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SUMMARY
A standard technique in subjective ‘‘Bayesian’’ methodology is for a subject (**you’’)
to make judgements of the probabilities that a physical probability lies in various
intervals. In the hierarchical Bayesian technique you make probability judgements (of a
higher type, order, level, or stage) concerning the judgements of lower type. The paper
will outline some of the history of this hierarchical technique with emphasis on the
contributions by 1.J. Good because 1 have read every word written by him.
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1. PHILOSOPHY

In 1947, when few statisticians supported a Bayesian position, I had a
ron-monetary bet with M.S. Bartlett that the predominant philosophy of
statistics a century ahead would be Bayesian. A third of a century has now
elapsed and the trend supports me, but [ would now modify my forecast. I
think the predominant philosophy will be a Bayes/non-Bayes synthesis or
compromise, and that the Bayesian part will be mostly hierarchical. But
before discussing hierarchical methods, let me ‘‘prove’’ that my philosophy of
a Bayes/non-Bayes compromise or synthesis is necessary for human
reasoning, leaving aside the arguments for the specific axioms.

Proof. Aristotelean logic is insufficient for reasoning in most
circumstances, and probabilities must be imcorporated. You are therefore
forced to make probability judgements. These subjective probabilities are
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more directly involved in your thinking than are physical probabilities. This
would be even more obvious if you were an android (and you cannot prove
you are not). Thus subjective probabilities are required for reasoning. The
probabilities cannot be sharp, in general. For it would be only a joke if you
were to say that the probability of rain tomorrow (however sharply defined) is
0.3057876289. Therefore a theory of partially ordered subjective probabilities
is a necessary ingredient of rationality. Such a theory is ‘‘a compromise
between Bayesian and non-Bayesian ideas. For if a probability is judged
merely to lie between 0 and 1, this is equivalent to making no judgment about
it at all’’ (Good, 1976b, p.137). Therefore a Bayes/non-Bayes compromise or
synthesis is an essential ingredient of a theory of rationality. Quod erat
demonstrandum.

The notion of a hierarchy of different types, orders, levels, or stages of
probability is natural (i) in a theory of physical (material) probabilities, (ii) in
a theory of subjective (personal) probabilities, and (iii) in a theory in which
physical and subjective probabilities are mixed together. I shall not digress to
discuss the philosophy of kinds of probability. (See, for example, Kemble,
1941; Good, 1959; 1965, Chapter 2.) It won’t affect what I say whether you
believe in the real existence of physical (material) probability or whether you
regard it as defined in terms of de Finetti’s theorem concerning permutable
(exchangeable) events.

I shall first explain the three headings leaving most of the elaborations
and historical comments until later.

(i) Hierarchies of physical probabilities. The meaning of the first
heading is made clear merely by mentioning populations, superpopulations,
and super-duper-populations, etc. Reichenbach (1934/1949, Chapter 8)
introduced hierarchies of physical probabilities in terms of random sequences,
random sequences of random sequences, etc.

(ii) Hierarchies arising in a subjective theory. Most of the justifications
of the axioms of subjective probability assume sharp probabilities or clear-cut
decisions, but there is always some vagueness and one way of trying to cope
with it is to allow for the confidence that you feel in your judgements and to
represent this confidence by probabilities of a higher type.

(iii) Mixed hierarchies. The simplest example of a mixed hierarchy is one
of two levels wherein a subjective or perhaps logical distribution is assumed
for a physical probability. But when there are only two levels it is somewhat
misleading to refer to a ‘*hierarchy’’.

In case (i), Bayes’s theorem is acceptable even to most frequentists; see,
for example, von Mises (1942). He made the point, which now seems obvious,
that if, in virtue of previous experience, something is ‘‘known’’ about the
distribution of a parameter 8, then Bayes’s theorem gives information about
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the final probability of a random variable x whose distribution depends on 6.
Presumably by ‘‘known’’ he meant ‘‘judged uncontroversially’’. In short he
emphasized that a ‘‘non-Bayesian’’ can use Bayes’s theorem in some
circumstances, a point that was also implicit in Reichenbach’s Chapter 8. The
point was worth making in 1942 because statisticians had mostly acquired the
habit of using Fisherian techniques which nearly always ignore the possibility
that there might sometimes be uncontroversial approximate prior
distributions for parameters. F.N. David (1949, pp. 71 & 72) even said that
Bayes’s theorem ‘‘is wholy fallacious except under very restrictive conditions’’
and ‘‘... at the present time there are few adherents of Bayes’ theorem’’. von
Mises (1942, p.157) blew it by saying that the notion that prior probabilities
are non-empirical ‘‘cannot be strongly enough refuted’’. He certainly failed to
refute them strongly enough to stem the expansion of modern forms of
subjectivistic Bayesianism.

