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DISCUSSION
1. GUTTMAN (University of Toronto):

Firstly, 1 would like to congratulate Professor Geisser for his article and
presentation -this is a very stimulating piece of work, and I am honoured to be asked to
discuss this paper.

Now I have to report that I have gone through several phases since accepting the
invitation to be a discussant of this paper. The first phase said -glance through the
paper, get the flavour, report on the flavour, and then, like all good discussants, do the
Sfungible thing, talk about my work in the area of reliability, censored data, etc. The
second phase, however, intruded, because as I read the paper 1 became more and more
stimulated, interested, frustrated, etc. (underline all of these words) by the underlying
ideas. For example, the Sample Re-Use Method is not Bayesian and the use of words
prior and predictive at various points in the paper are somewhat misieading. (The point
that Sample Re-Use is not Bayesian is indeed admitted by Geisser). Indeed, if Geisser
had given me permission (how presumptuous can one be) to construct a title, I would
perhaps have suggested ‘‘Smoothing and Approximations to Properties of Predictive
Distributions’’. Allow me, in the ensuing time to say why.

Suppose the population being sampled has distribution f(<|6), and that n
independent observations from this population have been taken, say ¥y’ = (q,...,%.)-
Then, if additionally we are to observe a (future) observation from this population, the
conditional distribution A of y, given y, is, using the rules of probability, given by

rolw= | rolop@|nde (1)
fef2

where the posterior p (#]y) is such that

p (0)y) = c(y)g ()« |y) V)]
with
00y) = Iz f (v:|6) and [c(V)] * = 5 q)p (0|y)d 6. 3
B2

Here, of course, g(f) is the prior distribution of # and summarizes all the
information available to the experimenter prior to the taking of the data y. Now
suppose the prior q itself depends on certain constants «, i.e.,
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a(0) = g(0]c) = g(6|cs,exy) G

Then we should write (1) as
hO1y:a) = | |0)p@]y;x)db (5)
Now Geisser proceeds as follows: Suppose indeed that the distribution function
q(0 ! oq,05) is the “prior’’ for 6, and that o, is known, but «, is unknown, and that y is

observed. Consider the discrepancy function D(y;ay; «p). Select for «, that value &,
which is such that

D(y;a1,05) = min D(y; oy, ) 6
(641
Note that
&y =0i(ysty) (7

(For an example of D, see (2.7) of Section 2 of Geisser’s paper). Then, use this to
construct a function

ho)y) = e 10)al | as,a) U0 |y)do = h (¥ | y;a ;) (8)

and needless to say

o 1y) = (100 |y, &)dd # h(y |y), (8a)

where
hQ|y)=f010)pO}y;0q,a5)d0 (8b)

(The superscript (s) in (8a) stands for smoothing f(y |8) with p(6| y;a,,‘&z)). Now in
(8b), the Bayesian and/or his client is using that value of «; and «, that arises due to
prior information about 6, and in general, this choice will be different than («,,&,) — in
tact, the &,’s themselves may vary according to the different nature of the choice of D.
This point aside, we are now asked to make the step that regards A as an
approximation to A, i.e.,

hOpiy) = hyy) (8¢)

This, it seems to me, must be justified.

Note that we are using a “‘prior’’ in (8) which is a function of the data y, a
violation of the cannon of Bayesianism which loosely speaking says that if we are to be
coherent then the prior cannot depend on the data. In fact when we use (8), it seems to
me that we can ligitimately ask is there a better way of smoothing f{y|6) than by use of
(0] ay,&,)? Incidentally, 1 gather that the use of the term *‘Predictive Sample Reuse”’
in the title comes up here because we are using the data not only in the functional form
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of (2), but also through the use of (6) to use p(f | y; oy, &) as the smoothing function in
A, so that even here in the uncomplicated case of no censored data, all observations
recorded, we have used the data twice.

But this is compounded in the censored case. In this case the data has a certain
structure, viz:

¥1 = W1 +.-, Vu.0) are recorded )
¥z = (Pu-as1s ..., V) 15 such that it is known only that y,>a, where the ay;,
Jj=n-d+1, ..., nare known constants.

