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SUMMARY

This paper reviews models for the occurrence of outliers in data from the linear -
model. The Bayesian analyses are all closely similar in form, but differ in the way they
treat suspected outliers. The models are compared on Darwin’s data and one of them is
used on data from a 25 factorial experiment.

The question of how many outliers are present involves comparison of models with
different numbers of parameters. A solution using proper priors on all parameters is
given. On two trial datasets it is found to be insensitive to choice of priors on all except the
parameters representing the amount of contamination in the outliers. Here, choice of even
a slightly ‘‘wrong”’ prior can be very misleading. Moreover, it is difficult to choose an
appropriate prior when contaminations can be both positive or negative.

Keywords: CONTAMINATION; LINEAR MODEL; MODEL DISCRIMINATION; OUTLIERS;
PROPER PRIORS; SPURIOUS OBSERVATIONS.

1. A VARIETY OF MODELS

Consider the common problem in which a statistician would like to use a
standard linear model to represent the generation of a dataset arising from
some experiment. He has, however, some doubts about whether all the
observations were generated by that model and feels there is a chance that
some (hopefully, a few) observations will have been contaminated in some
way. Recording errors, temporary changes in experimental conditions or the
use of abnormal experimental units are the kinds of flaws he has in mind. In
analysing the data he must therefore elaborate his simple linear model in some
parsimonious way so as to guard himself against such gremlins and ensure
inferences about the parameters of interest that are robust.
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The word ‘‘outlier’” will heré be used to mean any observation that has
not been generated by the mechanism that generated the majority of
observations in the datatest. Note that we automatically assume that outliers
are a small minority of the observations and that for each possible alternative
we must use a different model for outlier generation.

In this section we shall briefly review three such models. We first
establish some common notation.

We write the standard linear model as

y=xB+e (1.1

where yisnx 1and xis nx p.

If a particular subset y;; ... y:, of the y’s are suspected of being outliers,
we partition the y vector into y ., and y (..

A simple application of Bayes theorem shows that 8, the parameter of
interest, has posterior distribution that can be written

PBlY) = Zwep«(B|y)

where the summation extends over all 2" possible partitions of y, w,,, denotes
the posterior probability that the subset y;, ... y:, are indeed outliers and
P (B|y) the posterior density of 8 given that they are outliers. The presence
of outliers is thus handled automatically. If a subset is particularly discrepant,
the corresponding weight w,, will be large and our ideas about 3 will allow for
the discrepancies.

In each of the following three models, p,,(3|y) turns out to be a p-variate
Student’s ¢ distribution with mean 3,,, dispersion matrix B-!,, and degrees of
freedom v, say. It is the different ways in which they treat the suspect
observations in arriving at the quantities, especially 3,,, that is interesting.
The posterior weights w,, are complex, but for a given number of outliers we
always get w,,, inversely proportional to some power of s?%,, a kind of
“‘residual sum of squares’’ from the analysis allowing for outliers.

We shall refer throughout to the standard least-squares values

B = X)Xy,
st = (y-xB) ' (-xB)

Box and Tiao (1968) first considered this problem and their model (BT)
assumes that each observation has probability 1-a of being generated by the
usual linear model and small probability o of coming from the same model
but with error variance k%o? instead of just ¢2. They took k and « as known
and used the usual improper uniform prior on 8 and log o.
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ﬁ(r) = [X{n-rX nry FE X (X 0] X (nriV nomy H X (Y )]

S = Dan- X(n-r)ﬁ(r)] ,[y(n-r)'X(n-r)ﬁ(r)] +k'2[y(r)'X<rﬁ(r)] 'D"(r)‘Xmﬁ(r)]
V¢y = N-p

B, = (1D) [XnerX ey + KX (X 0))/S )

and w,, & {@/k(1-0)} | X (u-rsX n-ry F KX (X ()| Y28y P

Each suspected outlier is thus dealt with by dividing the y value and the
corresponding row of the x matrix through by k and then doing the usual
least-squares analysis on this new dataset.

