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SUMMARY
A summary of the seminar with the same title is presented. Ferguson’s fundamental
work on the theory of Dirichlet processes is elucidated and their shortcomings are
discussed. Some modifications are also proposed and illustrated. Some of the intricate
mathematical issues related to the definitions and the proofs are not discussed for the sake
of clarity and brevity. The development related to unimodal processes, briefly mentioned
in the last section, will appear as a joint work with Professor W.J. Hall elsewhere.
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1. INTRODUCTION .

Nonparametric theory deals with the problems of inference when the
underlying distribution is not specified in terms of a parametric family. This
theory can be gainfully employed in many situations as models are seldom
more than approximations to reality, and the procedures which are optimal
for a given parametric family (i.e. the ‘Idealized Model’) may perform poorly
even for models which are near to the idealized model (e.g. Tukey (1960),
Huber (1964)).

However, ‘classical’ nonparametric theory disregards much of the
existing knowledge about the idealized model. Further, evaluations and
comparisons are usually carried out asymptotically at specific parametric
models.

To avoid these shortcomings, it is useful to think that there is an idealized
model and that the observed distribution is a (possibly random) perturbation
of the idealized model. This approach has been used by Huber (1972) and
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others to create an elegant theory of robustness. Here, we explore an
alternative approach of Ferguson (1973), who derived, and suggested the use
of Dirichlet processes as priors for nonparametric problems. Specifically, we
shall review Dirichlet processes (Section 2), note their anomalies and
inadequacies (Section 3), and suggest some modifications.

2. DIRICHLET PROCESSES

Let (x,B (x)) be the sample space and P* be the space of all probability
measures on (x,B (x)). P*, the parameter space for many nonparametric
problems is quite large and consequently many procedures turn out to be
minimax. Hence, the Bayes criterion becomes more relevant.

For the Bayes framework, it is necessary to consider a class of priors over
P*, i.e., a class of random probability measures, which is a) mathematically
tractable, b) rich, and c) easy to parameterize. Several procedures have been
suggested toward this end, notably by Dubins and Freedman (1966), Kraft
and Van Eeden (1964), Rolph (1968), Ferguson (1973), Doksum (1974) and
Sethuraman (1979). In statistical inference Ferguson’s priors, Dirichlet
processes, have been more often used that the other procedures, because of
their intuitive properties and tractability, e.g., Ferguson (1974), Susarla and
Van Ryzin (1976), Phadia and Susarla (1979), Berry and Christensen (1979).

Mixtures of Dirichlet processes, proposed by Antoniak (1974), have also
been used in Bio-assay and regression-type problems. Relatively few
applications not related to Dirichlet processes are available. For example,
Ferguson and Phadia (1979) have dealt with censored data problems using
Doksum’s neutral to right processes. Also, some new non-Dirichlet-process
priors developed by Sethuraman (1979) may prove to be useful. We shall,
however, follow Ferguson’s approach with some modification. Before
delineating the modifications, we define and briefly state some elementary
properties of Dirichlet processes below.

Definition. A random probability P is a Dirichlet process if there exists a
finite, finitely, additive measure, «, such that for every measurable partition
Bi,...,B. of x, (P (By),...,P (B)) has a Dirichlet distribution with parameters
(a(By),.--,a(B,)). We then write PeDP () and denote the corresponding
random probability measure by P.

Elementary properties. Let o« = M«Q, where M is a positive number, and Q is
a probability measure on (x,B(x)). Then P ¢ D («) implies that EP = Q. Q,
thus, can be thought of as ideal distribution. Further, the number M can be
viewed as the prior example size (e.g. Novick and Hall, 1965). Using these
properties DP priors can be easily parameterized.
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The second desirable property, Richness, mentioned earlier, has two
aspects. First, richness of support is essential to deal with a broad class of
nonparametric problems. Secondly, if one is to restrict attention to a specified
class of priors, it is essential for this class to have members capable of
approximating any prior belief. We call this latter aspect adequacy. Both of
these issues can be examined by imposing a ‘natural’ topology on P*, the
space of all probability measures, and P**, the space of all random
probability measures.

For a lack of the ‘‘natural’’ topology, various topologies can be
considered (e.g. Ferguson (1973), Dalal (1978), Dalal and Hall (1980)). By
considering the weak* topology on P* obtain by imbedding P* on the product
space [0,1]5'", Ferguson (1973) showed that all a-absolutely continuous
distributions are in the support of DP («). Dalal (1978) showed that this kind
of imbedding leads to random probability measures which select finitely
additive probability measures on (x,B (x)) with probability one. Further,
although the class of Dirichlet processes is not adequate in terms of
approximating a given belief, a convex hull of this class of mixtures of
Dirichlet processes (MDP) is adequate in this regard (see Dalal (1978), Dalal
and Hall (1980)).