Using the superscript (¢) to denote the presence of censored data as in (9), we have
that the predictive distribution of y, given censored data is

R yr,ag) =[S |0)p(0 | y1,850,0)d0 (10)
where here the posterior p is given by
PO[yya500,0)) = k(DGO oy,a)i0|y1;a,) (1n
with
00| ypa2) = I Ui [0 HIT g [1-Flay |6)]) (12)

where F is the cumulative of the distribution f{. |6). Geisser now proceeds as follows.
Remove a,; from the likelihood and let a§” be the (d-1) vector obtained from a, by dele-
ting a,; from it. Find A (y|y,,a4’) using the prescription (10) etc. From this, find the
conditional A’ (y |y >a,;y,, a§’') and obtain

E©V@ly>ay) =y} (13)
the conditional expectation of the predictive variable y, given that y >a,;, and where we
are given the structure (9) with (d-1) censored observations etc.

The set (V¥ 4415 --.» ¥’ = y¥is then used along with y, in a discrepancy function D*, to
produce a value o that is such that

D*(YDY’zk;al,a;) = mar; D*(yhy;"al’aZ) (14)

(An example of D* is the weighted discrepancy function defined at (3.10) of which

1 will have something to say below.) The value «f so obtained is then used, as before, to
obtain (see (10))

RO | yLyE anad) = [f10pO] v,y 5a,&do (15)

Note that we are re-using the data (d+ 1+ 1) times — d times to find the set y}
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from (13), one additional time in (14) and of course a further additional time in
p WDYZ;(«Yb‘C\Yz)-

To proceed further with this discussion, allow me to start at the beginning of
Geisser’s paper. We are considering the case of addressing an exponential process,
whose distribution is given by

J.0) = otexpl-y/a], y,0>0 (16)

We are assuming that before the taking of sample information taken from the
above (single) exponential, the applicable prior of ¢ is such that

p(o) « o ®V expl-y/o}, 0,7,6 >0 a7n
This of course implies that, a-priori
2v/o = x%b 0r0=2'y/)(%‘5 (18)
and that the prior expectation and variance are

(i) E(o) =v/(6-1) = g,6 > |
(19)
(ii) V(o) = g2/(6-2),6 > 2

In practice, the prior comes ‘‘armed’’ with fixed values of v and 6, or g and 4, fi-
xed by prior sample information or ‘‘experimenter’s expertise’’, and this does touch on
the problem of determining whether (17) is applicable, and if so, how to use prior infor-
mation or experimenter’s expertise to arrive at a suitable choice of (g,8) or (v,8) etc. |
do not go into this here, but assume that we do have (17) available and that (v,6) repre-
sent the values chosen (wisely) by the experimenter,

Note that [ use the parametrization given in (16), but of course if we let u = 1/0,
we obtain Geisser’s formulation. I prefer using ¢ as in (16) since E{y|s) = . Note
again that p (o) exists for 6 > 0, E, (o) exists for § > 1, and that V(o) exists for § > 2.
Also, we make note of the fact that if 6 and + tend to zero such that v/(8-1) tends to g,
then p (o) tends to p,{o) which is such that

Pado) « 1/0
the so called and much maligned non-informative prior (n/) for o.
Now an interesting and somewhat novel theme of the author intrudes at this point,

and that is the calculation and fitting of the predictive A (y( ,1::',:,) , based on the prior
alone, where

/7(}’:' ‘;Z'.’.,) = | f(lo)p (0)do @2n
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which after using (16) and (17) yields
h(Y] )= 87" (v +2) 0, (21a)

that is, a priori, we predict y to behave as a scaled Snedecor-F variable, i.e.,
a priori

Yy =(/0) Fy . (21b)

Note that the mean and variance of this distribution are

0O EO) = —— =g =Ef, b5>1 22)

6-1

andifé > 2,

8 1
(i) Vi) =g — >g — = V().

Now the moments show that fitting the parameter (y,8) or (g,8) using (21) is associated
with a distribution that is located at the same place as the prior p (o) , but has larger
variance (by a factor 6 , which could be considerable), and the moments of & are
functions of the parameter of the prior. A person who would want to nail down
information about prior parameters by fitting his information about (v,6) through 4
(which has larger variance) rather than through the prior, must believe in putting the
cart before the horse, and notice too that the experimenter is asked to examine his
experience and relate it to future y’s based on A, which is not based on current
experimental data - I doubt that many experimenters would do this.

