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SUMMARY
The theory of pivotal inference applies when parameters are defined by reference to
their effect on observations rather than their effect on distributions. It is shown that
pivotal inference embraces both Bayesian and frequentist reasoning.
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1. PIVOTAL INFERENCE
1. A pivotal model of an inference situation arises typically when we have
a relatively precise idea of the way in which the parameters are related to the
observations, and a less precise idea of just how the observations are
distributed. Thus for example, we may have observations x; (i=1,2,...,n) for
which x and o, respectively, are location and scale parameters, but we may not
be sure as to the precise form of their distribution. Then we know that the

pi = (xi-p)/o (H

have a distribution which does not involve the parameters, but we may not
know exactly what this distribution is. If we suppose that the x; are nearly
distributed independently, each in a double exponential distribution, we might
suppose that the joint density ot the p, could be expressed, sufficiently
accurately, in the form

$\(0) = (1-)@)" exp -L|p:| + e(v2m)" exp-3 L(p: - a.)? @)
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for some ¢ between 0 and 10-¢, and for some vector @ with i component a..
This would correspond with an idea that, less often than once in a million
times, the observations were from a ‘rogue’ normal distribution; but it will
become apparent that the role of this small mixture of normality is to be
viewed rather differently, as indicating perhaps only part of the small
uncertainty in the form of the distribution.*

We use A to denote the pair (e,2) which serves to specify exactly which
member of the family (2) applies in a specific case. Although N would
ordinarily be called a parameter, we call it, instead, a /label, because its logical
role in the inference is different from that of the pair (x,0). And the term
‘nuisance parameter’, which might be used instead of label, we wish to reserve
for a somewhat different concept.

The term ‘pivotal’ was introduced by Fisher, to denote a quantity such as
Student’s ¢:

1= (x-phn/s, ©)]

which is a function of the observations and of the parameters whose
distribution does not involve the parameters. We use the term in the same
sense.

2. The elements of a pivotal model of an inference situation are five in
number: {S,Q,p,P,D,}. S is the usual sample space, of possible observations
and Q is the usual parameter space, of possible parameter values. p is a
mapping from S x Q to P, the pivotal space. p is called the basic pivotal. We
suppose that measures are given on S and on P, and that for each 6 in Q the
inverse mapping p-1(.,0):P — Sis 1-1 and measurable. D is a set of probability
distributions on P, specified by density functions ¢,. It is convenient, though
not logically necessary, to assume the distributions in D to be absolutely
continuous with respect to each other.

3. For any specified label A the pivotal model defines a likelihood model

L, consisting of the usual triplet {S,Q,y,} of sample space, parameter space,
and probability function iy,

Un(x,0) = oa(p(x,0)).0p (x,0)/0x. 4

In accordance with our usage, a function F (x,0) will be pivotal in L, iff its
distribution, derived from y,, does not involve §.

* if there were such a thing as a ‘fuzzy distribution’, this would convey the idea better.
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Now if F (x,0) = G (p(x,0)), for some function G, then it is evident that
F will be pivotal in L, for every \. F will then be called a robust pivotal--
defined as a function of observations and parameters which is pivotal in L, for
every \.

4. We now introduce the concept of a separating family of distributions.
The family D is said to be separating iff the only robust pivotals are functions
of the basic pivotal-- i.e. iff F (x,0) pivotal in L, for every A implies that there
exists a G such that F (x,0) = G (p( X ,0)).

In the pivotal model for which S = R", @ = R! x R*, P = R", and the i**
component of p is p; in (1) above, we use Lebesgue measure, and D is the
family given by ¢, in (2) above, the family D is separating. The steps in
proving this are:

@) If D is complete (in the sense of Lehmann) it is separating. (I owe this
remark to Barndorff-Nielsen.)

(ii) The family of spherical normal densities with arbitrary centre ‘is
complete.

(iii) If D’ is complete, and ¢ is arbitrary, then for any 6 > 0,

D = {$\:(38)p = (1-8)p + 8¢, 0= £>6, ¢\in D’}
is complete.
We may also note the obvious

(iv)  If Dis separating in a given pivotal model, and if D’ O D, thenin the
pivotal model in which D’ replaces D, D' is separating. All this implies that a
very small element of uncertainty in the form of the distribution of the basic
pivotal is enough to ensure that the family of distributions is separating.

