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SUMMARY
This paper develops asymptotic expansions for the ratios of integrals that occur in
Bayesian analysis: for example, the posterior mean. The first term omitted is 0(n-2) and it
is shown how the term 0(n-!) can be of importance.
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]. GENERAL DEVELOPMENT
In this paper we discuss the approximate evaluation of the ratio of
integrals of the form

5 w(0)e’"“d0/j v(@)e- ' do. §))
Here 6§ = (04, 0,,...,0,,) is a parameter and

n
L) = X log p(x:|0)
i=1

is the logarithm of the likelihood for n observations x;, X,...,X., forming a
random sample from a density p(s|6). The functions w(e) and v(:) are
arbitrary. A simple example is where w(8) = 6,v(f) and v(-) is a prior
distribution for #, when (1) is the posterior mean of #,. Notice that the
notation L(f) suppresses the dependence on x4, x,,...,X,.. This is convenient
because, in a Bayesian analysis, the x’s, as observed data, are fixed and
variation with respect 1o them is of no interest.
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We shall be concerned with the asymptotic behaviour as n — o under
regularity conditions, which will not be spelt out, in which L(8) concentrates
around the unique maximum likelihood value 6 = g(xl, X,...,X,), Obtaining an
asymptotic series in inverse powers of n as far as the term of order nL
Integrals of the form occurring in the numerator and denominator of (1) were
considered by Lindley (1961) for univariate 8, (m=1). He obtained
asymptotic expansions as far as the term of order #-t. We here show that the
asymptotic results for ratios of integrals are simpler. than those for the
separate integrals; and we illustrate the use of the expansions in several
situations.

In the multivariate case the notat%\on requires care. The basic idea isAto
expand the functions involved about 4 so obtaining terms involvin% 0-6)),
(i=1, 2,...,m). We write this deviation simply as §,, effectively using 8, as the
origin. Many partial derivatives occur and we write, for example, 8°L/86,96,00,
as L,.. Hence each suffix denotes differentiation once with respect to the
variable having that suffix. Thus L,,, is the third derivative with respect to 6,.
All these are evaluated at §. Notice that the order of the suffixes is irrelevant.
Similar notations are used for v and w. With these conventions, the Taylor
series expansion for L, say, about 0 may be written

LO) = L+ TLO, +5EL.00,+ 3EL 000+ ...

where all summations run over all suffixes from 1 to m, the dimensionality of
f. We begin by considering the numerator of (1) deriving the multivariate ex-
tension of the univariate results of Lindley (1961). It is important in collecting
terms of like order together, to remember that L, and all of its derivatives, are
0(rn), whereas 0,, for all i, is 0(r-1/2). On expansion to 0(n-!) we have

[ w(8)e-@db
= [[w+Twb.+3Zw08,+..) exp [L+EL0,+3ZL.06, +
YEL808+ 3 E L0000, + ...]do
= wet{[1 + Two.+3Ew00, + ...] exp [32L.06,]
X [1+3EL,:800:+ TL000.8,+3 (FEL008. 1 + ...]db.

Here W, = w/w, etc., L; = 0, since the expansion is about the maximum like-
lihood value, and all functions are evaluated at 8. It is assumed that w = w(@)
does not vanish: the case where it is zero will be discussed below. Collecting
terms of like order together, the integral is easily seen to be
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wet S ex""j""’j/z[l + LW, + éELijkeiejek + %E Wih;
+(CWHRELH006,.+ R db.

The orders of the terms in square brackets are respectively 1, n-1/2, n-1/2 p-1,
n! and n!, with the final term R not involving W or its derivatives. In
subsequent calculations R will disappear, so we have not spelt it out.

The integrations all involve the moments of the multivariate normal
distribution with density proportional to exp((1/2)LL;#4,). The precision
matrix has elements -L;;.. The elements of the matrix inverse to this are written
g, forming a matrix X. It is well-known that for this distribution, £(9,) = 0,
E@6,) = g, and E(06,6,) = 0. 1t is not perhaps so well-known that E(0.0,9,9.)
= 0,0u+ 040+ 0,0, see, for example, Anderson (1958: equation (26) of
§2.6). The result of the integration is that

[ W(@)e-@df ~ weH 2y 2| T |12 x
[1 + %E W,-jo,-j + %ELijk W,((T,-j(sz + (] + Gilojk) + R*] N (2)

where R* arises from R: the terms in square brackets being of order nt apart
from the first. The second summation can be simplified since all three terms in
it are equal. To see this, remember L, is unaffected by permutation of its
suffixes, so that permuting j and k in the first term gives TL,,;W,0,0., and
then interchanging the roles of j and k makes this equal to XL W,040;, the
second term: the third follows similarly.

