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SUMMARY

Parameterized families of subjective probability distributions can be used to great
advantage to model beliefs of experts, especially when such models include dependence on
concomitant variables. In one such model, probabilities of simple events can be expressed
in loglinear form. In another, a generalization of the multivariate ¢ distribution has
concomitant variables entering linearly through the location vector. Interactive interview
methods for assessing this second model and matrix extensions thereof were given in
recent joint work of the author with A.P. Dawid, J.B. Kadane and others. In any such
verbal assessment method, elicited quantiles must be fitted by subjective probability
models. The fitting requires the use of a further probability model for errors of elicitation.
This paper gives new theory relating the form of the distribution of elicited probabilities
and elicited quantiles to the form of the subjective probability distribution. The first and
second order moment structures are developed to permit generalized least squares fits.

Keywords: SUBJECTIVE PROBABILITY; PROBABILITY MODELING; PROBABILITY
ASSESSMENT; PROBABILITY ELICITATION; STOCHASTIC ELICITATIONS.

1. SUBJECTIVE PROBABILITY MODELS
Mathematically, subjective probability models resemble the more
familiar sampling theory models. The usual Kolmogorov axioms will be
satisfied by a probability mass or density function, which is nonnegative,
integrates to unity and is otherwise well behaved.!. The distinguishing
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Some writers on subjective probability prefer to work in terms of finitely additive probabilitics. This
distinction is not material to the present paper.
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characteristic of a subjective distribution, then, is not some mathematical
property, but rather its use to describe a person’s state of mind or subjective
uncertainty concerning particular events or quantities of interest. Although a
realistic subjective probability distribution for a future sample typically has
the mathematical property of exchangeability, or another weakened version
of the i.i.d. or related property, my emphasis here is on the distinction
according to interpretation or use.

Models in general can be classified as fixed or parametric. A fixed
probability model is a single probability distribution for a scalar or vector
random quantity, or a single distribution-valued function of concomitant
variables. In the case of subjective probability, the distribution would be said
to be conditional on the information in the concomitant variables. A
parametric model, on the other hand, is a class of models indexed by one or
more parameters, whose values serve to specify corresponding fixed models in
the class. The difference between a concomitant variable and a parameter, for
subjective probability, is that a parameter is used to indicate a class of fixed
models merely for mathematical convenience. A parameter may fail to have
any interpretation as real information. We shall refer to the parametric and
fixed forms of the following subjective probability models.

Model 1. Loglinear odds for an event. A person may be uncertain
regarding the occurence of a particular event of interest, say for a
dichotomous variable y = 0,1, the event y = 1. Conditionally on the vector of
concomitant variables x, his probability is said to take the loglinear form

p = Prob{y=1} (1.1)

=e/(l1 + e,

where for x = (xy,...,x,)" and b = (by,...,0,)",
u=x'b=xb,+...+ x.b,. (1.2)
Inversely, u = (n{p/(1-p)}. The corresponding parametric model has the

vector of parameters b.

Model 2. Location-scale density for a continuous quantity, with linear
location and gathered elliptical symmetry. The person may be uncertain
about a particular continuous quantity y. His probability distribution is
modeled in location-scale form. Suppose it has a density p (»), expressible in
terms of some special standardized density f,
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y-m
PO = f(—)/c (1.3)
c

It is as if there were a standard random quantity z having density f, for which
y=m+ cz. (1.4)

The parameters are m and c.

In the presence of the vector of concomitant variables x = (x,,...,x,)’ the
conditional distribution of y has the linear-form location, for b = (b,,...,b.)’,

m = x'b. (1.5)

Then b would become the parameter, instead of m. Of course, ¢ too could
depend on x (and it will in an important case to be introduced).

This model can be usefully extended in various ways. Writing the
concomitant vector as an arbitrary function of more elementary variabies h, x
= x(h), one has the notion of a subjective response surface. This complements
the theory of objective response surfaces as traditionally used in the
optimization of industrial processes. The surface ordinate m(h) = x(h)'b
would represent a subjective location for the response y, as opposed to an
ideal long-term mean response. The location m(h) can serve as a subjective
point prediction, while the scale parameter ¢ expresses the amount of
predictive uncertainty.