From now on we assume that the family D is separating.

5. The basic inferential steps which justify the term ‘pivotal inference’ are
of two kinds: (i) Making 1-1 transformations which amount to no more than
renaming the entities involved; (ii) conditioning steps. These latter make use
of what I have called ‘Modus ponens probabilitatis’ (MPP), by analogy with
Modus ponens of classical logic:

Modus ponens Modus ponens probabilitatis
We know ‘A implies B'. We know* Pr(B given A)=gq.
We know ‘A’ is true. We know that A4 is true.
Therefore "B’ is true. Therefore Pr(B) = gq.

* or ‘agree’ - see Sec. 10 bellow.
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The general procedure of pivotal inference thus consists in transforming the
basic pivotal p, 1-1, to another pivotal g which splits into two parts:

q

q:

The second part, g,, is ancillary, that is, it is constant on the parameter space,
so that its value is known when the observations are known. Then the original
pivotal model can be replaced by one for which the basic pivotal is g,
endowed with the conditional distribution which it has, given the observed
value of g,.

The role of the concept of ‘separating family’ can now be seen. It is to
guarantee that there is an essentially unique maximally informative ancillary
(MIA). For any two functions f,g, we say that fis more informative than (mit)
g iff there exists 4 such that g = h(f) i.e. g = hofin Bourbaki notation; that is, if
the value of g can be calculated when the value of f is known, but not
necessarily conversely. If f mit g and g mit f then f and g convey the same
information and are regarded as equivalent. The relation ‘mit’ is a partial
ordering on the set of functions of the basic pivotal; and if f (p) and g(p) are
both ancillary, the vector-valued function (4{}) is also ancillary, and it ‘mit’
each for fand g. It follows that the maximally informative ancillary is unique
up to equivalence.

6. The ’conclusion’ of a pivotal inference is then a statement of the
conditional distribution of the pivotal gq,, together with a statement of the
values of the functions of the observations which enter into g,. From this
statement, if desired, a confidence level of, say, 95% can be chosen, and
corresponding confidence sets for the parameters can be found; but such an
‘arbitrary’ choice of confidence level (and ‘arbitrary’ choice of e.g. ‘shortest’,
or ‘one-sided’, for the form of the confidence set) means that information is
lost at this stage. Thus, it is suggested that the conclusion should be expressed
in the form of the conditional distribution of gq,, with the necessary functions
of the observations, allowing each reader of the conclusion to form
confidence sets in accordance with his specific interests.

7. To illustrate, we consider the case of the example of section 1, where
the parameters are location and scale. Here we transform to

p
g = (where = denotes, as usual, mean and s%, denotes
Sy variance)
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g, with i component

g = (pi'i)/sp' ' 5

Then since, from (1)
D= Kx-p)o, s, =S./0 o (6)
and
:-p)/s, = (x:-X)/s. Y

it easily follows that g, is the maximal ancillary. The Jacobian of the
transformation from p to g is

J = ("(n'l)/|¢Iz,n'.42,n-1|)sp"'2 ®

if the last two components of g, are regarded as functions of the first n-2
components. Thus, the joint density of the transformed basic pivotals is

Jd))\ ((ﬁ + d215ps--- 15 + qznsp)) (9)

and if the observed values of the ancillaries are c,, c,,...,C.,

c; = (x-x)/s, (10)
p
the conditional density of g, = is
sP
K(.)$," 200 (D + $,C15e.0sD + S,C0)) (11)

where K(.) here, as later, denotes a normalising constant whose value is
determined by the condition that the integral of the whole expression, over the
whole range of the variables p,s,, should come to 1.

If now C'is a set in the space of (p,s,), such that the integral of (11) over
the set Cis 0.95, we have

Pr ((@,s,)EC|q; = ¢) = 0.95

and so, by the usual argument, if we assert that in our case (p,s,) € C, i.e. that
for our observed x,x;,
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(G- p)/0,5./0)E C

we have a joint 95% confidence set for (u,0), having the usual coverage
~ frequency property.