This result is of interest in its own right but is complicated if the term R*
is spelt out. However, if we pass to a ratio (1), of such integrals with the same
Iikglihood, the teﬁms outside the square brackets in (2) cancel except for w =
w(f) and v = v(#): and on expanding the ratio of the two terms in square
brackets to order n-1, R*, which does not involve w, cancels with the same
term R* in the denominator, so that finally we have

[w()e-®db/ [ v(@)e- Odb ~
w
71+ EZ(W,V)oy + ELiu(WrV)o,ou + ...] .

(It has been assumed that v & 0.)

In the applications we have in mind, v(f) = =(f), the prior distribution
for 6, sothat the denominator is the normalizing constant in Bayes theorem;
and w(®) = u(@)w(6), so that the ratio is E[u(d)|x;, Xj...,X.]. Simple
calculation then shows that WV, = w,/u+(umx;+ux)/ur and W-V, =
u/u. If we write g(f) = logn(6), a little more calculation finally gives

13
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fu@)er =@ dg/fer @ gy~
u +% Uy +20.0,)0; + 5ELli00u 3

to order n-1. This is our basic result. The first term is 0(1) : the next are all
0(r-Y) and will be referred to as correction terms. Notice that, because of the
vanishing of all moments of odd orders for a multivariate normal
distribution, the first term neglected is 0(n-2), not 0(n-32). Remember that on
the right-hand side of (3) all functions are evaluated at the maximum
likelihood value of 6, and that summation is over all suffixes and from 1 to m.
One feature of immediate interest in (3) is that it does not involve the second
derivatives of the prior, but that those of ¥ do occur. Secondly, the prior is
absent from the last correction term incorporating the third derivatives of the
log-likelihood.

An alternative form is available for the final term in (3). Since the matrix
of elements g, is inverse to that of elements -.,;, we have LLiow = -64. On
differentiating with respect to §,, we obtain LLjow + ZLalow); = 0. Hence

LLijtdi000 = - D0 yLol0x);

= Lud(o.);, onsumming over i,

k’le u{ow)r, ONsumming over . 4)

Although it appears simpler, we have found this form less convenient than
that in (3) because it uses the algebraic inversion of -L,;, in order to find (ox/)x,
whereas the other only requires the numerical inversion in any application.

Another form of (3) may be obtained by writing A(#) = L) + o(6)
which, apart from an additive constant, is the logarithm of the posterior
distribution of 8, given x;, X,,...,X,.. Then, instead of expanding about the
maximum likelihood value, A(f) may be expanded about its maximum, the
posterior mode. Consideration of each of the individual steps in the argument
that led to (3) shows that they apply when A replaces L. Effectively in (1), v
becomes 1 and w, u. Hence

{u(@)e* 0 db/ fe*  df ~

u+§£ UyTy + %EAijkulTikal- &)

Here r, = -AY and all quantities are eve}\luated at the posterior mode, 0",'
instead of the maximum likelihood value, §. An alternative form is available
using a result parallel to (4). (5) is simpler than (3), but the latter has the
advantage of explicitly displaying the separate roles of u and =.
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An important special case is where u(d) = 6,, 1 <s<m, so that the ratio
of integrals is the posterior mean of 6,, , say. Since u, = 1, u, = Ofort + s
and u,; = 0, (5) immediately shows that the difference between the posterior
mean and mode for 6, is

g, - é:'\' %‘_’jz,:k AijkTikas- (6)
A similar result for the maximum likelihood values is, from (3),
g,- 3.\- N 2005 + % _EkLiijijUks- 7

Similar calculations using u(6) = 6.8, give results which, when combined
with (6), show that the posterior dispersion matrix for § has elements 7,; to
0(n-1), so requiring no correction from the corresponding modal values.
Equivalent use of (3) shows that 7,, may be replaced by o,, to the same order.
Thus there is an order n-! correction to the mean but not to E\he disApersion. An
alternative way of obtaining this reault is to use u(f) = (6-6,) (6-6.), but this,
and its first derivatives, vanish at 6, so that our expressions are no longer
valid. The modifications necessary in this case are a little tedious, though
straightforward in principle, and we therefore do not provide a general
treatment but discuss special cases below: from these, the reader will be able
to see how a general discussion would proceed.