Some people regard the uncontroversial uses of Bayes’s theorem, that is,
those uses acceptable to von Mises, as a case of the empirical Bayes method.
Others, such as R.G. Krutchkoff, use the expression ‘‘empirical Bayes’’ only
for the more subtle cases where the prior is assumed to exist but drops out of
the formula for the posterior expectation of #. It was in this sense that A.M.
Turing used the empirical Bayes method for a classified application in 1941. 1
applied his method with many elaborations in a paper published much later
(Good, 1953) which deait with the population frequencies of species of
animals or plants or words. If, in a sample of N animals, there are n, species
each represented r times, we may call n, the frequency of the frequency r. Of
course Lrn, = N. Let g, be the population probability of such a species.
Turing argued that

(r+Dn,
E(@)= ——— (1)
Nn,
and ] modified this formula to (r+ )n/,/(Nn) where ni, n;, ... , is a
smoothing of n,, n,, ..., and I generalized the argument to give formulae for

the moments of the posterior distribution of ¢q,. It follows that, in another
sample of size N, the total expected frequency of the set of species that were
each represented r times (in the first sample) is about (r+ 1)n/,, not rn, as
would be suggested by a naive application of the method of maximum
likelihood. In particular the probability that the next animal or word that you
meet will be one that you have not met before is approximately #,/N and not
the maximum likelihood estimate which is zero. The formula (1) was later
obtained by Robbins (1956, p. 159) in relation to the almost identical problem
of sampling a large collection of Poisson distributions. In fairness to Robbins
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it should be noted that he had some of the philosophical ideas of the empirical
Bayes method in Robbins (1951) though he did not name the method at that
time.

Perhaps a statistical argument is not fully Bayesian unless it is subjective
enough to be controversial, even if the controversy is between Bayesians
themselves. Any subjective idea is bound to be controversial in spite of the
expression ‘‘de gustibus non disputandum est’’ (concerning taste there is no
dispute). Perhaps most disputes are about taste. We can agree to differ about
subjective probabilities but controversies arise when communal decisions have
to be made. The controversy cannot be avoided, though it may be decreased,
by using priors that are intended to represent ignorance, as in the theories of
Jeffreys and of Carnap. (Of course ‘‘ignorance’ does not here mean
ignorance about the prior.) All statistical inference is controversial in any of
its applications, though the controversy can be negligible when samples are
large enough. Some anti-Bayesians often do not recognize this fact of life. The
controversy causes difficulties when a statistican is used as a consultant in a
legal battle, for few jurymen or magistrates understand the foundations of
statistics, and perhaps only a small fraction even of statisticians do. I think the
fraction will be large by 2047 A.D.

Now consider heading (ii), in which at least two of the levels are logical or
subjective. This situation arises naturally out of a theory of partially ordered
subjective probabilities. In such a theory it is not assumed, given two
probabilities p, and p,, that either p, = p, or p, = p,. Of course partial
ordering requires that probabilities are not necessarily numerical, but
numerical probabilities can be introduced by means of random numbers,
shuffled cards etc., and then the theory comes to the same thing as saying that
there are upper and lower probabilities, that is, that a probability lies in some
interval of values. Keynes (1921) emphasized such a theory except that he
dealt with logical rather than subjective probabilities. Koopman (1940a, b)
developed axioms for such a theory by making assumptions that seemed
complex but become rather convincing when you think about them. I think
the simplest possible acceptable theory along these lines was given by Good
(1950), and was pretty well justified by C.A.B. Smith (1961). (See also Good,
1962.) Recently the theory of partially-ordered probability has often been
called the theory of qualitative probability, though I think the earlier name
“partially ordered” is clearer. When we use sharp probabilities it is for the
sake of simplicity and provides an example of ‘‘rationality of type 2’
(Good, 1971¢).