Opinion concerning samples in time can be modeled by replacing the
scalars y, m, z by vectors y, m, z; the scale parameter ¢ becomes a matiix C;
and if concomitant variables are present, x’ should be replaced by a matrix X
whose row vectors are point values for x,

m = Xb. (1.6)

Equations (1.3) through (1.5) then hold again as written with the given
replacements. Equation (1.3) for example becomes

p ) =S{CHy- Xb)j{det(O)} !, (1.7)

if we assume the matrix C is nonsingular.

Bruce Hill (1969) and A.P. Dawid (1977, 1978) have investigated the
property of spherical symmetry, in which the distribution of z is invariant
under rotations. If Az would have the same distribution as z for any
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orthogonal matrix A4, then the distribution of y = m + Cz depends on the
scale matrix C only through the product,

W=CC". (1.8)
An example of such a location-scale model is the multivariate Student family
y ~ Student,(m, W), (1.9)

where z ~ Student, (0, I) means that z can be represented as the product of a
standard normal vector and the independent random quantity (d/x3%)2.
Kadane et al/ (1978) have developed such models for subjective probability
modeling.

The multivariate Student distribution (1.9) has the property that the
density of y depends on y only through the positive definite quadratic form
(y-m)’ W-1(y-m), and it strictly decreases in this quadratic form. We shall refer
to any distribution which has these properties as gathered and elliptically
symmetric. Much of the work here will apply with full force to a general
gathered elliptically symmetric distribution with linear location. The main
advantage of such models is that they can be maximized in their coefficients
vector by the method of generalized least squares. We write for such a model
in analogy to (1.9), fory = m + Cz,

y~F(m,W), (1.10)

where z has the standard distribution z ~ F (0,1).

Matrix-variate extensions of such models are also available for opinion
about multivariate responses sampled at various concomitant points (Dawid,
Dickey and Kadane, 1979).

Subjective probability models, such as the models introduced here, are
important for situations where there is not a large amount of proper statistical
data available and expert opinions must be used for planning experiments or
other decision making. Such models are indispensible when there is little or no
proper data. Expert opinion is already used extensively now without formal
modeling. The intention is that probability models can bring order into
expert-opinion processes. The general scientific method urges observation and
experimentation where feasible, and samples can be planned and analyzed
using subjective probability. But these models are also useful in situations
where statistical methods would not be applied.
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Modelling of beliefs has the following types of use:

1. Clarification of belief, during the modeling or assesment
process.

2. Communication. More precise expression of opinion.
Comparison and possible pooling of experts’ opinions.

4. Decision; e.g. coherent decision (criterion of maximum
utility).

5. Planning of experiments (e.g. criterion of maximum expected
value of sample information).

6. Analysis of experimental or observational data. Updating of
opinion by probability conditioning.

Given a joint probability distribution for observed data and some
uncertain quantities of interest, such as future data, opinion is coherently
updated to account for the observed data by the usual probability
conditioning in the joint distribution. For example, in the joint distribution
(1.6) fory= (y1, ¥2'» P (¥2|¥D) = P (¥1,¥2)/ | P (¥1,¥2)dy,. In the multivariate
Student case (1.9),

Y21 ¥ NStudemwltA (1), B (yni, (1.11)
where

A(y) = my + Wy Wii (y,-my) (1.12)
B(yp = (1 + ry/d)'{1 + d"Y(y,- my)' Wiy(y, - my)}
(Wy- WaWuWi)

We have partitioned m and W conformably to y; Wj, is a generalized inverse;
and r; = rank W;,. (Of course, what is actually meant by this in practice is
conditioning on a small positive-probability interval for y,.)