Additive, rather than multiplicative, contamination of the data was
considered by Abraham and Box (1978). Their model (AB) was

y=xB+6Z + e

where Z is a vector each of whose n elements has probability o of being 1 and
1-a of being 0. The amount of contamination § is thus assumed to be the same
for each outlier. Any particular Z vector written Z,, say, corresponds to a
subset of observations being outliers.

Taking o known and improper uniform prior on 8,6 and log o gives

A

By =X VixIx'Viy where Vi, = I-ri'Z\Z,
A A

sty = DxBwnl’ Vin-xBm]

V¢ = n-p-1
n-p-1 |
B, = X' Vinx
)
(rn

and w,, o [a/(1-@)]" r2 |x' Vx| Y28y D

This model thus copes with outliers by doing a weighted least squares
analysis using the weighting matrix V,,.

Guttman, Dutter and Freeman (1978) consider additive contamination in
arather different way. Their model (GDF) is

y=xB+a+e

where a is a vector exactly r of whose elements are non-zero. They assume the
value of r is known, but hedge their bets by doing separate analyses for r =
0,1,2, ... . The non-zero elements of @ are not forced to be equal, but form r
extra unkown parameters which are duly given a uniform improper prior
along with 8 and log . We now get
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A

Biry = [X(n-rX n-r] 1 X (ners¥ nery

2 A , A
Sty = Din-nyXn-rBin)] ' ineryX (n-rB )]

U(,-) = n‘p-r
n-p-r
B, = X (n-r)X (n-r)
52
(r)

and W) o | X (ner)X (n-ry | 128y P

The effect of allowing ‘‘totally unknown’’ amounts of contamination is
therefore the dramatic one of dropping suspect observations completely and
doing a least-squares analysis on the others.

2. DARWIN’S DATA

All these papers apply their results to the famous set of data due to
Darwin quoted by Fisher (1960) and eternally popular with students of
outliers.

Here the n = 15 observations are

-67 -48 6 8 14 16 23 24 28 29 41 49 56 60 75
and 3 is the unknown population mean, so p = 1 and x is a column vector of
ones.

Box and Tiao display the posterior density of 3 when o = .05 and k=35.
In identifying outliers, the largest posterior probabilities are as follows:

Outliers : None y,and y;  y,only y, only ¥15 only
Prior prob 1 .463 .0013 .024 .024 .24
Posterior prob :  .462 .190 175 .036 .016

If we condition on a fixed number of outliers, we have

Wiy & Siy D

A A
where Sz(,.) = E(...,)D’;'ﬁ(r)]z+k'22(r)[)’i'6(r)]z
E(n-r)y."}‘k-z Zmy.-

A
and §, =
n-r + k2r

in obvious notations.
The largest of these conditional probabilities, for =1 and 2, are given in
the columns headed BT of table 1.
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TABLE 1

Posterior probabilities, given one or two outliers, for Darwin’s data

One outlier Two outliers

Observation Observation Observation Observation

number BT  AB=GDF Pair BT Pair GDF ' pair AB
1 .588 579 1,2 .785 1,2 751 1,2 .646
2 120 .120 1,15 .037 1,15 .037 1,3 .002
15 .053 .054 1,14 .016 1,14 .017 1,4 .002
14 .030 .031 1,13 .013 1,13 .014 1,5 .001
13 .027 .028 1,12 .011 1,12 .012 1,6 .001
12 .023 .023 1,3 010 - 1,3 .011 14,15 .001
11 .020 .020 1,4 .010 1,4 .011 13,15 .001
3 .018 .019 1,11 .009 1,11 .010 1,7 .001
4 .018 .019 1,6 .008 1,6 .010

A sensitivity analysis showed that the posterior mean and variance of 8
are hardly affected by large changes in the value of k. While changes in « are
rather more crucial, there is still a fair amount of robustness and the results do
not vary much as « ranges between .03 and .07.

In the Abraham and Box model

A -
X' Vinx = n-r, By = Yin-n
2y = T ol + E pn VT rnl?
) VY (r) (n-n)ViY (n-r)

The first term here clearly arises as a consequence of the assumption of
the same 6 for each outlier, y,, being the natural estimate of 8 +6.
Conditionally on r,

Wiy & Siy

Note that, since p =1, all suspect observations are ignored in forming fi(,,
but contribute towards S%, except when r=1. In that case these results
coincide with those of the GDF model.