If you can say confidently that a logical probability lies in an interval
(a,b) it is natural to think it is more likely to be near to the middle of this
interval than to the end of it; or perhaps one should convert to log-odds to
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express a clear preference for the middie. (Taking the middle of the log-odds
interval is an invariant rule under addition of weight of evidence.) At any rate
this drives one to contemplate the notion of a higher type of probability for
describing the first type, even though the first type is not necessarily physical.
This is why I discuss hierarchies of probabilities in my paper on rational
decisions, Good (1952). Savage (1954, p.58) briefly discusses the notion of
hierarchies of subjective probabilities, but he denigrates and dismisses them.
He raises two apparent objections. The first, which he heard from Max
Woodbury, is that if a primary probability has a distribution expressed in
terms of secondary probabilities, then one can perform an integration or
summation so as to evaluate a composite primary probability. Thus you
would finish up with a sharp value for the primary probability after all. (I
don’t regard this as an objection.) The second objection that he raises is that
there is no reason to stop at secondary probabilities, and you could in
principle be led to an infinite hierarchy that would do you no good.

In Good, (1950, p. 41) I had said that higher types of probability might
lead to logical difficulties but in Good (1952) I took the point of view that it is
mentally healthy to think of your subjective probabilities as estimates of
credibilities, that is, of logical probabilities (just as it is healthy for some
people to believe in the existence of God). Then the primary probabilities
might be logical but the secondary ones might be subjective, and the
composite probability obtained by summation would be subjective also. Or
the secondary ones might also be logical but the tertiary ones would be
subjective. This approach does not deny Max Woodbury’s point; in fact it
might anticipate it. I regard the use of hierarchical chains as a technique
helping you to sharpen your subjective probabilities. Of course if the
subjective probabilities at the top of the hierarchy are only partially ordered
(as they normally would be if your judgements were made fully explicit), the
same will be true of the composite primary or type 1 probabilities after the
summations or integrations are performed. Another development of the
Hierarchical approach in my 1952 paper is in relation to minimax decision
functions. Just as these were introduced to try to meet the difficulty of using
ordinary Bayesian decisions, one can define a minimax decision function of
type 11, to avoid using Bayesian decision functions of type 1. (The proposal
was slightly modified in Good, 1955.) Leonid Hurwicz (1951) made an
identical proposal simultaneously and independently. 1 still stand by the
following two comments in my paper: ‘“... the higher the type the woollier the
probabilities ... the higher the type the less the wooliness matters provided
[that] the calculations do not become too complicated’’. (The hierarchical
method must often be robust, otherwise, owing to the wooliness of the higher
levels, scientists would not agree with one another as often as they do. This is
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why I claimed that the higher wooliness does not matter much.) Isaac Levi
(1973, p. 23), says ““Good is prepared to define second order probability
distributions..., and third order probability distributions over these, etc., until
he gets tired”’. This was funny, but it would be more accurate to say that
I stop when the guessed expected utility of going further becomes negative if
the cost is taken into account.

Perhaps the commonest hierarchy that deserves the name comes under
heading (iii). The primary probabilities, or probabilities of type I, are
physical, the secondary ones are more or less logical, and the tertiary ones are
subjective. Or the sequence might be: physical, logical, logical, subjective. In
the remainder of my paper I shall discuss hierarchies of these kinds.

2. SMALL PROBABILITIES IN LARGE CONTINGENCY TABLES

1 used a hierarchical Bayesian argument in Good (1956) (original version
rejected in 1953 I am proud to say) for the estimation of small frequencies in a
large pure contingency table with entries (n,,). By a pure table I mean one for
which there is no clear natural ordering for the rows or for the columns. Let
the physical probabilities corresponding to the cells of the table be denoted by
Py, and the marginals by p, and p_;. Then the amount of information
concerning a row provided by the observation of a column can be defined as
log [p,/(p:.p.)] and it seemed worth trying the assumption that this has
approximately a normal distribution over the table as a whole. This turned out
to be a readily acceptable hypothesis for two numerical examples that were
examined. In other words it turned out that one could accept the loglinear
model

