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SUMMARY

Predictive sample reuse methods usually applied in low structure aparametric
paradigms are shown to be useful in certain high structure situations when conjoined with
a Bayesian approach. Particular attention is focused on the incomplete data situation for
which two alternative sample reuse approaches are devised. The first involves differential
weighting and the second a recursive sample reuse algorithm. There are applied to
censored exponential survival data. The algorithmic approach appears to be preferable
from both a computational and modelling viewpoint.
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I. PREDICTIVE SAMPLE REUSE

The predictive sample reuse (PSR) method was presented in a variety of
detailed forms, Geisser (1974, 1975a), Stone (1974). Here we shall delineate it
in a very simple manner appropriate to the particular applications that flow
from it under discussion in later sections.

Suppose we have a set of observations x'™ = (xy,...,xv) and we are
interested in predicting a future observation from the process generating
observations of this kind. We further assume a predictive function used to
forecast a potentially observable value,

XN+t :f(x(N), Ol) (ll)

where « is defined as some unknown constant or set of such unknowns whose
domain is . Next we define a discrepancy function

28
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D (o) = D (dq,...,dn, T) (1.2)

where d; = d (x;.f;) represents a discrepancy between the observed value x;,
and f; = f(x®*V, o) which is defined as in (1.1) except that x; has been deleted
from fand £ = I («, x'") represents some scheme of weighting the various d;
singly or jointly. For example

D (o) = T} afe)d (x;, 1)) (1.3)
where a,(«) is the weight assigned to the j* discrepancy or
D (a) =d’'Zd (1.4)

for d’ = (dy,...,dy) would be two such schemes. In most cases fungible! data
would lead to afo) = N''or £ = N Then D () is minimized for values of
« restricted to © which we assume yields a unique value &. This leads to the
predictor

ke = f 0™, &) = 1. (1.5)

For a more detailed exposition of the method involving multiple observational
omissions and various schemata of omission, as well as applications, see
Geisser (1974, 1975a, 1976).

In applying this method to survival or realiability data, it is quickly
apparent that an inherent deficiency exists. The method as stated depends on
the full knowledge of the sample values. But for this type of problem quite
often our knowledge for a portion of the sample is restricted by the fact that
the observations were censored at particular values. In order to remedy this
lack of knowledge of fully observed values we introduce pseudo-observations.
They depend on « and are determined from defined conditicnal predictive
functions. Two procedures utilizing a pseudo-observation approach are
presented. The first proposal substitutes the pseudo-observations into the
discrepancy measure prior to minimization. This leads rather naturally to
considering schemes whereby the censored observations are weighted
differently than uncensored ones as opposed to previous applications where
a, (@) = 1 on the basis that the data were inherently fungible. Of course, there

1 We use the term fungible to extend the notion of exchangeable to data that are not necessarily

a realization of a random set of variables. For random variables the terms are equivalent. The
extension, though ill defined, conveys an attitude that one could take towards observable data for
which it is inappropriate to assume that they were necessarily generated by a random process.
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could arise situations where a sample of uncensored observations may require
different weights because of a decision as to their treatment or a model for
their generation. Here, even though we start with a scheme that treats the
observations fungibly, the approach of fitting the censored observations into
the predictive sample reuse framework naturally induces consideration of
differential weighting schemes. _

A second proposal involves the substitution of the pseudo-observations
into the solutions as if all the values were fully observed and solving the
requisite algorithm. Let x = (xy,...,x,) and x* = (X41,...,Xn) represent
respectively the completely and partially observed data sets with the
understanding that the observable x; for j > d represents incomplete
information of some kind on an observable entity, or when appropriate, a
realization of the random variable X;. Let y = (V4.q,...,¥~) represent the set of
values which would have been observed but were partially observed as x*; i.e.
the fully realized value of X, would have been y,,but we were only able to
record the partially observed value x;, j > d. We then compute a complete
solution for «, say

= ax"y) (1.6)

in the usual fashion, as in the fully observed case, but as a function of y. But
we need values for y; the components of y. We now assume a conditional
predictive function for the components of y,

Yi= :‘)\(jl(x(‘“’X*, a) = x/(e); j >d. (1.7)

Now let x*(«) represent the set of values inserted for y; i.e. for each
component y; we insert x;/(«) in (1.6). Lastly we then have the algorithm

o = qx'Y, x*(w)) (1.8)

which needs to be solved for «. Call the solution & and one then uses this
either to predict a future observation conditionally or unconditionally.

