I asked whether it would be useful to use mixtures of Dirichlet
processes for continuous data, such as for testing independence in continuous bivariate
distributions. Also, can we apply ‘‘Ockham’s hyperrazor’’ by somehow selecting the
Dirichlet processes so that only one hyperparameter is required? If so, this could be
given a hyperprior as in the categorical work.

J.B. KADANE (Carnegie-Mellon University):

One of the interesting things in non-parametric statistics is the interpretation of
various interesting quantities as U-statistics. For example, Wilcoxon’s statistic is an
estimate of P [X < Y]. Have the modifications of Dirichlet processes been studied to see
whether Wilcoxon’s statistic can be justified as an estimator from this point of view?

'

T. LEONARD (University of Warwick):

Professor Dalal’s convolution of the Dirichlet process seems to me to involve some
really brilliant ideas. It will be regarded as one at the important contributions in the
area of non-parametric density estimation. His generalisation of the Dirichlet process
avoids the pitfalls faced by Ferguson, for example the problems of spiky posterior
estimates and specific prior covariance structures. His prior distribution is very general
and simply formulated and leads to appealingly smooth posterior estimates. He is to be
congratulated on achieving an original idea of such beautiful and wide-ranging
simplicity.

When specifying his prior distribution, I think that it would be helpful if Professor
Dalal worked in terms of his prior covariance kernel, as well as his prior mean value
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function, since this would demonstrate precisely how he intends to smooth his
estimates. This would also highlight the similarity between his approach and that of the
early work of Whittle, who just specified the first two-moments of his prior. By
completely specifying his prior Dalal achieves the same generality as Whittle, but he
does not run into problems of negative posterior estimates, and he is also able to make
posterior probability statements about the unknown density, as well as providing point
estimates.

Professor Dalal’s posterior estimates are constrained to the class of kernel
estimates and 1 wonder whether this is a property of the type of prior distribution
assumed? My own approach constructs a prior in logit space where it seems very
natural to think in terms of linear relationships and covariance kernels, and my
estimates assume a general non-linear form rather different from kernel estimates. The
following rather undesirable properties of kernel estimates are avoided under my
approach:

1) The overspread-out nature of kernel estimates (the estimated variance is
always greater than the sample variance)

2) The dependence of bandwidth upon sample size in order to achieve
asymptotic consistency, or under Whittle’s approach the contraction to delta
functions as the sample size increases.

3) The problem that when there are only a moderate number of observations
kernel estimates will either oversmooth or possess bumps in the tails.

I think that the great strenght of a Bayesian approach to nonparametric density
estimation lies in the fact that it permits us to model the density via its prior estimate
whilst avoiding any constraint on the posterior estimate to belong to a parameterized
family. It for example provides a particularly viable alternative to classical tests for fit,
since we simply need to investigate differences between the posterior estimate and the
prior hypothesised estimate.

A. O’HAGAN (University of Warwick):

Professor Dalal has shown us a very interesting formulation of nonparametric
inference. The so-called nonparametric problems are characterised in his approach,
and in the earlier work of Ferguson, by a vast number of parameters. [ believe this
feature is inevitable: even when inference centres on some subparameter like the
median, Professor Dawid has shown in his paper at this meeting that nuisance
parameters cannot be dismissed without careful consideration. Given that there really
are infinitely many parameters, only a Bayesian approach is feasible. The problem is
underidentified (or overparametrised) and no amount of data will give sufficient
information to render the prior irrelevant. In particular, the way in which the prior
relates parameters to each other influences strongly the shape of posterior inferences.
Ferguson’s Dirichlet process, for example, yields discontinuous posterior means. 1t is
not enough that the prior should look sensible; it must also give sensible posterior
inferences, and it is quite proper for Professor Dalal to seek for priors which give
posterior inferences having sensible shapes.
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A.F.M. SMITH (University of Nottingham):

1 hope that all who have enjoyed Professor Dalal’s elegant presentation and
admired his undoubted mathematical ingenuity will forgive me if I express the philistine
sentiment that exercises involving contemplation of completions of spaces of mixtures
of Dirichlet processes have very little to do with interpreting data in the light of
personal judgment, and, whatever else they are, are not Bayesian Statistics.

Instead of seeking a tractable way of representing the uncorntemplatable (i.e.
measures having large support over gigantic spaces of distributions), we should first of
all decide what aspects of the problem we are able to contemplate and then seek a
tractable representation.