logp,; = logp: +logp; + ¢

where ¢ has a normal distribution whose parameters can be estimated from the
data. (This was an early example of a loglinear model. Note that if ¢ is
replaced by ¢,; and its distribution is not specified, then the equation does not
define a model at all.) If then a frequency #,, is observed it can be regarded as
evidence concerning the value of p,;, where p;; has a lognormal distribution.
Then an application of Bayes’s theorem gives a posterior distribution for p,,,
even when n;; = 0. This seemed to me an interesting example of estimating the
probability of an event that had never occurred, but the referee discouraged
me from saying this, possibly because it sounded philosophical. As Jimmie
Savage once remarked ‘‘‘Philosophy’ is a dirty ten-lettered word’’. The
lognormal distribution was used as a prior for the parameter p,; and the
parameters in this distribution would now-a-days often be called
hyperparameters. Perhaps this whole technique could be regarded as a non-
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controversial use of Bayes’s theorem. Incidentally, if it is assumed that
p.,/(p: p_;) has a Pearson Type III distribution, the estimates turn out to be not
greatly affected, so the method appears to be robust. (The calculation had to
be iterative and was an early example of the EM method as pointed out by
Dempster et al, 1977, p. 19.)

3. MAXIMUM LIKELIHOOD/ENTROPY FOR ESTIMATION IN
CONTINGENCY TABLES

For ordinary and multidimensional population contingency tables, with
some marginal probabilities known, the method of maximum entropy for
estimating the probabilities in the individual cells leads to interesting results
(Good, 1963). [The principle of maximum entropy was interpreted by Jaynes
(1957) as a method for selecting prior distributions. Good (1963) interprets it
as a method for formulating hypotheses; in the application it led to
hypotheses of vanishing interactions of various orders. Barnard mentions that
an early proposer of a principle of maximum entropy was Jean Ville in the
Paris conference on the history and philosophy of science in 1949 but I have
not yet been able to obtain this reference.] When there is a sample it is
suggested in Good (1963, p. 931) that one might find the estimates by
maximizing a linear combination of the log-likelihood and the entropy, that
is, in the two-dimensional case, by maximizing an expression of the form X(#n;
- \p.;) log p.;, subject to constraints if the marginal probabilities are assumed.
[Here (n,) is the sample and (p,) the population contingency table.] This
technique could be adopted by a non-Bayesian who would think of A\ as a
““procedure parameter’’. A Bayesian might call it a hyperparameter because
the ML/E method, as we may call it, is equivalent to the maximization of the
posterior density when the prior density is proportional to Hp,-_,-')‘p"f. This
method has been investigated by my ex-student Pelz (1977). I believe that the
best way to estimate the hyperparameter A is by means of the method of cross-
validation or predictive sample reuse, a method that could also be used for
comparing the ML/E method with other methods (Good, 1979¢). We intend
to try this approach.

4. MULTINOMIAL DISTRIBUTIONS

Some hierarchical models that have interested me over a long period are
concerned with multinomials and contingency tables, and these models
received a lot of attention in my monograph on the estimation of probabilities
from a Bayesian point of view (Good, 1965). (See also Good, 1964.) To avoid
controversy about purely mathematical methods I there used the terminology
of distributions of types I, II and III, without committing myself about
whether the probabilities were physical, logical, or subjective. But, in a
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Bayesian context, it might be easiest to think of these three kinds of
probability as being respectively of the types I, II and 1II. My next few
hundred words are based on Good (1965) where more details can be found
although the present discussion also contains some new points.

The estimation of a binomial parameter dates back to Bayes and Laplace,
Laplace’s estimate being known as ‘‘Laplace’s law of succession’’. This is the
estimate (» + 1)/(N + 2), where r is the number of successes and N the sample
size. This was the first example of a shrinkage estimate. It was based on the
uniform prior for the binomial parameter p. The more general conjugate prior
of beta form was proposed by the actuary G.F. Hardy (1889). De Morgan
(1847) (cited by Lidstone, 1920) generalized Laplace’s law of succession to the
multinomial case where the frequencies are (n) (i=1, 2,...,1). (I have
previously attributed this to Lidstone.) De Morgan’s estimate of the 7/
probability p, was (n;+1)/(N+ ) which he obtained from a uniform
distribution of (py, p,,....p) in the simplex £ p, = 1 by using Dirichlet’s
multiple integral. The estimate is the logical or subjective expectation of p,
and is also the probability that the next object sampled will belong to the j**
category. The general Dirichlet prior, proportional to Ilp,-k"'1
(n, + k)/(N + Ek,) for p,. But if the information concerning the ¢ categories is
symmetrical it is adequate, at the first Bayesian level, to use the prior
proportional to Ilp/#-! which leads to the estimates (n, + k)/(N+ tk). In fact
we can formulate the Duns-Ockham hyper-razor as ‘‘What can be done with
fewer (hyper)parameters is done in vain with more”’. (‘‘Ockham’s razor’’ had
been emphasized about twenty years before Ockham by the famous medieval
philosopher John Duns Scotus.) We can regard & both as a flattening constant
or as the hyperparameter in the symmetric Dirichlet prior. The proposal of
using a continuous linear combination of Dirichlet priors, symmetric or
otherwise, occurs in Good (1965, p.25). Various authors had previously
proposed explicitly or implicitly that a single value of & should be used but [
am convinced that we need to go up one level. (Barnard tells me he used a
combination of two beta priors in an unpublished paper presented at a
conference in Bristol in about 1953 because he wanted a bimodal prior.)