2. AN APPLICATION--UNCENSORED CASE
The application of these ideas for forecasting in a particular survival or
reliability data situation will be presented where the predictive sample reuse
technique is used in partial conjunction with a Bayesian approach. Initially we
shall assume the entire fine structure of an exponential survival distribution
cum gamma prior distribution on the exponential parameter. Subsequently
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the predictive distribution of a future observation from the process is
obtained. In the gamma prior we essentially assume one of the
hyperparameters known (or guessed) and the other unknown. An estimate for
the latter is produced by the predictive sample reuse method essentially as a
by-product of deriving a point predictor. The question of censored data,
where ambiguity exists in the execution of the predictive sample reuse method
is treated in the next section and tentatively resolved by the ploy of pseudo-
observations that are supplied from a partial Bayesian or other structure.

The utilization of the approximate predictive distribution;i.e. with one
hyperparameter estimated, as a forecasting tool is valid to the extent of the
appropriateness of the fine structure assumptions with uncertainty
commensurate with the roughness of the approximation. On the other hand
the predictor itself may be useful considerably beyond the bounds of the
initial structure assumed in that it may be robust as a point predictor for a
variety of possible structures. Further it may be most useful in a low structure
situation, where any specific distributional assumptions are fraught with peril.
_ Suppose we have a random sample X,,...,X» on an exponential random
variable X whose density is

Sx|p) = per, >0, x>0. (2.1

If our prior objective or subjective information is subsumed in a prior density
for p,

pp)ocple™, yv>0,6>0 (2.2)

and we are interested in predicting a value xy., for the random future
observation Xy.; given the previous N observations x*, say, then the
predictive density for Xu., is easily calculated to be, for xx. > 0,

S Ona [X) = [ p @]X™)f Xour | 1) dpe 2.3)
= (N + 8) (Nx + y)V/(Nx + v + Xnag)¥*1

where X is the sample mean and p(x | x*™’) is the posterior density of u given the
previous N observations x‘¥’. Hence our forecast about X., involves the
hyperparameters y and é which enter the problem via the distribution of the
parameter u. Before any observations are taken one can also find the
predictive (marginal) density of the generic variable X, namely

Jx) = [ flx|w) p) dp = 6v*/(y + X", x > 0. 2.4
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Hence it is convenient and perhaps more appropriate to think about these
hyperparameters in terms of predicting X before any-observations are taken
rather than in how they modulate the assumed prior distribution of u.
Therefore, prior to the sample, we have

E(X) =v/6-1) =g
(2.5)
Var (X) = 8y%/(8-2)(3-1)? = g¥(1 + &)/ (1-ax)

where o = (6-1)°1.

Clearly Var(X) exists for 0<a <1, and E(X) exists for « >0 while the
distribution exists for all a¢ [-1,0]. Hence if one could frame his prior
opinions about the potentially observable values of X in terms of its
expectation and variance then one can easily execute the whole predictive
process by solving for the appropriate values 6 and 4 from (2.5) and
substituting them in (2.3).

It is to be noted that (2.3) and (2.4) were obtained from (2.1) and (2.2).
However, for the predictivist who would prefer to start from (2.1) and (2.4) in
terms of convenience of framing his predictions this is somewhat awkward.
Interestingly enough in this case starting with f(x|p) and f(x) is sufficient to
obtain p(x) and f{xy.1|X) which is a more logical and appealing approach for
the predictivist. This is true here because f(x) is the unique Laplace transform
of ulp(u).

Now as we mentioned previously making all of these assumptions yields
the requisite information for making probability statements about a future
value provided that one has specified values for g and «. However while one
may often be willing to hazard a guess at g, one may be far less willing to
specify a value for «.