Note that there has been no need to mention Bayes’ theorem. It is only in
the special case that p (y) is a mixture of sampling models that Bayes’ theorem
arises. That is, if p (y) = {p (y|60)p (0)d6 in terms of an i.i.d. sampling model
p (y|0) with an unknown parameter 6 subject to the prior distribution p (6),
then

P (¥21¥) = [p (y2|0)p (6]y))db , (1.13)
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where the posterior distribution in the integrand is obtained by Bayes’
theorem,

p 01y = p (1[0 (0)/] p (v:10)p (6) db (1.14)

A special case of our multivariate Student model (1.9) can be viewed as a
subjective average of the familiar normal-linear-regression sampling models
in which

y|B,0 ~ Normal(XB; o%1). (1.15)
If 8 and ¢ have the usual conjugate prior distribution,

B8 |o ~ Normal(b; 6?N1) (1.16)
o ~ s¥d/x3),

then the corresponding prior-predictive distribution for y is just the
multivariate Student distribution (1.9) with the special parameter values,

m=Xb, W=3s(X'N'X+1I). (1.17)

The usual Bayesian updating equations for opinion regarding 3 and o (Raiffa
and Schlaifer, 1961) lead to the same posterior predictive distribution as (1.11)
with (1.17). But, of course, our form (1.11) is much more general.

We state again, for emphasis, that a mixture of sampling models is a
special case. In the multivariate Student prevision, a special form of the
parameter W is implied (1.17), special in the sense that W is then the sum of a
scalar matrix and a matrix of rank fixed relative to the sample size
(dimensionality of y).

2. THE PROBLEM OF ASSESSMENT

Just as in any mathematical modeling situation, a person who wishes to
model his beliefs by probability is faced with the problem of specifying his
model. This can be broken down into the subproblems of determining a
parametric model and assessing a fixed model within a given parametric
model. We treat the latter type of problem here. In practice, the full
specification may proceed by an iteration alternating between tasks of the two
types.

We assume that the assessor subjectively specifies aspects of the model.
Aspects may include: probability values; quantiles; moments; even
parameters themselves. Typically, he will overdetermine the model by
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assessing more aspects than are required to fix the model mathematically.
That is, his assessed aspects will be logically contradictory under the model,
and some kind of fit must be performed. The extent to which they contradict
each other can help indicate the degree of suitability of the given
parameterized model.

I should like to emphasize here that subjective probability modeling is
like any other type of mathematical modeling, in that diagnbstic checks are
necessary to see whether the chosen parametric model is adequate for the real
situation being modeled. Loglinear odds and gathered elliptically symmetric
models are here claimed to be widely useful, but like any parametric model,
they cannot be universal. (No model is ever exactly true). The main argument
for considering them is that they are tractable and allow a wide variety of
opinion structures.

We envisage the assessment process as an aspect-specification and fitting
cycle:

Specify new aspects
Fit model to specified aspects

Diagnostic checking

b w N =

Change aspects or change parametric model, and
goto 1; or stop.

Interactive computer programs for such a process for models of our second
type (1.9), (1.17), are reported in Kadane et a/ (1978) and Dickey and Price
(1979). This previous work, however, is informal, in using convenient but
arbitrary methods for step 2. The present paper attempts to meet the need for
reasonable formal criteria and methods for fitting subjective probability
models to specified aspects.

A question of interpretation may be of particular interest at this point.
The aspect specifications and the model aimed at are both conceived as
subjective entities in the sense of being merely expressions of personal
opinions, rather than properties of real-world objects or processes. The reader
may appreciate, however, that much of the development here would also
apply to situations where an underlying probability model, which a person is
trying to assess, is considered to have its own objective existence (say, the long
term frequency of failure for a particular type of component in an operating
nuclear power plant). Then the aspect specifications could be conceived as
subjective estimates of the objective aspects.

Contexts of the latter sort resemble in many ways the traditional
sampling context in which both the model and the aspect specifications are
objective. That is, data drawn from the model are used to form statistics,
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which then estimate aspects of the model. This resemblance will receive
further discussion latter. For the present we merely point out the logical
distinction between data concerning a model and data drawn from a model.
The former concept is the more general.

3. STOCHASTIC ASSESSMENT MODELS

We postulate two models, in general. First, the helief-model or subjective
probability model, denoted p, say a probability mass or density function p (y)
for the uncertain quantity y. This is the underlying true fixed model, the
object of the assessment. It is true in the sense of exactly describing the given
expert’s personal belief, and it takes the form of a probability distribution,
possibly conditional on concomitant variables. Aspects, functions of this
model, are denoted,

Uy, Upy.onylU,. (3.1)
Denote the vector u = (uy,...,u,) . Thenu = u(p).