The philosopher W.E. Johnson (1932) considered the problem of what he
called ‘“‘multiple sampling”’, that is, sampling from a f-letter alphabet. He
assumed permutability of the ~ letters of the sample (later called
“‘exchangeability’’ though ‘‘permutability’’ is a slightly better term). Thus he
was really considering multinomial sampling. He further assumed what I call
his ‘“sufficientness postulate’’, namely that the credibility (logical probability)
that the next letter sampled will be of category i depends only on n,, ¢, and N,
and does not depend on the ratios of the other ¢ - 1 frequencies. Under these
assumptions he proved that the probability that the next letter sampled will be

, leads to the estimate
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of category /is (n; + k)/(N + tk), but he gave no rules for determining k. His
proof was correct when ¢ = 3. He was presumably unaware of the relationship
of this estimate to the symmetric Dirichlet prior. The estimate does not merely
follow from the symmetric Dirichlet prior; it also implies it, in virtue of a
generalization of de Finetti’s theorem. (This particular generalization follows
neatly from a purely mathematical theorem due to Hildebrandt and
Schoenberg; see Good, 1965, p. 22.) De Morgan’s estimate is the case k = 1.
Maximum Likelihood estimation is equivalent to taking & = 0. The estimates
arising out of the invariant priors of Jeffreys (1946) and Perks (1947)
correspond to the flattening constants k = Y2 and k = 1/1.

Johnson’s sufficientness assumption is unconvincing because if the
frequencies n,, ns,...,n, are far from equal it would be natural to believe that
P, is more likely to be far from 1/¢ than if n,, n,,...,n, are nearly equal. Hence
it seemed to me that the ‘‘roughness’ of the frequency count (n,) should be
taken into account. Since roughness can be measured by a scalar I felt that &
could be estimated from the sample (and approximately from its roughness),
or alternatively that a hyperprior could be assumed for k, say with a density
function ¢(k). This would be equivalent to assuming a prior for the p,’s, with
density

5 ©  T(tk)p - ‘$(k)dk
° [T ()

Those who do not want to assume a hyperprior could instead estimate & say by
Type I Maximum Likelihood or by other methods in which the estimate of k
is related to X% = 5 L (n,-N/1?. These methods were also developed by Good
(1965, 1966, 1967). Good (1967) was mainly concerned with the Bayes factor,
provided by a sample (n,), against the null hypothesis p; = 1/t (i = 1, 2,...,1).
The estimation of the cell probabilities p; was also covered. (It seems to me to
be usually wrong in principle to assume distinct priors, given the non-null
hypothesis, according as you are doing estimation or significance testing,
except that I believe that more accurate priors are required for the latter
purpose.) The null hypothesis corresponds to the complete flattening k¥ = o
and we may denote it by H,- Let H, denote the non-null hypothesis that the
prior is the symmetric Dirichlet with hyperparameter k. Let F (k) denote the
Bayes factor in favour of H, as against H ,, provided by a sample (n,). (See
Good, 1957. p. 862; or 1967, p. 406.) If k has a hyperprior density ¢(k), then
the Bayes factor F against H - is