Abraham and Box give the posterior density of 3 for a range of o values,
do a sensitivity analysis on the mean and variance of 8 as o changes, and
quote conditional posterior probabilities w,,, for r=1 and 2, reproduced here
in table 1.

23
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In the Guttman, Dutter and Freeman model,

A -

B(') = y(n-r)

8% = Vi P
and w,, & S, 1"

these latter being inherently conditional on fixed r.

As Table 1 shows for only one outlier all three models agree on
observation 1(-67) as being by far the most likely candidate. All the central
observations from 6 to 29 get almost identical posterior probabilities, as
dropping any one of them makes very little difference to the sum of squares
about the mean. For two outliers, however, the Abraham-Box model diverges
from the others in that it cannot encompass the possibility that outliers might
occur in both tails of the distribution. It also gives less posterior weight to the
most obvious pair (-67, -48) and spreads the posterior probability pretty
uniformly over all except three pairs. The model is clearly not a good one for
identifying outliers and so must necessarily be weak at providing robust
estimates of 8 under some circumstances.

3. A 25 FACTORIAL EXPERIMENT

John (1978) discussed the results of a 25 factorial experiment in two
blocks with the ABCDE interaction confounded. Visual inspection of a plot
of residuals against fitted values suggests that there might be two outliers.
Having derived a suitable test statistic and simulated its sampling distribution,
a significance level « = .117 was obtained, from which it was concluded that
there were not two outliers. Had a test for only one outlier been performed,
however, the result would have been significant with o = .044.

Besag (1979) reports that a robustified regression analysis, using Tukey’s
‘‘exploratory data’’ approach, clearly shows the presence of one outlier, not
two.

An analysis using the GDF model fitting main effects and first-order
interactions confirms this approach. Table 2 shows that assuming one outlier
gives posterior probability .734 to one of the observations, whereas the most
likely pair only gets probability .147. The posterior mean of 3 changes
markedly as we change from 0 to 1 outlier but hardly at all when we progress
to 2 outliers. The sum of the posterior variances of the elements of 3 is again
least for one outlier.
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TABLE 2
Data on 2% factorial experiment, from John (1978)
DATA ‘
1) 1.4 d 5.0 e 1.7 de 9.5
a 1.2 ad 9.0 ae 2.0 ade 5.9
b 3.6 bd 12.0 be 3.1 bde 12.6
ab 1.2 abd 5.4 abe 1.2 abde 6.3
c 1.5 cd 4.2 ce 1.9 cde 8.0
ac 1.4 acd 4.4 ace 1.2 acde 4.2
bc 1.5 bed 9.3 bce 1.0 bede 7.7
abc 1.6 abcd 2.8 abce 1.8 abcde 6.0
POSTERIOR PROBABILITIES
One outlier Two outliers
.734 ad .147 ad, acd
.098 d .090 d, ad
.010 bed .050 ad, abed
.009 bce .047 ad, bcde
.008 abed - .040 ad, ace
.008 abcde .040 ad, abce
POSTERIOR MEAN AND VARIANCE OF 8
MEAN VARIANCE
N°
Outliers
0 1 2 0 1 2
(¢))] 4.36 4.24 4.22 .087 .074 .082
a -0.89 -1.04 -1.09 .087 .065 .067
b 0.46 0.58 0.60 .087 .074 .084
c -0.71 -0.58 -0.58 .087 .074 .073
d 2.66 2.53 2.51 .087 .074 .082
e 0.27 0.40 0.42 .087 .074 .084
ab -0.64 -0.49 -0.44 .087 .065 .067
ac 0.16 0.31 0.32 .087 .065 .063
ad -0.63 -0.79 -0.83 .087 .066 .068
ae -0.17 -0.01 0.03 .087 .066 .068
be -0.15 -0.28 -0.27 .087 .074 .071
bd 0.29 0.41 0.44 .087 .074 .085
be -0.12 -0.25 -0.27 .087 .074 .085
cd -0.49 -0.36 -0.36 .087 .074 .072
ce 0.05 -0.08 -0.07 .087 .074 .072
de 0.24 0.36 0.38 .087 .074 .084
Total 1.393 1.139 1.206
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4. HOW MANY OUTLIERS?