Now what is going on can be summarized by the following tableau (We shall let
6= 1/a) + lora = (6-1)1)

A-Priori
- Y ) 2 26
Predlcuvey=g F2,25 Priorono: o= _1_ = l
2 2
X2, o X3,
or Yo X&/m
6= — lim —87——

0 m—o x5/,
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or

g = llm F,,, 2
6 m—oo
Y Yo 2
EQ) = — =ya =g E()=— lm —— =g
o-1 & m—oo 26-2
s 2
Vi) = 88 —— Vo) = — lm (Fn,)
8-2 62 m—o
1+« o
=gt =g —
l-o l-a
Note again that we may write
2
Vo) = — lim V(F.,) (23)
6% m— oo ’
as
L
V(o) = lim u(m) (23a)
6-1? 5-2 m—oo
1
=g — lim wu(m)
6-2 m—oo
where u(m) is such that
2(8-1
u(m) =1+ (———)
m
so that
lim u(m) = 1 (23¢)

Now Geisser’s method of fitting using # amounts to saying replace

lim
m— oo
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u(m) , which equals 1, by u(2) = 6, while of course, the Bayesian, who is using that
p (o) given by (17), that is, o is a-priori, the scales inverted Chi-Square variable given in
(18), is using u(ee) = 1.

Having advocated the fitting of the no-data predictive, there is what amounts to
some backtracking from this position by Geisser, because he now assumes that g =
E.(») (= E,,(o)) is assumed known (i.e. picked by soliciting from the experimenter
information, sample or otherwise, about E,,(y)) and then, rather than continuing with
the fitting of A, chooses 6 = é + 1 by employing the discrepancy function D or D* and
finally the value of « that minimizes the chosen discrepancy function. Here D = D(y;
g, @) is used it all observations recarded, while D* = D* (y,; y% g, a®) is used if there is
censored observations -see the previous discussion here and Geisser’s paper, relations
(2.7) and (3.10). We again note that doing this amount to choosing a value for a
parameter of the prior which depends on the data, a cannon of Bayesianism thus being
violated.

Indeed, what would a “‘Strict Bayesian’’ do in this problem? (I am indebted to
George Barnard for pointing out that the definite article ‘‘a’’ instead of ‘‘the’’ should
be used before the words “‘Strict Bayesian’’). We suppose that the process being
sampled is as given in (16), that the appropriate prior based on the experimenter’s
experience and knowledge is given by (17) with é and ~ fixed. Now suppose »n units are
put on test, and that

(i) n, observations, say y/ , j=1,...,n,, unrecorded, but known that
lifetimes are less than a,, that is, y{’ < ay, i=1,...,a;;

(ii) n-n,- n,observations recorded, say y;, j=ny+ 1,...,n-n,; (24)

(ili) »n, observations, say y’, t=n-ny+1,...,n, unrecorded, but known
that lifetimes are greater than a,, that is, ' > q,, t=n-n,+1,...,n

(in our previous discussion, n; = 0 and y&' > a,,, where a,, = a,; Geisser’s illustrative
example involves the case a,, = a, and that is why I have decide to look at this case at
this point).

From (24) we have that the likelihood is such that

(Y2 a3, @y) o [1-exp(-a,/0)]"t
X g-tn-npenp) CXp(-I(O)/U) X (exp(-a,/o)"2 (25)

where #® = L7172 . is the sum of the recorded observations. We can thus use all the
above ingredients and find

p (o|data) = KE4 1 (1) Y (26)

=0 J

X exp[-(#® +nua, + jas+v)/ o).
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Using (26) the results for ultimate calculation of the predictive distributions are as
follows:

I. Uncensored Case: (n, = n, = 0).

Using the previous definitions we find for this case that:

(£ + )2 1 t+y
poly) = exp - (27)
I'(n+é) n+é+1 o
where t = 19 = 1y, sothat, a posteriori,
2
20470 = X0 - (27a)
This in turn implies that
oo
ho1y) = o/ 0o (o])do 28)
n+é y - (484
_ _<1 L2
t+y t+y
that is, the predictive distribution is such that
t+y
y= — Fz,zwm- (28a)
n+o
We find
. t+y oany+g
0 Eply = = —— =f (28b)
n+é6-1 na+ 1

I}
@ Vol =sri—
(n+ 5-1)2 (n+6-2)

and it is to be recalled that Geisser assumes g known and picks « to minimize D given by
his (2.7), viz.