Strictly speaking, for the aspects to be functions, the model p would need
to be seen as a member of a class of models, such as the class of all
distributions for y on the given range. For another example, if the model is
parameterized by a, then u = u(a). Typically, this function is invertible on a
subrange of u values. For these values, then, the model p would be identified
(in the mathematical sense) by u.

The expert assesses values for the aspects,

uf, uf,...uk. (3.2)

In vector form, write u* = (u},...,u®’. The second category of model is the
assessinent model, denoted q. This is a probability mass or density function
g (u*) for the random assessments u*, which depends on the true model p.
Whereas uy,...,u, ‘‘concern’’ p, uf,...,u¥ are ‘‘drawn from’’ q. We assume
that the dependence of g on p comes only through u, and hence write for given

P,
q(u*) = g (u*; u). (3.3)

This is a new use for the concept of probability. (See, however, Lindley,
Tversky and Brown, 1979). On the one hand, g models the subjective belief of
the expert concerning his own belief p. On the other hand, a sample u* drawn
from g is actually available for analysis, and u* can be analysed in any of the
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ways a statistician would ordinarily work with data drawn from a
distribution. The assessment probability for u* (3.3) depends on u, and hence
on p. Thus, in the case of a parameterized belief model p, the assessment
likelihood for the belief parameter a can be written

L@ = q (), -.., = g (u*; u@)). (3.4)

Consequently, familiar Bayesian or likelihood methods can now be used to
make inference concerning p through a. In particular, onc can estimate the
belief model p by maximizing the assessment likelihood ((a) (3.4). (The
frequentist justifications for maximum likelihood are well known; Bayesians
might justify it as an approximate posterior mode).

Lindley, Tversky and Brown (1979) postulate a further probability model
in order to carry out Bayesian inference concerning p. For them pitself would
be random under a further “*prior’” distribution.

Fxample. Assessment likelihood having linear location and gathered
eliiptical symmetry., Congsider the following useful structures for ¢ and p,
respectively, in terms of a standard gathered elliptically  symmetric
distribution G (4,1),

I. wfu~, G

2. u=La.

The assessment likelihood in this case would be maximized by the generalized-
least-squares estimate,

a= (L Vi) (L V1iu¥). (3.5)

One usually sees the estimate (3.5) justified by the Gauss-Markov
thecorem in terms of variance and bias. It was derived here by maximum
likelihood. This structure would include the usual normal linear model, to
which both such “‘justifications’’ apply. Variance, bias, and other moments
may fail to exist, however, for more general G.

Note that in the present example very little has yet been stated concerning
the belief model p; merely, that some aspects of p are linearly related to some
paramcters in p. Nothing yet has been assumed regarding the interpretation of
u or 4. In a special case of some interest, the object y of the belief would
follow a related subjective-probability model,

3. ylu~, F(u,W),
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where, for example, F (0,I) is the same standard distribution as G (0,1). We
shall discuss later a possible relevance for taking the matrices V and W to be
proportional.

We turn in the following sections to theoretical considerations relating
assessment models to the belief models previously given. Particular location
and scale structures will be motivated for assessment models ¢, for use of the
generalized least squares estimate (3.5).

4. ASSESSING THE PROBABILITY OF AN EVENT
For aspects, consider the linear logodds of equation (1.1), u, = fn
ip./(1 -p)} = x/b, i = 1,...,n. The expert could assess either u; or p;, but we
retain the notation in which the logodds are treated as the aspects. In practice,
one might prefer to assess p; directly and then transform to an assessment of
u;. Expanding both the transformation and its inverse about the point p = %
yields

u

b

2p-(I-p)) + 5p-(-p)P + ...

Tt iu- &+ 4.1

Both second-order terms vanish, and so the transformation is approximately
linear for moderate probabilities.

Assuming that assessments u*, p* are related similarly to u, p, that is by
u* = (n{p*/(1 - p*)}, we have that unbiasedness of p* is approximately
equivalent to unbiasedness of u#*. Hence we assume for the first moment of
u*:

Assumption 4.1
Eu* = u. 4.2)

Cox (1958) uses the somewhat weaker assumption of a constant bias for u¥in
the context of subjective estimation of objective probabilities.