We now shall apply the predictive sample reuse method in order that the
data itself should yield a value for « once g has been assumed.

If we had already observed X*V!'=x‘¥! and wished to predict a future
value for Xy.,, we could use the posterior expectation of Xy., obtained from
the predictive density given by (2.3). This is easily calculated to be

E(Xns) = (Nx + 7)/(N + 6-1) = (aNx + g)/(aN + 1) = f. (2.6)

Note that when § — 1 and y — 0, we obtain the usual predictor Xx.

In terms of the predictive sample reuse method, Geisser (1975), equation
(2.6) may be utilized as a predictive function. In order to supply a value for «
we apply the method using one-at-a-time omissions and a squared discrepancy
as follows: The average squared discrepancy is
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D (@) = N'Z(fi-x) = N1 L

i

(2.7

where f; and X; are defined respectively as the predictive function and the
sample average with x; omitted. In order to find a suitable «, we minimize
D(a) with respect to o for « = 0. (Note again that for the density given by
(2.4), Var (X) exists only for 0 < o < 1, although the distribution for X exists
for 6 > 0 and hence for all @ & [-1,0]. Nevertheless we shall not restrict
ourselves to « > 0 although this is essentially the range on « for which the
prior mean exists), but also include o = 0, a value, which is possible when v is
afunctionof v andoa — gasa — 0.)
We can easily evaluate

D(a) = [(N-1)s? (eN +1)? + N(g-x)?] / N[a(N-1) + 113, (2.8)

where 52 = (N-1)! E:,V:l (x-X)%. Taking the derivative with respect to o and
setting this equal to zero yields the solution

& = (*1)/N for 2 > 1
(2.9)
&a=0 ifrr <1
where 12 = N(g-X)?/s2. Hence this yields the predictor
) = T = (@D +g)/72 if2>1
(2.10)
fl) =g if2 <1

Of course for the strict Bayesian the use of & and its derived value 3
contradicts the fundamental canon of Bayesianism that the prior
hyperparameters should not depend on the data. However it should serve as
an approximate solution to theA problem in the sense that the unknown
hyperparameter & is replaced by § if & > 0 in (2.3), given the high structure
assumptions. This problem and method for solution was first proposed by
Geisser (1975b) with further commentary, Geisser (1976, 1980).

It may also be mentioned that the predictor f can also be conceived as
totally independent of the Bayesian process and the likelihood when obtained
from this approach in the sense that we have merely chosen f as a point
predictor for Xy, and have ascertained f by a squared discrepancy measure.
We also note that the predictive function fis basically a linear combination of
the mean x and the prior guess g with weights oN and 1. There are
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undoubtedly other models that can lead to forecasting the next observation as
linear combinations of a prior mean and the sample mean when the predictive
expectation of a future observation is utilized. In this regard then one could
define a predictive function that is a linear combination of the mean and a
guessed value g

ff=a*x+ (l-a¥)g, O=<oa* =<1 2.11)

This yields, for squared discrepancy and one-at-a-time omissions, Geisser
(1975a),

o* = (2-1)/[2+(N-1)1]  for? > 1,
. (2.12)
=0, forez <1

Hence
£ = [(Dx + N(N-1)gl/[2+(N-1)Y],  fors? = |
2.13)
=g ifrr <1

Clearly o* = aN/(a@N+1) for « = 0 in terms of the transformed
predictive function. On the other hand &* < aN/(&N+ 1), for 2 > 1, the
estimation procedure not being invariant under such a transformation.
However they will be qlkite cloAse as they are asymptotically equivalent for
large N. Comparison of f with f* reveals they also converge for large NV, but
slightly more weight is attached to x in f than in f*.

In summary then, in the assumed presence of the high initial structure f
should be preferable, but for robustness to other structures leading
approximately to the aforementioned linear combination, /* may be
preferable. In any event the difference is negligible for large N. In the absence
of any distributional assumptions both predictors are viable methods for
having something to say about the prediction of future observations.