D () = n ' Z1f: - i)? (28¢)
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where f; has the same form as fin (28b), but leaves y; out, that is,

a(n-1)y. +g

i

a(n-1) + 1
andy; = (n-1)! PR

II. Case of Censoring on the right only (7, =0; n, > 0)

Using previous definitions, for this case we find:

(1Y +y+n, ay)

(tO+y+n; ayz? exp-|

po|yz;a) = a
I'(n-n,+6) glrngteth
that is, a posteriori
2
2% + ny az + 7)o = x, - (292)
Further, the predictive distribution 2 is such that
(£ + npa, + )
V= —————— £y (30)
n-n, + 6

Recall that v = g(6-1) = g/«. Note too that (v,5) (or (g,6) or (g,a)) is specified at the
outset by the experimenter. So a Strict Bayesian who wants to do some predicting in
this situation uses (30) which is completely specified. Note too, that using (30) and

letting & — 0 implies that

y=gx5/2.

(31)

Hence, in particular, we would estimate the 90th percentile of future y’s, say .44, that
is, the point exceeded with probability « 10 when using the predictive as

19+ nya, + (g/w)

_—_— n-ny+1+(1/0)

2,2(n-n+ 1) + Z ;010 if « £ 0,

ex} 10/2 = g (2-3026) if « =0.

(32)
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TABLE 1

Y.10 (to nearest integer) . MLE of o to the nearest integer is 4290,

o 8 60 3550 3700 4280 4290 5000 5150 15,000

0 o 1138 8174 8520 9855 2878 11,513 11,858 34,539
1/10 11 5273 9124 9290 9929 9940 10,724 10,889 21,759
2/10 6 6888 9420 9528 9949 9956 HO~¢QH. 10,580 17,724
3/10 W 7678 9563 9644 9957 9963 10,346 10,427 15,747
4/10 uW 8147 9648 9713 9963 mqu 10,272 10,367 14,575
5/10 3 8457 9705 9759 9966 9970 10,223 10,277 13,799
6/10 Nm 8678 9745 9791 9968 9971 10,188 10,234 13,247
7/10 NW 8842 9775 9815 9970 9973 10,162 10,202 12,834
8/10 - MW 8970 9798 9834 9971 9974 10,142 10,178 12,514
9/10 NW 9072 9817 . 9849 9972 9974 10,126 10,158 12,259

1 2 9155 9832 9861 9973 9975 10,113 10,142 12,050
Geisser - - - 9890 9226 8520 9855 9878 11,513 10,151 10,018
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[F,,.l, 2,5 denotes the point exceeded with probability 8 when using the Snedecor F with
(my,m,) degrees of freedom and XZ;.IO is the point exceeded with probability 10 when
using the Chi-Square distribution with 2 degrees of freedom and is equal to 4-6052.]

We illustrate the different types of results that emerge using Geisser’s data.
Consulting Geisser’s paper, we find

n = 100; n, = 89; n-n, = 11; a, = 500; (33)
n, a, = 89 (500) = 44,500; 19 + n, a, = 47,187,
MLE = 47,187/11 = 4290.

Recall that Geisser uses (32) with « replaced by &, and & is obtained by following the
procedure described starting at (12). The results are given in Table 1. We are assuming
that o > 0 (so that the mean g exists) and we have cut off the table at the line « = 1,
but it could continue indefinitely in principle. As the last line, we have inserted
Geisser’s results. (At this writing Geisser did not supply the values of & found, but of
course, it is easy to see that for his entries for the cases g = 3700, 4280, 4290 and 5000
that his & = 0.)

Note that unlike Geisser’s 1 line table, there are no reversals along rows in the main
body of the table. Further, the columns to the right of the MLE are decreasing and
viceversa. And it is interesting to note again that priors do produce the different results
indicated by the Table, different from the 1-line table of Geisser’s, which after all could
be very different itself depending on the type of D* function used. Note that if Geisser
were to use the weighted function given by his (3.10), then a minor quarrel could be
picked. In our notation, the weights used are

@) [E.viv o]t = [E.t021]

for the uncensored variables, where the expectation is taken with respect to the
posterior of ¢ given in (29), and

(ii) [voiy > o]

for the censored variables (recall these are all censored at @), where here the variance is
taken with respect to the conditional predictive #)(y|y > a,) where the unconditional
h! is specified in (30). The minor quarrel is with (i) -in most applications a,; = a, (in
this example @, = 500) because of a time constraint, or a gauge calibrated between (0,
a,) only, etc., and realistically then, once we see the data the recorded observations are
known to be less than a,. Hence the recommendation would be, not to use (i), but
(VO ly<a)l™