We discuss the second moment at length.

[t is clear that very small or very large probabilities are assessed with
smaller absolute errors than moderate probabilities. We shall argue here for
the proportionality

Var(p*) o« p (1 -p) (4.3)
Justification (a). A constant coefficient of variation S.D. (p*)/E(p*)

would express the idea that the errors in assessment are proportional, in their
standard deviation, to the true value p. This seems more reasonable than a
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constant standard deviation for small probabilities, but perhaps overly
optimistic in that such probabilities are notoriously difficult to assess. It
would also be unrealistic for large probabilities in not having the standard
deviation there smaller than at moderate probabilities. A reasonable
compromise which meets all of the above points is to consider the new ratio,

S.D.(p*)/{Ep*)(1 - Ep*)}V/2. 4.4)
This will be constant under (4.3) for unbi_ased p*.

Justification (b). If p* is Beta distributed under the assessment model,
then Var(p*) o« (Ep*)(1 - Ep*), which again yields (4.3) in the unbiased case.

Justification (¢). The variance within the subjective-probability model
is Var(y) = p (1 - p). We shall argue, below, for the case of continuous y, that
assessment variance is proportional to belief variance. By (mere) analogy
here, Var (p*) < Var(y) = p (1 - p).

Considering now the second moment of u*, we have, to first order,

u* -u = (du/dp) - (p* - p). 4.5)

Hence, Var(u*) = (du/dp)? Var(p*) o {p (1-p)}?2lp (1-p)} <« {p (1-p)}!, by
(4.3). This motivates the following:

Assumption 4.2. Var(u*)is proportionalto {p (1-p)}'! = e + 2 + e".

To use the moment structure of Assumptions 4.1 and 4.2 to fit a loglinear
odds model to assessed aspects will require iteration, because the variance is a
function of the mean. Further assumptions would also be needed regarding
the covariances.

5. ASSESSING QUANTILES OF A LOCATION-SCALE MODEL
For a continuous random quantity y define the wth quantile (0 < 7 < 1)
as the number y, satisfying

Plysyj=m. (5.1

In the problem of assessing a simple location-scale model (1.3) consider as
aspects u,, the quantiles y,, for given probabilitiy values =, i = 1,...,n. A
linear relation holds between the quantiles of y and the corresponding
quantiles of the standard random quantity z,

31
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Vo =M+ 2, (5.2)

Hence given the assessed quantiles y¥, i = 1,...,n, a natural method to use to
estimate m and c is to fit the straight line (5.2) to the ‘‘data”, z., y¥,
i = 1,...,n. This was proposed by 1.J. Good (1978) as a method of reconciling
subjective quantiles from several experts in the normal case.

An appealing fitting method to use here is generalized least squares (3.5),
and a candidate for the required error-covariance structure will be developed
below. Garthwaite and Dickey (1979) study properties of the ‘‘bisection’’
method, a special case of this method when bisection is used for assessing
location-scale parameters. In the bisection method, particular quantiles are
elicited as medians of distributions conditioned on subintervals.

In the more general multivariate location-scale model with iinear form
location, m = Xb (1.7), it might seem reasonable to fit this form for b after
assessing a single quantile of y; at each point x; (y conditional on x = x,),
where the row vectors x/, i = 1,...,n, comprise the matrix X. These quantiles
y.(x;) would all be assessed for the same probability value say =, = 2, an
appealing value to use in the elliptically symmetric model (1.9), for which the
coordinates of m are the medians of the coordinates of y. One would fit the
linear relation, in this case,

Yeso (X) = x/b (5.3)

to the ‘‘data”, x,, ¥¥, (x), i = 1,...,n. Again, generalized least squares will
require an error-covariance structure.

5.1 Sample quantiles as estimates of quantiles

Subjective assessment of quantiles may be preferrable to the assessment
of probabilities of intervals or half-lines, because an expert may find it more
meaningful to weigh against each other quantities having the same units as the
unknown Y, relative to a fixed probability, rather than comparing candidate
probability values. But how accurate are such quantile assessments? Perhaps
a clue is available from the analogous problem of estimating the quantiles of a
traditional population by the quantiles of a sample drawn from the
population. There is, of course, no necessary connection between this and our
problem of assessing subjective probability quantiles.