The results simplify if the parameters are locally orthogonal: that is, if
L; = 0, and hence 0, = 0, for all i £ j. For example, the right-hand side of
(3) reduces to

u + %E(uii‘*' 2u; Qi)Uii + %ELiikukUiiokk ,
and (7), for the mean, is simply

A

1
es = os Y Qso—ss + EZLiisGiioss-
i

Local orthogonality can always be Q\btaingd by a locally orthogonal
transformation of the parameter space at 4, or 6.

Parameters are usually said to be orthogonal if EL.(f) = O foralli = j
and all 6; the expectation being over x,, x,,...,%, (Jeffreys (1961)). Since £ and
its derivatives are sums of n terms, and hence of order n, they will, by the
central limit theorem, differ from their expectations by a term of order n1/2,
Hence replacement of .,;, or L., by expectations will not, as many writers
have noticed, affect the order of the correction terms, but it will affect the
order of the terms discarded. As pointed out above, at the moment these are
0(n-%): if expectations are used they will rise to 0(n-%/%). Consequently the
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replacements should be used with care. Actually they violate the likelihood
principle and are hence incoherent. In any case, as we try to show by example
below, they are not needed in the numerical analysis of data. If they are used
and the parameters are orthogonal, then further reductions occur: (3)
reducing to

E(u) ~NU %E(ll,-,-%—?.u,-g,»)v,-,- + %EL,‘,',‘”,'U,?;
and (7) to

A 1
,-0, = 0,0, + 3Ly0% .

These reductions arise because the vanishing of the mixed second derivatives
for all # implies zero values for the mixed third derivatives.

An obvious advantage of some form of orthogonality is the diagonal
form of the matrix of elements -L,; and the consequent ease of its inversion to
give o, : 0, = -Li}and o,; = Ofori = J.

But an additional advantage is the reduction in the numbers of third
derivatives that have to be considered. These are m(m+ 1){(m+2)/6 if all
distinct ones are needed; m? with local orthogonality; and m with full
orthogonality. Full orthogonality cannot usually be achieved for m > 3.

2. UNIVARIATE APPLICATIONS
In this section the case is considered of a single parameter, written 6,
hence m = 1. The notation L., etc., for the derivatives is cumbersome, all
suffixes necessarily being 1, and we revert to the more usual form in which L,
for example, denotes the third derivative; previously L,;;. The basic result (3)
is that

E(u| Xy, Xg0 0y Xu) MU+ 3(Up+ 201002 + 3 Lattyo* ®)
whereas in posterior mode form (5)
E(u|xy, Xg5...0%) ~vu + Suar? + FAguyTt . 9)
The results for () = 8, giving the posterior mean 9, are
§-0 = 0,0% + LLq0t (10)
and
0-6 = jAs74. (11)

It is clear from these formulas that there would be some advantage in
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arranging for L;, or Aj;, to be zero. This can be done in the case of the
exponential family with a single sufficient statistic. In the canonical form, the
density exp [-x0 - g(6)- h(x)] gives a log-likelihood L(6) = -X6 - ng(f) with
X = Ex; the sufficient statistic, and L, = -ng; for i > 1, irrespective of the
sample values. Suppose the parameterization is altered from 6 to ¢ where
dp/do = L. Then d6/d¢ = L33 and d?0/d¢? = - 5 L,/LY/3. Consequently

d*L df \s de d*
(P
do do?

dg? dé

since L; = 0, vanishes. Hence a change from the canonical parameter 6 to ¢,
where dop/dfd = L3, or ¢ = [L1? (6)df will make the final correction terms in
(8) and (i0) vanish. If the conjugate family is used for the prior to the
exponential family, the same arguments will apply to A and, from (11), the
posterior mean and mode will be the same to order n-1.

As an example consider the gamma distribution with p(x|8) ~ #e,
gy = -rlog#h, sothat L, = ng, = nrf-2. Then do¢/df = 6-?/3, the constant
being irrelevant, and hence ¢ = #1/3. With this parametric form, L(¢) = -X¢°
+ 3nrlog ¢ and d®L/d¢p® = 0. This is the Wilson-Hilferty transformation,
though applied to the parameter rather than the data.