III. Censored observations on the left and right (n; > 0, n, > 0).
For this case it is easy to show that we may write the posterior as
n /n .
p (o|data) = K E;O(j‘)(-l)’o'"""1"'2*““ exp(-v,/o)
where

v, =t + nya, + jag + v,

and X is such that

I'(n-n-ny+ 6)

K= ()

Vg
Using this we may in turn find that the predicti‘ve density is given by
B 1Y 02y8) = Sy qQivin-ny-n,+9)
where in general
qib;o) = i[1 + 5]+ b, > 0
and where

n R, non £ -(n-n -n +5)
& =(7)ety o JEL )l e
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(34

(34a)

(34b)

(L))

(35a)

(35b)

To illustrate what happens in this case, we have censored Geisser’s data on the right at

a, = 60, so that we are pretending that we have the following sample information:

ny; = 2 observations less than a, = 60 ;
n, = 89 observations greater than a, = 500

n-ni-n, = 9 observations recorded, and observed to be 90,
249, 323, 353, 833, 436, 477.

(36)
161,

Note that 19 = 2,607. Using the above data in (35), and dealing with the case where «
= o5, that is, 6 = 3, we find that the 90 percentile of this distribution for various

values of g are as given in Table 1.
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TABLE 11 90" percentile for the predictive density (35) based on the data set
(36), for « = +5 and g as tabled

g 60 3,550 3700 4280 4290 5000 5150 15,000

90* percentile 8,414 9,666 9720 9927 9930 10,185 10,239 13,782

A comparison with the @ = +5 line of Table 1 yields the (expected!) fact that the
corresponding entries are all less than the corresponding entries of Table I. (A program
that tabulates the cumulative of (35) is available from the Department of Statistics,
University of Toronto).

Finally, I want to congratulate Geisser again. His paper is very throught provoking
and has proven to be very stimulating (to this person at least) and some very subtle
issues are raised in this paper. To the data analyst and to those who worry about
foundations, this work raises some profound questions to which some clear answers are
deserved. In the meantime, the methods proposed by Geisser are of great interest, and
he is to be congratulated for the inventive procedures that he has developed.

S.J. PRESS (University of California, Riverside):

Professor Geisser has provided us with yet another illustration of the versatility of
the predictive sample reuse method that he and Professor Mervyn Stone introduced in
different forms, independently, in 1974, in their now well-known and celebrated papers
that both appeared in England, in Biometrika, and in JRSS (B), respectively. Professor
Geisser has now shown us how to apply this methodology to the prediction of future
observations, when some of the sample data are censored. The problem here, of
course, that makes this application different from his earlier applications is that not all
of the data are inmediately available as candidates for deletion, in the basic discrepancy
function, because of the censoring.

As a solution to this inherent difficulty, the author proposes that we introduce
pseudo observations, obtained by using the expectation of the predictive distribution of
a censored observation given that the observation (that is, the observed failure time)
exceeds a preassigned value, namely, the censored value. To obtain this predictive
distribution we must introduce substantial structure into the problem. It seems that, we
must have a likelihood function, and a bona fide prior distribution on the unknown
parameters. From this structure we obtain a posterior, and subsequently, a predictive
distribution. Taking expectations in the latter yields a ‘‘pseudo observation™’.

The author suggests that when we turn the sample reuse crank, we should utilize
the pseudo observations as well as the uncensored ones, and he suggests two methods
for doing so. He also suggests that the discrepancy function should be formed as a
weighted average of the individual discrepancies obtained by deletion of observations,
the weights being assigned according to some specific suggestions.

Finally, Professor Geisser has applied his paradigm to some actual failure time
data.

I would like now to make some comments and to raise some questions.

1. My first question concerns the parametric structure imposed on the problem.
The recommended approach requires that we make parametric assumptions about both
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the sample data and about the parameters of the sampling distribution. If we must
impose such structure anyhow, as we would do in a conventienal frequentist approach,
or in a conventional Bayesian approach, why should we utilize the sample reuse method
at all, in this application? To do so, we must introduce some ad hockery regarding the
form of our discrepancy function, our predictor function, etc. In other applications,
we would presumably be trading off some precision of results, as a result of this ad
hockery, in order to gain robustness of prediction with respect-to distributional
assumptions. In this case, what do we gain?