3. CENSORED DATA
In many cases especially in survival or reliabilitity studies the experiment
is usually terminated before all of the subjects or units have expired or failed.
Suppose the experiment is such that for d of the observations, failure times are
recorded as x, ..., x,, while the remaining N-d observations have survived but
were censored at values X4, ..., Xy. Hence
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L(w) =TI, fix|w) I, [1-F x| )]
where F(x;!u) is the distribution function of X,. For the exponential case,
clearly

L) o pt e Hlxat (N-dxy.l] G.1)

where x, = d* Uy, and xy.s = (N-d)* Z",Z, x4.;. From (3.1) and (2.2) we can
obtain first the posterior density of u and then, as previously, the predictive
density for a future observation Xy.,

JEPORTRD
= (d+8)(dx,+ (N-d)xn_a+v)**/(dXs+ (N-A)Xn g+ v + Xnsp)?? ] (3.2)

where x‘ represents the observations whose failure times are recorded and
x¥-4 the censored observations. Further the predictive expectation, to be used
as the predictive function, is

E(Xy+y) = [dxs + (N-d)xn.a + v]/(d + 6-1)
(3.3)
= [(dx, + (N-Axy.da + g1/ (ad+ 1) = f.

Note that for 6 — 1 and v — 0 we obtain the usual predictor
Xy + d {(N-d)xn_q.

Due to censoring there is difficulty in appropriately executing the predictive
sample reuse method. One tentative solution is to generate N-d pseudo-
observations having values x;., i=1,..., N-d, say. These are the presumed
failure times for the censored observations Xy.,...,x~. We shall take as the
pseudo value x,.,, the expectation of the predictive distribution of X,.; given
X+ > Xas, the censored value. More precisely the likelihood in (3.1) is used
but with x,,, omitted; i.e., based on all the observations but x,.,. This is then
combined with the prior density of u whence the posterior density of u is
obtained and subsequently the predictive density of X,.. computed. From this
we then compute the conditional density of X,.; given X . > X,

(d+8)(dxy + (N-cDXy_g+ )™
f(x]Xd+i>le+i) = - - (3.4)
(dkd + (N‘d)XN,d + v + x_xdﬁ)dhwl

Further computation yields
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E(Xuui | Xaw >Xas) = [(d+6-1)xgsi +dxys+ (N-d)xy o +v1/(d+6-1) 3.5)
(dxs+ (N-d)xn.g)o+ g

= Xy+i + = xd’+i ’
ad+1
and
(dx.+ (N-d)xn s+ ¥)Hd + 6) d+6
Var(Xgw | Xa+i >Xga) = = f? (3.6)
(d+6-1)2(d +68-2) d+5-2

the latter being independent of i.

Now in executing the sample reuse method with predictive function given
by (3.3) using the actual observations x;,...,x, and the pseudo observations
Xir1y---,Xn 8iven by (3.5) it seems sensible to give the pseudo-observations a
weight that differs from that assigned to the uncensored observations in
contradisctinction to an unweighted and consequently inadequate solution,
Geisser (1975b). We note that

S Var(X,|p) = p? fori=1,...,d. 3.7
Since g is unknown we shall compute
E.[Var(X;|p)] = E,.[n?] (3.8)
over the posterior distribution of x. This results in

(dxq + (N-dxy.o+v)* d+6-1
(d +5-1) (d +5-2) d+6-2

E.(u? = S (3.9

where fis as defined in (3.3).
We can define a weighted discrepancy ford > 1, N-d > 1 as follows:

[(d'l)xd,j+(N'd)xN-d](X+g > 5

- X;
ad+1 '

[dx.+ (N-1-d)xy_a ] + 8 > )
_xk’

D(«) = E™Nu?) :_;.;1< (3.10)

+ [Var(X[X > xdh’)]-l E:=,1+1< d+1
(04

where x, ; and xy., . are respectively the sample means of d-1 uncensored
observations omitting x; and the mean of N-1-d censored observations
omitting x,.

After some algebraic manipulation we obtain
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(d-Ds¥Had + 1)} + d(g-x,+ a(N-d)xy_.)*(ad + 1)
[a(d-1) + 1][(dx, + (N-@)xn ) + g1
[a(d+ 1) + 1][a(d-1) + 1]
[(dx,+ (N-d)x o + g]?