The mathematical tractability of any class of priors can only be
ascertained by examining the ease with which the posterior and various simple
expectations are obtained. With respect to Dirichlet processes, Ferguson
showed that, given a sample X,...,X,, the posterior is DP (« + X8,.), where é,
is the unit mass degenerate at x. This conjugate prior property has been
extensively used in applications.

3. SHORTCOMINGS AND MODIFICATIONS WITH APPLICATIONS
First, we discuss an anomaly (discreteness), and an inadequacy (to deal
with invariant problems) of Dirichlet processes. This is followed by some
modifications to overcome these defects. A few illustrative example are also
given.

3.1. Shortcomings

i) Discreteness. It is known that DP’s are discrete with probability one
(e.g. Blackwell (1973), Berk and Savage (1977)). This discreteness is more than
a technical aberration. In some applications this has led to non-intuitive
answers. Further, the posterior changes the masses only at the observed
sample points. Intuitively, however, it would be appealing to have a prior
which increases the probability of a neighborhood instead.

ii) Invariance. In nonparametric problems, one is permitted to have
nonparametric beliefs, e.g. symmetry of the underlying distribution (i.e. in the
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one-sample problem), exchangeability, spherical symmetry, etc. However DP
and the other priors defined so far live on the class of all probability measures.
It would be useful to also have priors giving probability one to invariant
(under a group g) probability measures.

3.2. Modifications
Our approach, simply stated, is to modify the sample paths of a DP (i.e.
the distributions selected by a DP) to eliminate these shortcomings. The
modified process, although closely related to the DP, is usually more
complex. However, one can use the updated version of the DP to manipulate
the posterior of the modified process.

3.2.1. Modifications related to Invariance

Let g = {gy,...,8:} be a finite group of measurable transformations on
(x,B (x)) and P be a random probability measure. Define a new random
probability measure Q by the mapping Q (4) = ; Y P (g:.A). Clearly Q selects
g-invariant distributions with probability one. Such a scheme can also be used
with a compact topological group to obtain invariant distributions with
probability one. When P is a Dirichlet process with g-invariant «, Q is called
the Dirichlet Invariant process (DIP(c)). These kind of processes have been
studied in Dalal (1979a). The behavior of DIPs is similar to DPs, e.g. if
X1,-.0,X, 15 @ sample from QeDIP, then Q|X,,...,X., the posterior of Q, is
DIP(a + k- 1E._gX)

Using DIP’s Bayes estimates of various functionals can be obtained.
Some illustrative applications are considered below.

i) Estimation of a symmetric c.d.f. Consider the problem of
estlmatmg acd.f., F, symmetrlc about a known point p. Let the loss function
be L(F“,F) s(F o - F(t))ZdW(t) where W is a finite prespecified weight
function. For Bayes estimation, consider the prior DIP(«), where « = M+Q
and the group g is {g;, &}; g/(x) = 2u-x, g,(x) = x. Let G be the c.d.f.
corresponding to Q. The Bayes estimate then can be shown to be a convex
linear Acombination of the initial guess G and the p-symmetrized empirical
c.d.f. F, (Dalal, 1979a), i.c.

A M n
= G +
M+n M+n

A
El'

As n becomes larger, theAdependence on the initial guess G becomes weaker.
Also the expression for F, suggests that M can be thought of as the prior
sample size, as discussed earlier.
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The above Bayes formulation can also be exploited to get a minimax esti-
mate,
A 1 1 . 1
F, = + LOx, + 02ux) + ——— 6.
4(1 ++/n) 2(\n+n) 2(1 ++/n)

Bayes estimates of F, for u unknown have also been obtained in Dalal
(1979a).

ii) Estimation of the unknown center of symmetry. Consider the usual
one sample problem of estimating the center of symmetry of an arbitrary
distribution F. Specifically, assume the following model Y, = p + A, where
the A, are i.i.d. with an arbitrary distribiition, F, symmetric about 0. For the
Bayes formulation, Let FeDIP («), « = MG, and u have the non-informative
uniform distr}bution over the reals. Then the Bayes estimate using squared
error loss (u-u)? can be found. In the case of the idealized model, G, being
standardAnormal (density o), and assuming all distinct observations the Bayes
estimate p is (Dalal, 1979b)

A M n
uw= y + ,U.* )
M+n M+n
where
) + i A
pt = (i:i Wy y—l /i<f wii)
and +
3 Yty Yibi
wi = (11 oV N(e ).
N 2 2

p.*' is a weighted mean of pairwise averages. The weight given to the pair
.yl + . . . -
ARG is inversely proportional to the distance between y, and y;, and the

. . ,vf+.yr -~ - . . . .
distance of ————— from the rest of observations. Thus, this estimate is
2

robust. Numerical and other investigations on this estimate are considered in
Dalal (1979b).