As an example of what I have in mind, suppose we want to make inferences about
location, given up to 50 observations from an (unknown) member of the (assumed)
location-scale family. I can contemplate qualitative features that may be relevant -such
as heaviness of tails, skewness, etc.- and I can realize that with samples of this size there
is little point in seeking a prior measure with large support in the location-scale family.
(We simply cannot distinguish other than quite crude qualitative differences between
distributions.) Instead, a sufficiently rich mixture should result from a prior with a
sensibly chosen representative finite support. One such crude choice which
incorporates heavy, and light-tailed departures from Normality, together with
skewness in both directions, is a finite mixture model consisting of the Normal,
Uniform, Laplace, Right-Exponential and Left-Exponential distributions.

This has the added advantage that all the necessary Bayesian manipulations can be
carried out analytically. (See Spiegelhalter, 1978.)

I have always understood ‘‘Nonparametric’’ to mean ‘‘Enormous Parameter
(Model) Space’’, where ‘‘enormous’’ signifies ‘‘too big to have to think meaningfully
about’’. I suggest, therefore, that we should be very circumspect about any theory
which couples ‘‘Nonparametric’® with the word ‘‘Bayesian’’.

S.R. DALAL (Rutgers University):

Professor Good during his discussion at the conference inquired about the
suitability of symmetric Dirichlet distributions and associated processes as priors for
nonparametric problems. Use of these priors in contingency tables leads to manageable
numbers of hyperparameters and some ease in numerical computations (Good, 1976).
Unfortunately, in many interesting nonparametric problems, the interesting sets are of
various sizes, and thus, the kind of symmetry inherent in contingency tables is absent.
This rules out the use of symmetric Dirichlet distributions. However, as indicated in the
paper we can use Dirichlet symmetric processes whenever some appropriate invariance
structures can be assumed. Professor Good’s comment on the use of ‘“Ockham’s
hyperrazor’’ needs further investigation.

Professor Kadane has raised an interesting and an important issue related to
justification of classical nonparametric procedures based on U statistics through the
nonparametric Bayes theory. This line of inquiry has already been followed in
Professor Ferguson’s fundamental paper. He showed that in the problem of estimation
of 5 FdG with a squared error loss, the Bayes estimate is a convex linear combination
involving the Mann-Whitney statistic. Similar justification can be provided for several
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other nonparametric procedures. For example, my work with Professor Phadia has
shown that Kendall’s 7 can also be similarly interpreted from Bayesian point of view.

Dr. Leonard has been very kind in praising my work on density estimation. The
applicability and usefulness of my approach can be judged only after examining the
complexity of the estimates, the large sample properties (e.g. consistency rates of
convergence), etc. In this regard, the references furnished by Dr. Leonard to his work
(1973), Whittle’s work (1958) and Good and Gaskin’s work (1971) will be very useful.

Dr. Leonard is also quite correct in pointing out that the posterior estimates are
constrained to the class of kernel estimates because of the nature of the prior.
However, in the important problem of unimodal density estimation this is not a
constraint. Dr. Leonard has also been able to convince me that it would be helpful to
work in terms of covariance kernels. I think this deserves detailed investigation.

1 do concur with Dr. O’Hagan’s comment on the inevitability of the
parametrization by large number of parameters in Bayes formulation of nonparametric
problems. This is not to say that in such a formulation no amount of data will give
sufficient information to render the prior irrelevant. In fact, I think that some sort of
generalized version of the theory of precise measurement would hold and accordingly
the precise nature of the large number of parameters involved would be unimportant.

Professor Smith comments that we would be circumspect about any theory which
couples ‘Nonparametric’ with the word ‘Bayesian’. I disagree with his logic. Much
recent works shows that suchs an alliance is not an unholy one. This is also best
illustrated in the usual one sample problem where observations are obtained as
differences of pairs of measurements. Here the assumpticn of symmetry is easily
justified and beliefs about the point of symmetry may also be easily parametrized.
Savage’s theory of precise measurement tells us that the precise formulation of beliefs
about the point of symmetry is immaterial. However, an incorrect specification of the
model does have serious consequences for the Bayesian (e.g. Berk, 1966). In this
instance, whithout any additional information, the Bayesian nonparametric theory is
certainly a viable contender to any other form of Bayes analysis. Also, if Dirichlet
symmetric processes are used as priors, then a generalization of Savage’s theory of
precise measurement suggests that the parameter « of the process need not be precisely
specified.

Professor Smith also contends that the results related to completion of spaces of
mixtures of Dirichlet processes are not part of Bayesian statistics. This may be true in a
narrow sense. However, disregarding its Bayesian implications will be a mistake. The
result which Professor Smith refers to says that a Bayesian, in quest for a suitable prior
for a nonparametric problem, need not go beyond the class of mixtures of Dirichlet
processes. A parametric counterpart would say that the Bayesian need not go beyond
the class of mixtures of natural conjugate priors. (Dalal and Hall, 1977).
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