D(a) =

S (3.11)

The solution then for « is obtained by differentiating (3.11) with respect
to « and setting it equal to zero. This will result in a polynomial in «, whose
roots are stationary points. After discarding negative and complex roots, the
positive roots «, say, need be compared with D(0) and D(o) to ascertain the
global minumum for o = 0.

For d=1 and N>2 only the second term in (3.11) obtains and formal
minimization in this case yields o = o, so that f=Nx, the usual predictor in
this case.

For d>1and N=d+ 1 only the first term in (3.11) obtains. Minimization
then follows in the same manner as in the discussion for d>1and N-d>1.

It is to be noted that in the weighting we merely used terms that reflected
variation. Perhaps a more appropriate weighting scheme would also include
covariation among those values that are correlated. As a step in this direction
we can take cognizance of the covariance among the pseudo-observations.

A simple calculation reveals that the joint predictive density of X,., and
Xy i#j = 1, ..., N-d conditional on X, > X and X, > X4 18

(d+0)(d+ 6+ 1)(dxs+ (N-d)xn_q+ 7)™

(dxs+ (N-d)Xy-a+ Z-Xas + W-Xa4,) "2
(3.12)

f(Z, w \ Kgwi > X iy Kaej > Xavg) =

whence we calculate

COV(X‘[HX,“.J- ' Xd+," > qu,j >Xd+_,-) = (d + 6)_1 Var(X,H,»
fori# j,i,j=1,...,N-d

Xawi > Xasi), (3.13)

Use of this alters the second term in (3.11) to
[o(d + 1) + 1][ald-1) + 1]
(aN + 1)(aed + 1)[(dx; + (N-d)xy o) + g]?
X [a(N-1)+1) E”',;"lxﬁﬁ—ZaE”[g XX (3.14)

When, as is often the case, all of the N-d observations are censored at the
same value, say x,, then (3.14) simplifies to
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lo(d + 1) + 117[a(d-1) + 1](N-d)x2
(aN +1) [(dx.+ (N-d)x.)o + g]?

(3.15)

This term is then [a(d + 1)+ 1])/[aN + 1] times the second term in (3.11),
indicating roughly the disminished effect of the contribution of the portion of
D(«) involving the pseudo-observations by taking into- account their
covariance structure. Of course this further complicates arriving at a solution
for « and it is not clear just how significant the resulting improvement would
be.

The most complex weighting scheme would also attempt to take into
account covariation between uncensored observations and pseudo-
observations. Now for i=1, ..., d, j=d+1,..., N; X/ = X, +
(NaX +g)/(ad+1) '

-2

[
Cov(Xe, X/ ) = VXi|p) = — (3.16)
ad+ 1 ad+ 1
Again using (3.9) we find that
E.[Cov(X,,X/|u] = f2/(d+6-2). (3.17)

Hence we may use as a weighting matrix the inverse of the NxN
partitioned matrix

d N-d
(d+68-2)1 i d
V= £/(d+62)
M (@+6-D1+Jp, / N-d (3.18)

where J .18 a matrix all of whose entries are unity. The inverse of V can readily
be displayed by letting U = fA(ad + 1)[a(d-1) + 1]-1V-! with partitions similar
to V so that
. (N-d)J 1

(d+8-1)(N +5-1)-d(N-d)

Up=1

(d+8-1)J,
(d+ 8-1)(N +6-1)-d(N-d)

,fori #j (3.19)

i



6-1)J 5,
(d+8-1)2+ (5-1)(N-d)

Up =1

Now ford>1and N-d>1, let

N = firx; forj =1,...,d (3.20)
= fi-x/ forj=d+1,...,.N

where again f; is the predictive expectation f omitting the j” observation.
Further, letting A’ = (A4,...,A\x) We can now define

D (@) = A'VIA

and minimize it for « > 0. Again evaluation of D («) leads to rather
complicated algebra which we shall omit.

Once a solution & is rendered we can convert it to obtain theAapproximate
predictive distribution of a future observation or just use f as a point
predictor.