oo

F={ Fskydk ,

32
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¢(k) must be a proper density, otherwise F would reduce to 1, in other words
the evidence would be killed. This is an interesting example where impropriety
is a felony. One might try to be noncommittal about the value of & and the
usual way of being noncommittal about a positive parameter k is to use the
Jeffreys-Haldane density 1/k which is improper. This can be approximated by
the log-Cauchy density which has the further advantage that its quantiles are
related in a simple manner to its hyperhyperparameters (Good, 1969, pp. 45-
46). One can determine the hyperhyperparameters by guessing the upper and
lower quartiles of the repeat rate Lp? given the non-null hypothesis, and
thereby avoid even a misdemeanour. The Bayes factor F is insensitive to
moderate changes in the quartiles of the log-Cauchy hyperprior, and the
estimates of the p.’s are even more robust. If you prefer not to assume a
hyperprior then a type Il or second order or second level Maximum
Likelihood method is available because F (k) has a unique maximum F,,,, if
X? > t - 1. This was conjectured by Good (1965, p. 37) largely proved by
Good (1975) and completely proved by Levin and Reeds (1977). Other
methods of estimating k are proposed by Good (1965, pp. 27, 33, 34) and by
Bishop, Fienberg and Holland (1975, Chapter 12). When a hyperparameter is
estimated the latter authors call the method ‘‘pseudo-Bayesian’’. It is an
example of a Bayes/non-Bayes compromise.

F,.. is an example of a Type I (or second order or second level)
Likelihood Ratio defined in terms of the hyperparametric space which is one-
dimensional. Hence the asymptotic distribution of F,., is proportional to a
chi-squared with one degree of freedom. In 1967 the accuracy of this
approximation was not known but it was found to be fairly accurate in
numerous examples in Good and Crook (1974), even down to tail-area
probabilities as small as 10-15. We do not know why it should be an adequate
approximation in such extreme tails.

5. INDEPENDENCE IN CONTINGENCY TABLES

Good (1965) began the extension of the multinomial methods to the
problem of testing independence of the rows and columns of contingency
tables, and this work was continued in Good (1976a) where extensions to three
and more dimensions were also considered. But I shall here consider only
ordinary (two-dimensional) tables with r rows and s columns. The case r = s
= 2is of special interest because 2 X 2 tables occur so frequently in practice.

As is well known outside Bayesian statistics, there are three ways of
sampling a contingency table, known as sampling Models 1, 2 and 3. In Model
1, sampling is random from the whole population; in Model 2, the row totals
(or the comumn totals) are fixed in advance by the statistician; and in Model 3
both the row and column totals are fixed. Model 3 might seem unreasonable
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at first but it can easily arise. Denote the corresponding Bayes factors against
the null hypothesis H of independence by F;, F,, and F,;. But in our latest
model it turns out that F; = F, because in this model the fixing of the row
totals alone provides no evidence for or against . The model also neglects
any evidence that there might be in the order of rows or of columns; in other
words we restrict our attention in effect to ‘“‘pure’’ contingency tables. This is
of course, also done when X? or the likelihood-ratio statistic is used.

The basic assumption in the analysis is that, given the non-null hypothesis
H, the prior for the physical probabilities p,; in the table is a mixture of
symmetric Dirichlet’s. (Previous literature on contingency tables had
discussed symmetric Dirichlet distributions but not mixtures.) From this
assumption F; and Fj; can be calculated. We can deduce FRACT (the factor
against H provided by the row and column totals alone, in Model 1) because
FRACT = F\/Fj. A large number of numerical calculations have been done
and were reported in Crook and Good (1980). We found that FRACT usually
lies between : and 2% when neither of the two sets of marginal totals is very
rough and the two sets are not both very flat, and we gave intuitive reasons for
these exceptions. We did not report the results for 2 x 2 tables in that paper
but we have done the calculations for this case with the sample size N = 20.
We find, for example, with our assumptions, that FRACT = 1.48 for the
table with margins {5,15;7,13]; FRACT = 2.53 for [10,10;10,10}; FRACT =
2.56 for [1,19;2,18]; and FRACT = 8.65 for the extreme case [1,19;1,19].

If the mixture of Dirichlet’s is replaced by a single symmetrical Dirichlet
with hyperparameter k, then Fj is replaced by Fy(k), and max, F4(k) is a Type
II Likelihood Ratio. Its asymptotic distribution again turns out to be fairly
accurate in the extreme tail of the distribution, even down to tail-area
probabilities such as 10-%°, The unimodality of F3(k) when X2 > (r- 1) (s- 1)
has yet to be proved, but is well supported by our numerical results.