7. To express the conclusion of our inference in a convenient and easily
understood form, without destroying its full informativeness and uniqueness,
I propose we should revert to the practice still common in the physical sciences
of expressing our information about a parameter in terms of a ‘preferred
value’ and a ‘standard error’, for example:

W= Xth (12)

which, strictly interpreted, means that our knowledge of u is equivalent to
knowing that (x - p)/b is distributed in a standard normal distribution, and
that the observed value of x is x,. A natural extension of this notation to the
example we have been considering would be:

b= Xo-.0p
V@,s,) 13)

Ino = Ins,y-.In s,

to be interpreted as meaning that p = (x - u)/o and s, = s./0 have the joint
distribution ¥(p,s,), and that the observed value of x is x, and the observed
value of s, is s,o. The sign ’-.”’ is intended to suggest subtraction (thought what
precedes '-.’ is a number, and what comes after is a random variable).
However, such a mode of expression suffers from the disadvantage that there
can be a wide variety of densities y, whose properties may be by no means
easy to discern from their analytical expression. It seems reasonable, in cases
such as the example we are considering, to relocate the distribution so that its
mode is at the origin, and then to make a linear transformation of the pivotals
if necessary, to secure that in the neighbourhood of the mode the density can
be treated as approximately that of two independent standard normal
deviates. This means that the second derivatives of the logarithm of the
density ¥, taken at the mode, should be unity for the repeated derivatives and
zero for the cross derivative. If this is done, the ‘preferred values’ would be
the maximum likelihood estimates of the parameters, and the matrix
multiplying the pivotal vector would be the inverse of the information matrix.
This would lead to a ‘justification’ of the method of maximum likelihood in
its wider context (i.e. as it is used in situations other than those to which
pivotal inference applies), as an approximation, in a certain sense, to an exact
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pivotal inference. It is important, however, to realise that maximum
likelihood estimates here have a direct justification, as those points in the
parameter space which will be contained in any shortest confidence sets, quite
separate from the justification for the use of maximum likelihood in more
general cases.

When, as with the example we have been considering, one of the
parameters appears as a factor in the error of estimate of the other, special
issues arise into which we do not enter in this summary account. This is where
we.need the term ‘nuisance parameter’, reserved in section 1 above.

8. In the example we have been considering, we can find a pair of
functions of the basic pivotal one of which contains the location parameter
and not the scale parameter, while the other pivotal contains the scale
parameter and not the location parameter: If

t=pAn/s,=(x-p)Jn/s, s,=5/0 (14)
the Jacobian of the transformation is
ap,s,)/d(t,s,) = s,/ Jn
and the joint density (conditional on c) of ¢,s, is
U(t,5,) = K()s," 1a(s,((¢/n) + €)s...,5,((t/ V1) +¢.)). (15)

We can now take the marginal density for ¢ by integrating out s, (after
substituting u = s,t, s, = u.t, ds, = du/t)

KO (oo ]
t(t]e) = —tn—jou"-lm{u((x/\[n) + (/D) cou((1/4/0) + (c/D)du (16)

(showing that under wide regularity conditions on ¢, the tails of the ¢ density
behave like x/t/"). v

The step of integrating out s, is an information-losing step. Even if we are
really interested only in u, the use only of the marginal distribution of ¢ means
that any external information we may have concerning the value of ¢ and
which could give information about the error in pu, becomes unusable. In fact,
if we knew, for example, that ¢ was distributed with density I1(¢), we should
take the integral of (15) after weighting by Il(c). While if we knew that, say, o
= 2, to a sufficient approximation, we should take the distribution of ¢
conditionalon s, = s,/2.
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9. The possibility that we have, or may acquire, information which
enables us to assign a density to ¢ will be taken into account in the general
theory by noting that if ¢ is assumed to have a known (prior) density I1(c¢) then
o satisfies the definition of a pivotal and should be included in the basic
pivotal, which thus becomes (p,0), with density

(P | 0)I1(0). 17

The maximal ancillary is now larger than before. We can transform from (p,o)
to (d,0,9,,s.), With g, defined as in (5) above, and

d=po=Xx-p,0=o0,ands, = s,0. (18)

The new maximal ancillary is (g,,s.). Making the 1-1 transformation, and-
conditioning on the observed values ¢ for g, and s, for s, we obtain, for the
joint conditional density of d and o:

¥(d,o|c,s) = K(.)(1/0) s ((d+5:¢))/0),...,((d +5.€,)/0))... 19

With this additional information about ¢ we can improve our confidence
statements about p by basing them upon the marginal distribution of d derived
from (19) by integrating out o. Alternatively, if it is ¢ we are interested in, we
can integrate out d, and obtain a ‘quasi-posterior’ density for ¢ which can
serve to derive confidence limits for o if required. This ‘quasi-posterior’ will
be identical with the ‘posterior’ for ¢ which would be obtained from the
‘improper’ uniform prior for u, independent of o.