For the second kind of predictive function

f* = a*Xe + dUN-d)Xya) + (1-a*) g = a*h + (1-a*) g (3.21)

which does not lean as much on the previous high structure assumptions, we
use as pseudo-observations

X gei = Xavi + Xg + AN N-DXyg = Xai + A (3.22)

This is akin to frequentist prediction since using x..,, i = 1,...,N-d as actual
observations in conjunction with x,,...,x, preserves the frequentist predictor,
Xs + dY(N-d)x~.4, as this is the average of both uncensored values and pseudo-
observations. Now (3.22) can also be obtained by letting 6 — 1 andy — O in
(3.5).

Here the simplest weighted squared discrepancy measure neglecting
covariation but not variances is

d
D (a*) o« Dy (FFx)* + ——Lun (fF-X) (3.23)
d+1
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where f*is f* as in (3.21) but with x; omitted. The weighting here is again
closer to a frequentist approach although it also can be obtained from (3.6)
and (3.9) by letting 6 — 1. Let f¥= a*h; + (1-a*)g so that

h, = (d-1)Ydx, + (N-d)xy.p-x;) forj=1,...d (3.29)
= X, + d"(N-d)xn.q-x;] forj=d+1,...,N
then the minimization of D («*) with respect to o* yields
A v (- - YN (- 2
(,Y* - =1 (hl g)(x.l g) + d (d+ 1) j=d l(hJ g)(xJ g) fOI'O < &* < 1
iy (h-g)? + dd+ 1) ZXasy (h-8)°
=1 fora* > 1
=0 for a* < 0.
(3.25)

If one uses a scheme with no weighting at all then

(d-D)N(h-g)? + (h-8)d " (N-A)X oA (N-d) 2% a(d-1)s3-(d-1)d- L yx 2
(@-1)(h-g)* + 2(h-g)(N-A)x .o+ (d-1)1d ko + S5+ (d-1)d ? i}

A
a¥=

=0 ifo* <0

ifor < 1. (3.26)

Il
—_

A slightly different solution can be obtained by altering the function 4.
Previously 4 was defined as the sum of all the observations censored and
uncensored, divided by the number of uncensored observations. We also
noted that A was the mean of the uncensored values and the pseudo-
observations.

Hence we could change the definition of A to this mean value which keeps
invariant the value of the predictive function for given «. However A4, would
now be altered to

h!= (N-1D)YNx, + (N-d)Ndtxy.x; ] forj=1,..,d
(3.27)

= X, + (N-d)d .y - (N-1)1x, forj=d+1,...,N.
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The solution for o* is now obtained by substituting A/for 4, in (3.25).

An unweighted solution in this case is, Geisser (1975b),
N(g-h)?- A
o = &) for& >0 (3.28)
N(g-h)? + (N-1)*A

0 fork =<0

I

where
(N-DA = (d-1)s.2 + d"YN-d)? X5y + Ziaeg X2 (3.29)

However, though very simple, this does not appear to be a very satisfactory
solution to the problem.

In both (3.24) and (3.27) it is required that d > land N-d > 1. Ifd = 1
and N > 2 then the solution for «* is the ratio of the second terms in (3.25)
utilizing either A; or h/respectively. Ford > 1, N = d+ 1, the solution is the
ratio of the first terms.

4. THE ALTERNATIVE APPROACH-SAMPLE REUSE ALGORITHMS
The second general approach described in Section 1 is both conceptually
easier to apply and more readily facilitates arithmetic solutions. We now
apply it to the censored situation of the previous section. Using (2.9)

- () -1
- M@ (4.1)
N
where from (3.5)
dx, + (N-Axn_ o +
X/ (o) = x, 4+ Pt (WDt j>d. 4.2)
ad+1
Let
N- Nxo +
o) = & Liax, + Elnx/ (@) =X + D < — \ 4.3)
N ad + 1

where Nx = T3, x;. Let
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8= N-d <N5ca+g> | (4.4)
N ad+1
(N-Ds¥ar) = Ly (-%-B)2+ g (x; + B -X - B)? 4.5