2. I would like now to question the assignment of weights. Isn’t the assignment of
weights to the discrepancies quite arbitrary? Certainly the assignment is no less
arbitrary that the assumptions made about the form of the discrepancy function, the
form of the predictor function, etc. On what basis has the author selected the weights?
It seems to me that using precisions as weights is motivated by a normal distribution
assumption. But in the case where the data are more likely to be some member of a
family of non-normal waiting-time distributions (exponential is what Professor Geisser
used as an illustration), why use precision weights?

3. The author combines subjective information with sample information, in a
more or less Bayesian way, but violates Bayes’ theorem by using sample data to assess
the parameters of the prior distribution. It seems to me that there has been ample
precedent in the literature for this kind of approach, called empirical Bayes. But this
raises the natural question, should we use a moment matching assessment technique
or perhaps we should use some other method of getting at the parameters, and then do
maximum likelihood estimation of the hyperparameters by maximizing the marginal
distribution of the data given the hyperparameters? We would of course need to adopt
a likelihood function to do this. Perhaps a smaller risk would be obtained, an
important consideration for an empirical Bayesian.

4. My last question involves the underlying parameters of the prior distribution
again. A gamma prior is suggested in the paper, for the mean of the sampling
distribution of failure time. This is a two parameter prior. But the ensuing analysis
really involves only the shape parameter and assumes we know the scale parameter.
Perhaps the analysis could be carried out for both parameters simultaneously? Perhaps
the mathematics is too intractable.

In conclusion, I would like to thank Professor Geisser for an extremely stimulating
and thought provoking paper that clearly extends his earlier research in this area, into
new and important fields. But given the methodology we have heard about today, as it
relates to censored data, it seems to me that there is another problem that could
probably be treated in an analogous way - this is the problem of missing data. We could
generate pseudo observations for the missing data and carry out the analysis in like
fashion.

Perhaps Professor Geisser will tell us how to do this in one of his future papers on
the subjct.

30
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REPLY TO THE DISCUSSION
S. GEISSER (University of Minnesota):

In the introduction to my paper I outlined how sample reuse procedures could be
executed in the presence of censored data. Two such procedures were suggested,
neither requiring distributional assumptions.

Believing that 1. J. Good is essentially correct in his view that most reasonable
Bayesian applications are inherently compromises with other methods and also that the
predictive sampie reuse method can be an attractive empirical Bayes procedure - 1
offered such an application. It was described first for full data sets and then for
incomplete data sets with censoring as a particular application at varying levels of
inferential structure running the gamut from low to high.

Even in any real subjective application of Bayesian procedures, there comes a
point at some level in the possibly infinite hierarchy of hyperparameters and
hyperdisiributions where one is no longer willing to continue regressing. Among the
several aliernatives are: (&) assign precise values to some final set of hyperparameters,
{b) introduce a so-called non-informative distribution for them, (¢) devise an empirical
Bayes procedure for their estimation. Given that certain conditions obtain, coherence is
guarantced for (a), problematic for (b}, and inevitably vitiated for {¢).

My paper, in part, sets forth a new procedure that can be substituted for others
useful in (c) and one which has the robust quality of simulating to a large degree on the
available data what it requires from a predictor. Although originally the predictive
sample reuse method was introduced to provide point predictors for low structure
paradigms, here its effectiveness is amply demonstrated as a useful empirical Bayces
estimator of a hyperparameter, an intermediate step towards prediction for a high
structure paradigm. In particular, a situation is described where it turns out to be
easiest and most convenient to apply amongst the usual estimators of this type. For
cxample, in the uncensored situation, we easily obtain the marginal density of X,,... X\
to be

PN +8)y?

.f(xls"-’leé"y): (])

TF@INx + y]¥

where x is the mean of the observations.
Assuming g = y/(6-1) is known and transforming to Y; = g X,, the marginal
density of Yy, ..., Yuis
(N + 8)(6-1)

JO1s09x[0) = v
POINY + §- 117

Here S = LY, Y, is sufficient for  and clearly (5 - 1)-1S is distributed as 3,(V,8), a
beta distribution of the second kind. The method of moments fails because E(S) = N
and using the second moment restricts the range of 6. Hence it would require that 3 >2,
which results in the estimating method imposing a restriction unassumed by the model.
The maximum likelihood estimator is a solution to the unwieldy equation
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8-1 8 N+é 1
log —— 4+ — - ———— + L4} =0 &)
s+6-1 61 5461 o+

the number of whose terms increases with the sample size. So much for competitors in
terms of ease in getting a sensible estimator.