While this question is less interesting that the main one of the unkown
value of (3, there are some examples in which it is important to have a fairly
. clear answer. A central laboratory receiving routine radioimmunoassay
readings from a number of medical centres, for example, needs not only to
allow for outliers during analysis of the collected data, but also to note which
centres are consistently producing relatively large numbers of outliers so that
their experimental techniques can be kept up to scratch.

In answering the question we always have to be careful not to compare
models with different numbers of parameters since if we do, using improper
priors of different dimensionality, the posterior probabilities we obtain will be
meaningless. Box and Tiao can safely derive the probabilities we quote in
section 2 of 0, 1 or 2 outliers since their model always has p+ 1 parameters,
independent of r.

To attempt to do the same for the AB model would be disastrous,
however, as this has p+ 1 parameters when r+#0 but only p when r=0. The
GDF model carries this problem further as each new outlier adds a new
unknown parameter. A naive attempt to apply the formal analysis would
merely lead to nearly all the posterior probability being heaped onto the
largest number of outliers considered, since it can never do any harm to add
more parameters. There is much current discussion about what is a fair
penalty to expect a complex model to pay when comparing it with a
parsimonious one, but as yet no general agreement. Akaike’s (1973) very
popular AIC criterion cannot be used here as the likelihood functions of all
these models are themselves sums of 2" or, (for GDF) "C, terms each of which
are products of normal distributions, so that the maximum likelihood
estimates needed to evaluate the maximum of the likelihood functions are
impossible to find analytically.

We propose here to sidestep this general question by pursuing the GDF
model using proper priors throughout. While this automatically removes all
doubt about whether the answers are right, it simultaneously introduces the
need for a sensitivity analysis to see to what extent those answers depend on
the particular priors used.

We first assign prior probability =, to there being r outliers (=0, 1, ...,
n, Zw, = 1) and refer to this as ‘“‘model »’’. Within this model we look at all
"C, possible partitions of the observations and assign prior probability = ,, to
a particular subset being the outliers (X (,,7(,, = 1). Conditionally on this we
now assign prior densities for the unknown parameters. We take 3 given o2 as
p-variate normal with mean b, and dispersion matrix ¢2B, and a given o? as r-
variate normal with mean a, and dispersion matrix ¢24,. Finally we take vv/o?
as chi-square on v degrees of freedom. We suppress the subscript (r) on the
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quantities b,,B,,a,,4,, v and v partly for simplicity but mainly because in
practice it is difficult to envisage how these could depend on the particular
subset being considered.

Conditional on any given subset being outliers, the posterior for g is
Student’s ¢ with

A
— -1
B(') "B(") d(")
Viry = n+vy

B,y = By'' + X(n-r)Xm-ry T X(n(Ag + D x ()

and Wy & | B(r) ] 172 l)(r)_(mw)/2 'A0+ I | "Lz T (r)
where diy = Bi'bg + X(arYin-ry + Xin(Ag+ 1) )-a0)
and D, = bgBi' by + vV + Yinry Yinry + (irg) (Ag+1)?

O-a)-d,'Bhd,.

The posterior mean of 3, for example, given model r, is

A
Eg|y) = Zoobo

oW

the sums being over all "C, possible partitions into r and #n - r observations.
The prior probability =, that model  is true is changed into the posterior
probability

T/ & T, Xy | By | 2Dy "2 Ag+ 1| 2w,

We note that the effect of taking very vague, but proper, priors on a
within each model is to throw all the posterior weight on r = 0, the simplest
model, since then |A,+1|2 decreases geometrically in r. Like many
““modern’’ results this simply rediscovers the work of Jeffreys (1961). The
contrast with improper priors which put most posterior weight on the most
complicated model is, however, so stark as to be worth mentioning again.

5. SOME TEST DATA
The trouble with proper priors, of course, is actually specifying them. A
sensitivity analysis is essential to establish the influence of fairly large changes
in the priors on the posterior statements. Darwin’s data are not a very suitable
set for seeing how well the above results perform as it is not at all clear how
many outliers there really are. Accordingly, 10 random observations from
N (0,1) were taken. Dataset 1 was formed by adding 4 to one of the
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observations, and dataset 2 by further adding -5 to another, see fig. 1. Any
self-respecting method ought to be able to get the right answers in such clear-
cut cases.