= (N-1)s? + dB? - 2Bd(X4+-X)

where (N-1)s2 = LY, (x-X)2.. Now by definition
N 3 - 2
oy = -8 4.6)
s%(c)

Hence substituting (4.6) in (4.1) and éolving for o in terms of 8; i.e.,
(N-d)(g-x-5)
No+1 = d)—g 4.7)
dB-(N-d)x

we obtain a quadratic equation in 8
af? + b3 +c¢c=0 4.8)
where

a = d(N?-d)/(N-1)
b = 2(N-d)d(x-x)(N-1)"1 + dN(x-g)-N(N-d)x 4.9)
¢ = (N-d)s? + N(N-d)x(g-x) .

After obtaining the solution 23 we solve for & from (4.7) and substituting
this in (4.2) we obtain the conditional predictor x(&) and setting x;=0 the
unconditional predictor.

This approach can also be applied to the case given by equations (2.11)
and (2.12), namely f* = a*x+(l-a*)gfor0 < a* < 1

o = (o) - D)/[H(a*) + (N-1)Y (4.10)
N *) _ o)2
oty = SeT) &) @.10)
sHa*)

where the assumed conditional predictor is

X} (@*) = x,+ Nd-xa* + (1-a*)g 4.12)
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so that
x(a*) = x + (N-d)N-[Nd"Ixa* + (1-a*)g] (4.13)
and
(N-1)s¥(a*) = (N-1)s? + dB*2-28*d(x,-x)

where

Ng* = (N-d) (Nd-'xo* + (1-a*)g) = (N-d) (zd"'o* + g) (4.14)
or

zd Y(N-d)a* = NB*-(N-d)g

for z = Nx - dg.

Hence solutions for o*, say &*, are obtained from the cubic equation
(N-D)(1-a*)(d + (N-d?)a*)z2 = Nd?(N-1 + a*)s¥(a*). (4.15)

Only one value of the cubic will be appropriate for a fixed x, s? and g.
Substitution of the appropriate &* in (4.12) yields the conditional predictor
x(&*) and setting x; = 0 yields the unconditional predictor.

We now illustrate this approach with some data obtained from
Gnedenko, Belyayev and Solovyev (1969, p. 176). A sample of 100 items are
tested and time to failure recorded for each up until 500 time units have
elapsed (the actual time unit is not given). It is found that during this period 89
items have survived and the recorded failure times for the other 11 are; 31, 49,
90, 135, 161, 249, 323, 353, 383, 436, 477. The total time on test in
undetermined units, is 47,187 (inaccurately given as 47,147 by the authors).

Figure I represents a plot of the predicted value of a future time to failure
comparing (4.12), substituting &* for «*, as a function of g, an apriori
guessed value, with (4.2), substituting & for «, which derives from the more
highly structured predictive approach. The two curves exhibit similar shapes
except that the interval for disregarding the data is more than twice as wide for
the high structured case and the approach to completely disregarding the guess
is far slower.
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Figure II demonstrates how the estimated predictive density of a future
observation varies as a function of g using the high structure model. Note that
values of g from 3,700 throgh 5,000 result in & =0 and consequently the

- density is exponential while for other values of g the density is of the beta
form given by (3.2). This accounts for some of the minor perturbations.
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Table I gives the shortest .9 probability interval (90th percentile points)
for a future value of x for varying g from the estimated predictive
distribution.

TABLE I
90th Percentile Point of F(.|x, g, «) to Nearest Integer

g 60 3,550 3,700 4,280 4,290 5,000 5,150 15,000
& 9.8179 .1259 0 0 0 0 9409 62.3680
pepoinc 9,890 9,226 8,520 9,855 9,878 11,513 10,151 10,018

Guesses that are widely discrepant with the data such as 60 and 15,000 are
largely ignored and yield percentiles close to that of g = 4290, a guess
equivalent to the data predictor. Reversals in percentile points for such values
as 3,550 and 3,700 are accounted for by the same phenomenon occuring in
Figure I and to a lesser extent to the change in the form of the distribution
function.
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