It is a curious feature of the exponential ‘amily thit in canonical form the
derivatives of the log-likelihood above the first do noi involve the data. An
important effect of this is that the sampling thecrist’s violation of the
likelihood principle in taking expectations over the sample space does no
damage to the principle when applied to these higher c¢orivatives: in particular,
the large-sample variance, ¢ = -L£3!, is unaftected. Ir general the derivatives
will be data dependent and a transformation that makes L; zero is not
available. An argument similar to that used above shows that a change to ¢ =
EL®) /3 df will make EL, = 0. As explained above, a change from L, to
EL,; will change the order of the neglected terms.

Transformations associated with L, are sometimes used to control
skewness. It is therefore of intergst to examine the third moment of §. To dAo
this we need the case u(f) = (6 - #)* in the univariate form of (3). But u = u()
vanishes and our results do not apply. We therefore develop an expansion
analogous to (2) valid when w = 0, confining ourselves to the univariate case.
Multivariate extensions foll(l)\w straightforwardly. Suppose that the first non-
vanishing derivative of w at 0 is the s**, s >0. The derivatives will be written w,
etc. Then as in the derivation of (2)

1 -
fw(@e 0df = §[— wh + Weep 051 + ... e’-“”]dﬁ
s!

s+ 1)
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" Wes 1.
= we [§ o + M gy ]e‘“z"zf’2 [1+ — L363+0(n'1)]d0
s! s+1 6

There are two cases according as s is odd or even. In the even case the leading
term is w,e'/2ZwoE(0°)/s!. In the odd case, two terms need consideration and
we have

Wi

% weel 27 a/s! % 3

1
E0Y) + — Ly E@"3) ;.
s+1 6

We next need to combine the results for the numerator, for w, with those
for the denominator, for v. In applications v = e is the pricr. We shall
suppose that this nowhere vanishes, in line with the principle that a Bayesian
should never assign zero probability to any value, because to do so would
commit him to zero irrespective of any data. This being so, the dominant term
in the denominator is ve* /2 o giving

fw(d)et®do w, E(0°)/s!v s even

- ~N
fv(@)et* db W B0/ (s + 1) + w,L;E(6°7%)/6}/s!v, s odd
(12)

of order n*’2 for s even, and n"**V/2 for s odd.

To obtain the posterior moments we write w(0)=(0—9)-’e"“” and v(f) =
e, For s = 2, we immediately obtain ¢2, a result discussed in the general
development. The third moment is a little more complicated. The first non-
vanishing derivative is wy = 3!er and w, = 4le°g,. Hence

E(0-0)} ~ E(09)0,+ 3 LyE(F) = 300, +30%Ls

of order n-2. The fourth moment is easily seen to 3¢%. To obtain the moments
about the mean write

E(0-6)% = E(6-0 +8-9)°
= E9-8)3 + 3E(0-0)2(3-8) + 2(6-9)°
= 30%0;+ 30°Ly + 30%{-010%-3L30%) +0(n°%)
Lo + O(n3), (13)

I

also of order n-2. Similarly E(§-8)* = 3¢* + O(n3) .
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It is interesting to see that neither of these involve the prior distribution
and that the fourth moment is that predicted by assuming a normal
distribution for 6. Skewness would seem to be a more important feature of
posterior distributions than kurtosis.

We now consider some examples, excluding the exponential family
which, as we have seen, is somewhat unusual. The first is a sample from a t-
distribution of unknown location, but known spread and degfees of freedom:
the sample size is n = 7, and the degrees of freedom are 5. The log-density for
x i$ therefore C-3log{l + (x-0)2/5}. With true value 6 = 0 the sample is:

-1.0, -03, 0.1, +04, +09, +1.6, +3.0 . (14)