Dataset 1

® , ' ® .go e eoe °,

-6 -4 -2 0 2 4
Dataset 2
FIGURA 1

We assigned equal probability i to the number of outliers r being 0,1,2 or
3 and assumed that within model r all "C, subsets of r outliers were equally
likely. We also took the elements of a to be identically and independently
distributed N (ay, 440%), where a, and A, are now scalars, the same for each
value for .

Thinking firstly of dataset 1, we might agree that the ‘‘right’’ priors are

B~N(,0%),a~vN(@4, Aw?) , 802\ x?y,.

The last of these gives prior mode = 3, mean = 1 and variance j for ¢2. We
allow A, to vary between 10-* and 10* since we know that this will crucially
affect the answers. These come out to be as in fig. 2(a), that is that we get the
clear, correct message that there is one outlier so long as A, is not too large.
When we use the same priors on dataset 2, however, we get fig 2(b), which
completely fails to detect the two outliers. This is hardly surprising since the
prior on a is now highly inappropriate.
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Returning to dataset 1, if we use ~ (0,1000%) for 8 we get virtually the
same result as we do also using ~ (5,1000?), but N (5,0?) gives fig 3(a) in which
we end up quite sure that » = 0 or 1 but fail to distinguish clearly between
 them. Replacing the prior for o2 by 202 ~ x3, having the same mode of § but
infinite mean and variance, makes the results slightly less sharp but
substantially unaltered. If we get the prior mean of g wrong, though, the
results are disastrous. Figs 4(a) and S(a) show the effects of taking @, = 2 and
a, = O respectively. The latter can be thought of as the closest the GDF model
can get to the Box-Tiao philosophy. Not surprisingly, small values of A4, give
posterior probabilities exactly the same as the prior ones. As A4, increases the
probability of one outlier starts to build up but doesn’t get near to being
decisive before the inevitable slide towards no outlier sets in.

Turning to dataset 2, the corresponding results in figs 2(b), 3(b), 4(b) and
5(b) are all disappointing, especially the last. Taking zero prior mean with a
large prior variance for @ might have promised to model successfully the
occurrence of ‘‘two-sided’’ outliers, but that large prior variance proves its
downfall. A preference for two outliers is just starting to show when
increasing A, pushes the probabilities down towards one and zero outliers.
Another hopeful prior might be the mixture %N 4, A0 + %N (-4, A,0?) but fig
6 shows that while this continues to pick out one outlier successfully, it has no
better luck with two than any of its predecessors.

Perhaps this poor performance is not so disgraceful as it seems at first
blush. Gentle (1979) reported simulation studies of his proposed frequentist-
based outlier detection procedures. For twenty observations with p (the
dimension of 8) = 2 two outliers were correctly identified only 28% of the
time. This rose to 74% for 40 observations and 82% with 60. One hope for
our approach, then, might be to increase » in this fashion, but this would
immediately create the usual combinatorial explosion and become
prohibitively expensive on computer time. By their very nature all three
models can only be used with small sample sizes unless a maximum of two
outliers is contemplated.

6. DISCUSSION

The GDF model using proper priors can tentatively be claimed to be
insensitive to choice of prior on o? and 8, so long as a too-precise wrong value
of by is not used. It is, however, very sensitive to choice of ay and care must be
taken not to set A, too large. There is also at present no known prior structure
that permits large positive and negative contaminations tc show themselves
simultaneously. On the other hand there is no set of improper priors that
would generally be agreed to be appropriate for this problem. Perhaps some
of the other papers at this conference will propose a way forward but it might
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be that attempts like the AIC criterion to produce a standard way of
answering a wide variety of questions regardless of their different contexts are
doomed to failure.

Although the question ‘How many outliers’ may easily be dismissed as an
unimportant one, so long as robust inferences about ¢ and o? are possible, I
prefer to see it as just one manifestation of the model discrimination problem
that is the biggest current challenge to Bayesian statisticians.
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