3.2.2. Modifications related to continuity unimodality
In density estimation problems, the usual estimates are obtained by
smoothing out the functionals of the empirical c.d.f. This is usually
accomplished by convoluting with different kernels.
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This kind of idea can be used to smooth out the sample paths of the DP’s
followed by sampling from the smoothed process. Some of these ideas have
been considered in a joint work with Professor W.J. Hall of the University of

-Rochester. Using this, Bayes estimates of general densities, unimodal
densities, modes, etc¢., can be obtained. Some details have been worked out in
Dalal and Hall (1977).

ACKNOWLEDGEMENTS
I wish to thank Professor W.J. Hall for various helpful discussions. This
research was supported by NSF Grant MCS 78-02160 and Rutgers University
Research Council.

REFERENCES
ANTONIAK, C. (1974). Mixtures of Dirichlet processes with applications to Bayesian non-
parametric problems. Ann. Statist. 2. 1152-1174.

BERK, R.H. and SAVAGE, I.R. (1977). Dirichlet processes produce discrete distributions:
An clementary proof. Tech. Rep. Rutger University.

BERRY, D.A. and CHRISTENSEN R. (1979). Empirical Bayes estimation of a binomial parameter
via mixtures of Dirichlet processes. Ann. Statist. 7, 558-69.

BLACKWELIL., D. (1973). Discreteness of Ferguson selections. Ann. Statist. 1356-358.

DALAL, S.R. (1978). A note on the adequacy of mixtures of Dirichlet processes. Sankhya, A,
40, 185-91.

— (1979a). Dirichlet Invariant processes and applications to nonparametric estimation of
symmetric distribution functions. Stoch. Proc. and Appl. 9, 99-107.

— (1979b). Nonparametric and robust Bayes estimation of location. Proc. Optimizing
Methods in Statistics. 141-166. New York: Academic Press.

DALAL, S.R. and HALL, G.J., Jr. (1980). On approximating parametric Bayes models by
nonparametric Bayes models. Ann. Statist. 8, 664-672.

DALAL, S.R. and HALL, W.J. (1977). Unimodal density estimation. Tech. Rep. Rutgers Univer-
sity.

DOKSUM, K. (1974). Tailfree and neutral random probabilities and their posterior distributions.
Ann. Prob. 2, 183-201.

DUBINS, L.E. and FREEDMAN, D.A. (1966). Random distribution function. Proc. 5" Berkeley
Svmp. 2. 183-214. Berkeley: University of California.

FERGUSON, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1,
209-230.

— (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2, 615-629.

FERGUSON, T.S. and PHADIA, E.G. (1979). Bayesian nonparametric c¢stimation based on
censored data. Ann. Statist. 7, 163-86.

HUBER, P.J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35, 73-101.
— (1972). Robust statistics: a review. Ann. Math. Statist. 43, 1041-1067.



529

KRAFT, C.H. and VAN EEDEN, C. (1964). Bayesian bio-assay. Ann. Math. Statist. 35, 886-890.

NOVICK, M.R. and HALL, W.J. (1965). A Bayesian indifference procedure. J. Amer. Statist.
Assoc. 60, 1104-17.

PHADIA, E.G. and SUSARLA, V. (1979). An empirical Bayes approach to two sample problem
with censored data. Comm. in Statist. 8, 1327-1351.

ROLPH, J.E. (1968). Bayesian estimation and mixing distributions. Ann. Math. Statist. 39,
1289-1302.

SETHURAMAN, J. (1979). Personal Communication.

SUSARLA, V. and PHADIA, E.G. (1976). Empirical Bayes Testing of a distribution function
with Dirichlet process priors. Comm. in Statist. A, 5, 4505-69.

SUSARLA, V. and VAN RYZIN, J. (1976). Nonparametric Bayesian estimation of survival curves
from incomplete observations. J. Amer. Statist. Assoc. 71, 897-902.

TUKEY, J.W. (1960). A Survey of Sampling from Contamined Distributions. In Contributions to
Probability and Statistics. (Olkin ed.) Stanford: University Press.