Denote a population by p, or p (y). Denote its wth quantile by y,, and the
corresponding quantile of an independent sample from p by y¥. Then for large
samples, the asymptotic distribution of y¥*is normal with mean and variance,

EQH = y.

Var(y® = v-ln(l - 7)/p (0.)%, (5.4)
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where v denotes the sample size. Indeed, the joint distribution of the sample
quantiles y¥ at several probability values =, is asymptotically multivariate
normal with the covariance structure,

Covyt, y%) = vimy(l- 1)/ 1p ()P )] (5.5)

for 7, < w, (Mosteller, 1946).

So sample quantiles are asymptotically unbiased; and in the case of a
location-scale family p(y) = f{(y-m)/c}/c, the variances and covariances will
be proportional to the squared population scale parameter,

Cov(yt,pt) = [v my(l-m)/ iz )fizn ) le? (5.6)

That is, if the distribution being estimated has a variance, the sample quantiles
will be distributed with an asymptotic variance proportional to it,

Var(y¥) o« Var(y) (5.7)

We shall argue for an analog of this principal in the next section.

In unpublished work Michael Cain has derived assessment fitting
procedured for the linear model (1.9), (1.17) using the moment structure of
sample quantiles, following a suggestion by J.B. Kadane.

5.2 Assessed quantiles
Returning to the general notion of assessed quantiles y* having a
distribution g conditional on the quantiles y, of the distribution p of y, define
the cumulative distribution function P for y, at any value y~,

PG?) = Probly<yj={ ” p0)dy. (5.8)
Then, of course, # = P(y.).

Transforming the assessment, define the quantity,

.y*
v = PO = 27 p0)dy. (5.9

In practice, =* will not be available in numerical form, depending as it does on
the model p. But still, 7* is a mathematically well defined random quantity
and has a distribution induced by the assessment distribution ¢, and we can
discuss the behavior of 7* relative to the ‘‘true’’ value 7.
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A main idea of this paper is that the induced distribution of 7* promises
to be insensitive to the model p; at any rate, less sensitive than the distribution
of the assessed quantile y} itself. The quantity 7* represents the amount of
“‘true’’ probability included to the left of y¥. The assessment errors in y* could
be expected to be large if the integrand p(y) of (5.9) is small in the vicinity of
y., and small if p(y) is large there. The less believable a region is, the more
difficult it is to assess a quantile within it, and visa-versa. This would have the
effect of stabilizing the distribution of #* in its dependence on the local
behavior of p(y). We consider small errors in y*, and hence small errors in 7*.

Assumption 5.1. 7* is unbiased: ‘
E(r*) = 7. (5.10)
Now, take the linear expansion of the cumulative,
™ = 7 + p)VFYy.) (5.11)
which yields, together with Assumption 5.1.

Consequence 5.2. For small assessment errors, y¥is unbiased:

E(pY) = y.. (5.12)

Assumption 5.3. The model p(y) is parameterized as a location-scale
family, y = m+ cz, where z has a known distribution with density f(z) and
unit variance. Hence, p(y,) = f(z.)/{Var(»)}"*. (If one makes the assumption
that the assessment model g(y}) is also of location-scale form, then no
moments need exist, and one can read locations and squared-scale parameters
for the means and variances throughout this section.)

In spirit similar to Assumption 5.1, we have,

Assumption 5.4. Var (7*) is constant in m and c.