Finally, of course, we may assume a known prior density for both y and
o, so that the basic pivotal becomes (p,u,0). The maximal ancillary will then be
the whole set of sample values, or equivalently X, s, and g, and our
conditional distribution will be for (u,0), given the sample. It will clearly be
identical with the posterior distribution derived in accordance with the usual
Bayesian rules.

10. The fact that pivotal inference, as formulated here, includes, without
requiring the use of the standard form of Bayes’ theorem is important from
the point of view of the Bayesian controversy. The present writer goes a very
long way with de Finetti’s arguments concerning the way we should react to
uncertainty as individuals; as a follower of Wittgenstein I lay less stress on the
mental material dichotomy than de Finetti seems to do, but my disagreements
here come at a philosophical level remote from applications in statistical or
decision making practice. What does differentiate me from many of those



303

who call themselves Bayesian is a respect in which I agree with de Finetti when
he stresses the distinction between what he calls the Bayesian standpoint, on
the one hand, and Bayesian techniques, on the other. By the latter, which he
condemns along with other ‘ad hockery’, he means the formal applications of
Bayes theorem to a prior distribution chosen, not because it corresponds to
any individual’s actual prior beliefs, but because it has some convenient
mathematical property, such as ‘smoothness’ or ‘conjugacy’. An essential
part of the true Bayesian standpoint is the careful investigation of the prior
beliefs of the individual concerned, in the expectation that these prior beliefs
will turn out to be peculiar to the individual in question.

If it is accepted that the personalistic Bayesian standpoint is concerned
with the coherent development of attitudes in a single individual, the question
arises as to what function the statistician has in relation to his client or clients
where at least two individuals are involved. It seems to me that it could be
argued, by one who accepts the personalistic view, that the statistician has two
functions: (i) he has experience of types of random behaviour-- such as, for
example, the likely shapes of measurement error distributions to be found in
given circumstances-- which enable him to advise his clients about
distributional shapes, and thereby effectively communicate additional
empirical data, (ii) he then should base his reasoning on those probabilities
which can be taken as agreed by all parties likely to be involved. Such
agreement about probabilities may, in a given case, extend to the ‘full
Bayesian’ case, in which (to refer to our example) the basic pivotal is taken as
(psp,0); but in another case there may well be room for individuals to differ
concerning their assessment of the prior distribution for u, in which case the
agreed probabilities would extend only as far as the joint distribution of (p,0).
And in yet another case agreement may extend only to the approximate
specification of the density of p. In edch case the pivotal inference procedure
of conditioning on known quantities having known (agreed) distributions can
be carried through and the result stated in the form suggested in section 7
above, leaving it to individuals, if necessary, to assess, to within sufficient
accuracy (which often will not need to be great) their personal priors with
which the statement of the statistical inference should be combined.

To sum up this section, we can say that pivotal inference by-passes the
Bayesian controversy by making the inference depend on what is agreed
between individuals as its basis; how far this goes in the direction of a fully
Bayesian inference will depend, in a given case, on how much agreement there
is among those concerned. There remains, of course, disagreement with those
‘ultra-Bayesians’ for whom statistics is a branch of psychiatry, concerned only
with purely personal coherence, and who consequently insist that there is no
need to ask whether or not there is agreement about assigned probabilities;
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and there is also disagreement with the ‘ultra empiricists’, for whom there is
no such thing as statistical ‘inference’, only ‘inductive behaviour’. The rule of
Modus Ponens Probabilitatis has as much right as its older, narrower
correlative to be regarded as a ‘principle’ of ‘inference’.