Professor Press wonders if the analysis could be carried out for both g and &
unknown. For that case, there is no apparent relief for method of moments and
maximum likelihood procedures when applied to (1). The PSR method requires solving
a cubic equation in the uncensored case and is somwhat more complicated in the
censored case. When a given value for g is specified (which is much more likely to be
specifiable than §), the PSR solution as described in the paper is explicit for the
uncensored case and easy to achieve in the censored case using the recursive algorithms
of section 4 and has the appealing property of being similar to a *‘testimator’’.

It is a rare event indeed when a discussion comes perilously close to exceeding the
length of the paper at issue. Even rarer when the discussant begins and ends with the
same litany of praise and yet the author must disagree with most of the views expressed.
I refer, of course, to Professor Guttman’s critique. First an exception: I applaud his use
of the term fungible which | introduced in an attempt to extend exchangeable. It has
indicated that a prediction made when a colleague expressed his aversion to such a
singularly unattractive word, may yet take hold. Mustering my most somber demeanor,
I portentously responded, ‘It will grow on you.”’

First we address some minor details. Professor Guttman’s equation (6) is
meaningless unless a predictive function is specified. A demonstration of consistency;
i.e., that the two sides of (8¢) approach the same density as the sample size increases,
does not present any difficulty. Although I already responded in part to the great to-do
about violating primordial Bayesian canons, still permit me to take this opportunity to
expose a further serious transgression on my part. To assume that a prior depends on
the likelihood is, of course, original sin itself in this theology. Apparently undetected
by Professor Guttman, who usually performs yeoman service as a sort of Bayesian
superego, was my use of a conjugate prior density - mea culpa. Professor Guttman
admonishes me for a prior that comes only ‘“one-armed’’ instead of what he considers
to be appropriate - the investigator determining exact values for both hyperparameters.
We obviously describe different situations.

Now to more serious questions. I must take very strong issue with his horse-cart
analogy. It derives, I believe, from a fundamental misunderstanding of the practical
value of parametric infusions into statistical paradigms. Parameters are basically
artifices introduced by the statistician to lubricate the modeling procedure, and of
course, hyperparameters even more so. In most instances, they are completely alien to
the experimenter’s thinking who works with and thinks about observables. Hence, if
properly questioned he can respond in those terms directly. If you want to elicit more
than just a curious stare, try explaining a hyperparameter to an investigator; it is a sure
ticket to non-communication. Further, the exercise on predictive and prior variances
which has exercised Professor Guttman invites exorcism. They are irrelevant
calculations devoid of purpose and meaning in regard to the issues.
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Professor Guttman has taken the trouble to calculate tables of the 90th percentile
points of the predictive distribution for varying but known « and g and claims to have
uncovered the fatal flaw (certain reversals in the probabilities) in using an empirical
Bayes procedure - the fault being that it is not ‘‘Bayesian.”’ He could have saved
himself the trouble by discerning from the table and graphs in the original paper that
this had to be the case. On the one hand, these reversals actually demonstrate the fact
that when the guessed value of g is very far from the experimental data, the sample
reuse procedures wisely discount the value to a greater and greater extent as if g were
the product of a demented prior opinion. On the other hand, when the mean of the
sample values is within a certain small interval of g, the procedure behaves as if 4 were
known to be g-! from the start. This is the ‘‘testimator’’ quality of the procedure - it
makes every effort to temper the rigidity of coherence with the facts embodied in the
data.

Professor Press complains about my weight functions. If he has a better scheme, I
would be happy to entertain it because the plethora 1 presented complicate the
procedure far too much. In fact, the more information used, the greater the
computational complexity. Even if a set of weights, indisputably appropriate and
yielding a reasonably computable solution, were adduced, which is unlikely, 1 believe
the algorithmic method would still be preferable. This was fully described in section 4
and illustrated for the data set. Hence, I echo his complaint but for different reasons.

On the other hand, Professor Guttmam insists that weights be based on a predicti-
ve variance conditioned on the observable being less than a given value when in fact it is
known that it exceeds that value. This logical inversion indeed makes even a cart-horse
analogy pale by comparison.