Consequence 5.5. Proportionality of variances (scales).
Var(y¥) = Var(7*)/p(y.)? = {Var(7*)/f(z.)?}* Var(y) (5.13)

Under an assumption analogous to the constant modified coefficient of

variation in the linear log odds problem (4.4), we obtain a more explicit form
for the dependence on the quantile probability value =, as follows.
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Assumption 5.6. Constant moments ratio
S.D. (#*)/{(Ex*)(1-Ex*)}* = K . (5.14)
Consequence 5.7.
Var(y¥ = k?n(1-7)/p(y.)? = {K*n(1-7)/A2.)?}+ Var (¥). (5.15)

This exhibits an even closer resemblance than (5.13) to the variance of a
sample quantile (5.4). It is tempting here to speculate that the covariance of
assessed quantiles might have an analogous resemblance to the covariance of
sample quantiles,

Cov(yt,p%) = K2my(1-m,)/ iz )fiznp) IVar(y) (5.16)

for wy =7,. The corresponding correlation coefficient would be the same as in
the sample quantile case, namely [{r,/(1-7,)}/{w,/(1-7}) 1.
This correlation approaches unity as w,7;—0, and so our stochastic
assessment model is ‘‘smooth’’ in the assessment of neighboring quantiles.
(For sample quantiles, of course, such a limiting operation makes no sense).
We turn finally to the distribution of median assessments y*,(x,) in the
gathered elliptically symmetric location-scale model with linear location y(x.)
= x/b, i=1,...,n. The essential property for the discussion here is that a set of
jointly distributed assessed quantities y¥(x,) have variances proportional to
the corresponding jointly distributed observables y, at x,. Denote the vectors
having these two sets of coordinates, respectively, by y#, and y. We extend this
property in the following,

Assumption 5.8. In the coordinate system of the principal components of
y, the vectors y¥ and y again have coordinates with proportional variances:
Write = Ay and { = Ay¥;,. Assume that for some orthogonal matrix A,
both Var(y) = Diag(s3, ..., 72,) and Var ({})) = k7% i=1, ...,n.

Assumption 5.9. Quantities uncorrelated in the belief model correspond
to quantities uncorrelated in the assessment model: Assume Cov({,,{,) = 0,
i+].

Clearly then, the matrices Var(y) = k Var({), and hence,

Consequence 5.10. Proportionality of covariance matrices:

Var(y%) = k Var(y) (5.17)
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To use this moments structure for a fit on the linear location will require,
of course, a separate assessment and fitting procedure for the scale matrix, or
an iteration alternating between the scale and the location.

6. DISCUSSION

We have argued theoretically for particular forms of probability model
for the behavior of subjectively assessed aspects of a probability model of
belief or frequency. Such a model of assessment behavior would be essentially
descriptive in its interpretation, rather than normative as the underlying belief
model. As such, its suitability should be investigated experimentally. Do
errors in assessing belief behave as advertized; or is another stochastic model
more realistic; or can better descriptions be given in deterministic form?

One difficulty to be met in the experimental study of assessment models is
that of establishing the underlying belief model. Assessments are
measurements on beliefs, and to study the distribution of assessment errors
would seem to require working in controlled conditions where the ‘‘true’’
opinion values are known, that is, known to the experimenter but not known
precisely to the person whose opinions are being assessed. This seems hardly
likely for underlying subjective probabilities. The subjective estimation of
objective probabilities is another story, and perhaps experiments on this
problem can be extrapolated in their implications to the former problem. Of
course, sophisticated statistical methods are also available for inferring the
distribution of errors without knowing the underlying ‘‘true’’ values, though
typically, this will require additional structural assumptions.

A more fundamental difficulty must, however, be addressed here, and
that is that underlying belief models may fail to exist in any realistic sense. In
his second philosophy, following Ramsey, Wittgenstein (1953) dealt
devastingly with all kinds of logical constructs invented to describe the human
mind. A mind’s ‘‘perceptions’’ of its own ‘‘mental states’’ (including beliefs)
was a favorite target of his. Such logical constructs seem to exhibit what
DeFinetti (1974, p.22) calls ‘‘the inveterate tendency of savages to objectivize
and mythologize everything; a tendency that, unfortunately, has been, and is,
favoured by many more philosophers than have struggled to free us from it’’.

My purpose in this paper is to investigate a framework that may be of use
in practice, in the sense that the subjective probability models eventually fixed
by an assessment-and-fitting cycle will be found useful. The suspicion remains
that the model produced many depend strongly on the assessment method
(Hogarth 1975). A person’s opinions are not coherent (probabilistic) to begin
with, but only as he makes deliberate use of the normative theory of subjective
probability. Stochastic assessment models may help provide ways of using the
normative theory.
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