APPENDIX

1. We give here the details of the proof outlined in Section 4.
(i) Theorem: If D = {¢,}is complete, D is separating.

Proof: Suppose F (x,0) is a robust pivotal, then the mean value
of F

= ;S»F (0 H(u,0),0) Pn(u) du
does not depend on . Hence for any fixed 6%,

15; F (0 (u,0) - F (071 (u,00),00)} $2(u) du
vanishes for all A\. Hence, by completeness,

F (7' (u,0),0) - F (0" (u,00),00)
vanishes for all 4. Thus identically
F(x,0) = F (p'(u,0),0) = F (p7'(u,00),00) = G(u).

@) If S gw) (\2m) " exp -V2(u-a) ' (u-a).du = 0, all u,
and g*(¢) is the Fourier transform of g(u), then
gi(t).et’='2 =0, allt
sog(t) =0 all ¢
sog(u) =0 all u.

(iii) IfD’ = {¢,)andis complete, if A = [5] and

on = (1-€)ppy + €¢, for 0 <e <6 and if Sg(u)(bk(u) du =0
for all X then for all e in (0,6) and all «,

(1-6);§g(u)wo(u) du + e pgrg(u)zba(u) du =0
so that
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ég(u)q&a(u) du = 0, for all o
which, by completeness of {¢,} implies g(u) = 0.

2. ON THE BAYESIAN - ANTIBAYESIAN CONTROVERSY

1. It would be foolish to imagine that in the course of what must
necessarily be a short paper one could hope to review any more than a few
aspects of the issues in a debate which has already gone on for upwards of a
century and a half. But of late the controversy seems to have become sharper,
with extremists on one side seeming to say that the Bayesian model is the only
one which can be used to represent experimental logic, and on the other
seeming to say that it should never be used. One is concerned lest such sharp
divisions should cause us to lose the respect of the community of experimental
scientists which we have only relatively recently gained. It seemed worthwhile
to take the opportunity presented by this conference to test whether we are
ready to move towards the middle ground.

2. The central aim of the theory of statistical inference I take to be the
modelling of the logical structure of experiments with a view to assisting in
their interpretation and combination for the advancement of knowledge. In
pursuing this aim it has set up many types of logical model, some of which
are:

(i) The Significance Test Model (ST model).

Here the elements of the model are the sample space S = [x] of possible
experimental results, a ‘null hypothesis’ H, specifying fy(x), the probability of
x if Hyis true, and a discrepancy function D (x) such that large values of D are
thought of as explicable if some alternative to H, is true. We calculate the P
value, P = Prob[D (x) = D (x):H,] and if this is small we are disposed to
give serious consideration to the alternatives to H,. (Here x, is the observed
result).

The canonical case for this mode of reasoning is provided by Daniel
Bernoulli. Asked to consider why the points on the unit sphere representing
the poles of the planetary orbits should lie so close together, and why they do
not exactly coincide, he began by testing the significance of the departure
from a random (uniform) distribution on the sphere. Here D (x) was a
measure of clustering, such as the reciprocal of the radius of the smallest circle
containing all the points.

It is of the essence of the situation that Bernoulli did this before seriously
considering alternatives. And to apply Bayes‘ Theorem he would have had to
have given serious consideration to these alternatives.

20
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(ii) The Bayes Model (B model).

Here the elements are S as before, @ = [0], the parameter space, f (x,6)
specifying the probability of x if 6 is the true value of the parameter, and
Pr(0), the prior distribution of 8. We calculate the conditional distribution of
6, given xy:

Pr (0:x¢) = f (x0,0)Pr (8)/Pr (xg)

and the posterior distribution represents our conclusion.

The inferential step here consists in conditioning on knowing the
observed value Xx,, the probability of which is completely specified by the
model. It should be noted* that if, in addition to the given four elements we
also have a discrepancy measure D, we can calculate a P value as in the ST
model and if this is small we may be led to modify our B model. The
calculation of the posterior belongs to what George Box has called ‘model
analysis’ and the calculation of a P value belongs to what he has called ‘model
criticism’.

(iii) The Likelihood Model (L model).

Here the elements are as in the B model, except that Pr (f) is missing. If
special interest attaches to a particular 6, and we have a discrepancy measure
D, associated with this value, then we can again calculate a P value. If, on the
other hand, all values of 6 are to be considered on an equal footing, and there
are no other logical relevant features in the situation, the inference is given in
terms of likelihood, the likelihood function being f (x,,0). For any pair of
values 6, ', the ratio f (x,,0)/f (x,,0 ') measures the relative plausibility of 6 as
against §’, on the given data.