I noticed only as recently as May 1978 that the consideration of
contingency tables sheds light on the hyperprior ¢ for multinomials. This was
first reported in Good (1979b). We write ¢(¢,k) instead of ¢(k) to indicate that
it might depend on ¢ as well as k. The prior for a ¢-category multinomial is
then D*(¢f) where

oo

D*) = |, D (t,lys(t,k)dk

and where D (f,k) denotes the symmetric Dirichlet density. Our assumption of
D*(rs), given H and Model 1, implies the prior j§° D(r,sk)p(rs,k)dk for the row
totals. But, if the row totals alone contain no evidence concerning H, this
must be mathematically independent of s and it can be deduced that ¢(z,k)
must be of the form y(tk)/k. Strictly therefore some of the calculations in
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Good and Crook (1974) should be repeated, but of course the distribution of
the Type II Likelihood Ratio is unaffected, and we have reason to believe the
remaining results are robust. This example shows how logical arguments can
help to make subjective probabilities more logical. Logical probabilities are an
ideal towards which we strive but seldom attain.

A spin-off from the work on contingency tables has been the light it sheds
on the classical purely combinatorial problem of the enumeration of
rectangular arrays of integers (Good and Crook, 1977; Good, 1979a). This
problem had not previously been treated by statistical methods as far as I
know.

T. Leonard has used hierarchical Bayesian methods for analyzing
contingency tables and multinomial distributions, but since he has attended
this conference I shall leave it to him to reference his work in the discussion of
the present paper.

6. PROBABILITY DENSITY ESTIMATION AND BUMP HUNTING

Probability density estimation has been a popular activity since at least
the nineteenth century, but bump-hunting, which is closely related to it, is 1
think comparatively recent. There is a short discussion of the matter in Good
(1950, pp. 86-87) where the ‘“bumpiness’’ of a curve is defined as the number
of points of inflexion, though half this number is a slightly better definition.
The number of bumps was proposed as one measure of complexity, and the
greater the number the smaller the initial probability of the density curve
ceteris paribus.

In the 1970 Waterloo conference, Orear and Cassel (1971) said that
bump-hunting is ‘‘one of the major current activities of experimental
physicists’’. In the discussion Good (1971a) suggested the idea of choosing a
density function f by maximizing X log f(x,) - 8R, that is, log-likelihood
minus a roughness penalty proportional to a measure R of roughness of the
density curve. (Without the penalty term one gets 1/~ of a Dirac function at
each observation.) It was pointed out that the problem combines density
estimation with significance testing. In Good (1971b) the argument is taken
further and it is mentioned that exp(-8R) can be regarded as the prior density
of fin function space. In this Bayesian interpretation G is a hyperparameter.
(There were 21 misprints in this short article, owing to a British dock strike.)
The method was developed in considerable detail by Good and Gaskins (1971,
1972) and applied to two real examples, one relating to high-energy physics
and the other to the analysis of chondrites (a common kind of meteorite
containing round pellets) by Good and Gaskins (1979). In the latter work, the
estimation of the hyperparameter was made by means of non-Bayesian tests
of goodness of fit so as to avoid controversies arising out of the use of
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hyperpriors.

Leonard (1978, p. 129) mentions that he hopes to report a hierarchical
form of his approach to density estimation. Also he applies his method to the
chondrite data, and he brought this data to my attention so that our methods
could be compared.

7. INFERENCE ABOUT NORMAL DISTRIBUTIONS AND LINEAR MODELS

In 1969 I suggested to my student John M. Rogers that he might consider
analogies of the multinomial work for the estimation of the parameters of
multivariate normal distributions. It turned out that even the univariate
problems were cbmplicated and he completed his thesis without considering
the multivariate problems. He considered the estimation of a (univariate)
normal mean when the prior contains hyperparameters. The priors were of
both normal and Cauchy form (Rogers, 1974) and the hyperparameters were
estimated by type II maximum likelihood.

Meanwhile hierarchical Bayesian models with three or four levels or
stages had been introduced for inferences about normal distributions and
linear models by Lindley (1971) and by Lindley and Smith (1972.) A survey of
these matters could be better prepared by Lindley so I shall say no more about
them.
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