A principal disadvantage of the L model is that we cannot, in general,
derive the plausibility of a disjunction of hypotheses represented by a range of
values of 6. This is because, in general, a disjunction of hypotheses does not
specify the probability function of x, nor does there in general exist a function
y = y (x) whose distribution is specified by the disjunction. Sometimes such
reductions are possible. Thus in the case of a sample from a normal
distribution with unknown mean px and unknown standard deviation ¢, the
disjunction of hypotheses given by 4 = 60, 0 < ¢ < o, for each é specifies
the distribution of ¢t = x\/n/s,.

Finally, an L model may serve to generate a confidence distribution.

* as pointed out by Box
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(iv)  The Pivotal Model (P model)

Here the elements are S and @ as before, together with a space P = [u] of
values of a basic pivotal function p (x,0) = u. The fifth element is a family
F = [o] of densities on P representing the range of uncertainty we often are in
concerning the form of the distribution of the observations x. The parameter
«, indexing the members of the family F, is a model adjustment parameter.
(MA parameter). It is required that for each 6 in Q the mapping p (.,0):S* Pis
invertible, with inverse p,"!(#) = x. For each « the distribution of u specified
by « yields a probability function of x, depending on 6, given by

Ju(x,0) = a(p (x,0)). J(x,6)

where J is the Jacobian of the invertible transformation ¥ = p (x,0), for each
0.

A pivotal model is appropriate typically when we take observations to be
normally distributed, when we usually mean that we think they are
approximately normally distributed. Because of the uncertainty in the form of
the distribution we can give a precise definition of the parameter 6 only by
reference to the way in which it affects the observations x rather than by the
way it enters the distribution of x.

From a given pivotal model P, for each o we can derive an L model
L(P,a), with elements S, Q, fo. In this L model we can define a pivotal,
following Fisher, as a function of x and § whose distribution does not depend
on . In the P model we require, for a pivotal, that it should be pivotal in the L
model sense for every .. To emphasize this we sometimes call such a function
a robust pivotal. It can be shown that, under very weak conditions on the
family F, for a function g (x,0) to be a (robust) pivotal it is necessary and
sufficient that it should be a function of the basic pivotal p (x,6):

q (x,0) = r (p(x.,9)).

If g is constant on it is called an ancillary, and if it is constant on S it is
called a Bayesian pivotal. If a function ¢(6) exists such that q (x,0) = q (x,),
and such that for each x the mapping g (x,.) from ¢(S) to r(P) is invertible,
then q is said to be a confidence pivotal for ¢. It can be used to generate a
confidence distribution for ¢.

The inference procedure consists in transforming p (x,6) 1-1 to g (x,0)
where

q:(04(9)) is Bayesian
q(x’o) = QZ(xie)
q5(x) is ancillary.
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Then wnen the observations are known, gs(x) is known, and as in Bayes’
argument we can condition on this known value to obtain the joint
distribution of g, and g,. The former will give a marginal distribution which
yields the posterior distribution of ¢,, while the latter will often be a
confidence pivotal for a function ¢, of #, and the mapping from 6 to (¢,¢5)
will be invertible.

A noteworthy feature of the pivotal model for inference is, that is always
unique, in that the maximal ancillary on which we should condition is unique.

An example of pivotal inference is sketched in the Appendix.

The scheme of pivotal inference can be extended to cover cases where the
observations consists of classifications of items into categories; but this
involves considerable complication and loss of some of the desirable
properties of the model, which is best suited to quantitative observations,
discrete or continuous. Over this field it can be seen to cover both the model B
and the L model. If the basic pivotal contains a Bayesian component for all
the parameters involved, then the maximal ancillary will consist of all the
observations x, and the inference will be the usual Bayesian posterior; if the
basic pivotal contains no Bayesian component, and if F contains only one
element, then we obtain a likelihood model. In general we obtain a mixed
model.

It is far from my intention to suggest that the four models listed above
exhaust the possibilities. For example the ‘predictive sample re-use’ models of
Seymour Geisser have not been mentioned. Our selection has been made with
a view to raising some questions which I hope those present will see fit to
answer.

3. The questions are these:
(i) Was Daniel Bernoulli right or wrong to argue as he did? Am I wrong
in thinking he could not have used Bayes’ Theorem? If so, how
would he have used the theorem?

(ii) If it be admitted that the personal theory of probability would always
provide complete Bayesian pivotals in the P model, are there not
instances where a bevy of Bayesians (in Dawid’s useful phrase) might
agree on parts of the basic pivotal only, so that the inference could
not, with agreement, be carried through to a complete Bayesian
conclusion? If so, could not the partial analysis be useful in that it
might show that remaining differences of opinion are likely to be
unimportant?

(iii) Carrying this situation envisaged in (ii) further, could it not happen
that the bevy could agree only on the consituents of an L model? If
s0, how should they proceed?
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It should be clear how I would hope these questions will be answered. If
they are so, I think it would be worth emphasis that out differences amount to
much less than might be thought. ’

APPENDIX

Pivotal Inference

Example:S = R", @ = R' x R*, p = R", p(x,0) has i** component p;, =
(x-0,)/0,, F = {¢.:0.(u) = II Kexp- |u;|“+ ¢, 1< a<o}. Here K, as
later, is a normalising constant (not all K’s are equal!), € is a small
‘error’ term expressing uncertainty in ¢, sufficient to ensure the
‘separating’ property -- i.e. that any robust pivotal must be a
function of p(x,0).

Here the maximal ancillary may be taken as ¢, with /" component defined by
p: = s,((t,/\n) +c., Le=0Lct=nl.(i=1.2,..,n)

The Jacobian is of the form J(c)s,”! and ignoring the error term the joint
_ density is

KJ(c)s," ' exp-s,* L | ((t,/\/n) +c:|
and in terms of the observations and parameters the transformed pivotals are
t, = (x-0)\/n/ss, S, = $/0,, C; = (X-X)S,
exhibiting the fact that the c; are ancillary.
For the complete inference we condition on the observed ¢ = ¢y, obtaining
the joint density
Kspn_l €xXp -5," ,): | (t/\/ﬁ) + CiOlu
from which joint confidence sets can be obtained. But if we are interested only
in 6,, and ignore the possibility of further information about 8,, then we can
integrate out s, and obtain the marginal density of #, as
K/ (X [ (t,/\/n) + Cig| o) 4)
and we may note that in the case of normality, with =2, the side conditions

on the c¢; make this density independent of ¢y, and in fact equal to Student’s ¢
density on n-1 degrees of freedom. The fact that the condition 1 density in this
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case does not involve the c¢;, corresponds to the fact that when the
observations are normally distributed x and s, are jointly sufficient for 6, and
0,.

If we find a set T such that the density (4) integrated over T is equal to
0.95, then if Xy and s, are the observed sample mean and standard deviation,
the set {6,: ¢, ¢ T} is a 95% confidence set for §,. The smallest such set will be
obtained if T consist of all points ¢, for which the density (4) exceeds some
suitably chosen constant.

Box and Tiao have discussed this model from the Bayesian point of view,
using a ‘non-informative prior’ for 6, and 6,. For given a, the posterior
distribution they arrive at is the same as the confidence distribution derived
from (4). That this is not accidental can be seen if we change our pivotal
model so that P becomes R™*! x R*, and define the first » components of p as
before, but add p,..; = 04, P.+; = 05, and regard the ¢,.(u) as giving the density
of py,...,p., given p,., and p,.,, and giving to these last two components the
distribution corresponding to the prior used by Box and Tiao. In so far as
strict Bayesians sometimes object to these improper priors, it might be said
that the Pivotal analysis given above is more Bayesian than the Bayesian
treatment!.

Box and Tiao also assign a prior distribution to @, on the basis of external
information to the effect that the observations are nearly normally
distributed, though they are careful to examine whether, over the plausible
range of the MA parameter* g, the value of makes any drastic difference. This
is, of course, a perfectly reasonable way of dealing with an MA parameter,
provided the inferences are suitably qualified. As a matter of fact, for the
Darwin data examined by Box and Tiao, it appears more probable, from a
reading of Darwin’s own detailed account of how he obtained his data, that
two of his observations have been given the wrong sign, and that the corrected
observations are quite closely normal. If, of course, information was available
providing an observational basis for a prior for either or both of 6, and 6, the
pivotal analysis could be carried through on this basis.
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