The upper 1% point of 5 is 3.36, so that the last value is unusual and
almost deserves the title of an outlier: it would certainly be an outlier for the
corresponding normal distribution with » = oo . Table 1 gives the value of the
log-likelihood and Aits first three differences around the maximum value.
Interpolation gives § = 0.4954, and L, at this value is -4.923 from the second
differences. Hence o2 = 0.2031 and ¢ = 0.451. Simple calculation for the t-
distribution shows that E(L,) = -n(v + 1)/(v + 3), giving here an average value
of ¢% of 0.190, slightly less than the sample value cbtained here, so that the
sample is a little less informatiAve than an average one. Assuming ¢; = 0
corresponding to a flat prior at 6, the correction for g, cquation (10), is %L3o4.
With L5 = 0.724, by interpolation in the third differences, the correction to g
is 0.0149, so that 8§ = 0.5103. The correction is negligible in comparison with
the standard deviation. Notice, however, that 8 is very different from the
arithmetic mean of the sample at 0.643, which is unduly swayed by the outlier.
The correction for the prior need not be negligible. Suppose that x(6) is such
that /K is t.: that is, centred at the true value of 6 = 0 but with \//\ariance
K%v/(v-2) for v>2. It is easy to establish that o, = -6(v+ 1)/(kv+6?). For
example with kK = 1 and v = 5, roughly making the prior equivalent to an
extra value at 0, the correction term pg,0? = -0.115, giving § = 0.395.
Increasing K to 2, making one initially less sure about 4, gives a correction of
-0.0589 and § = 0.451.

The general form of the correction to § due to the prior, g,0?, is best
appreciated by the following heuristic argument. In a quadratic
approximation to the logarithm, g, of the prior, it can be written -(8-6¢)?/20%
therfi 6, 1s the prior mean (or mode) and ¢3 the prior variance. Its derivative at
0 is -(6-6,4)/ o3. Hence, ignoring the other correction term 3L0%,

BB+ 02 (058)/0 ~ (/02 +6, /03){o72 + 02}
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to order xn-1, This is the usual weighted average of f and 0, with weights equal
to their precisions.

Table 1. (@) = -3 log {1 + (x.-6)%/5 }and its differences for the sample
(14).

0 L Ly Ly Ly
0.475 -4.869 031 221

+ 759 378
485 8 271 843 -492 996

+ 266 382 + 705
495 8 005 461 -492 291

-225 909 + 741
505 8 231 370 - 491 550

-717 459
515 8 948 829

Returning to the sample (14), consider what happens when the outlier
increases from 3.0 to 4.0. The maximum likelihood value decreases from
0.4954 to 0.4714, showing that less attention is paid to the extreme value. The
variance o? increases slightly from 0.2031 to 0.2058 and L, grows from 0.724
to 0.825, with the result that the correction §L3o4 changes from 0.0149 to
0.0175. Hence 6§ = 0.4889. There is still little skewness in the posterior
distribution. This is a result of the symmetry in the original density. To exhibit
a substantial correction term it is necessary to take a skew density for 8, but
before doing this there is one more remark that is worth making about the t-
distribution. It can happen that the log-likelihood has two local maxima, in
which case each will give a contribution in the asymptotic expansions.

To exhibit a skew distribution giving a larger correction term, consider a
sample, again of size 7, from an F-distribution of unknown scale. We have
taken a case with degrees of freedom, », = 4 and », = 8§, giving a density
proportional to 6%2x/(8 +46x)%. With true value 0 = 1, the sample is

3 S .8 1.2 1.4 2.5 4.0 (15)

Table 2 gives the value of the log-likelihood anil its first three differences
around the maximum value. Interpolation gives § = 0.8110, and L, at this
value is -12.399. Hence o2 = 0.08065 and ¢ = 0.2840. The value of L,is 42.0,
so that with a flat Hrior the correction term, 3 Lyo*, is 0.1366. The result of
applying this is that § at 0.8110 is increased to 6 at 0.9476, and the correction is
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almost one half the standard deviation. The posterior distribution is skew to
the right, the mean exceeding the mode. The third moment, equation (13), is
0.022 and the fourth 0.0195.

Notice that in doing numerical work with the results we have not used the
differential calculus to evaluate L(f) and then inserted the numerical values
for 6 (and x;, X,,...,x,): instead L (f) has bein evaluated for a range of values
of ¢ and the differences used to obtain L,(#). This reduces substantially the
amount of work, both analytic and numeric, and has the advantage of
displaying the form of the log-likelihood where it is large.

One other application of the basic results, (8) and (9), that merits
attention is to obtain the predictive distribution. Let y be an, as yet
unobserved, value whose density, given 0, is g(y|6). Often g will be p, the
density leading to L, and y, equivalently, x,.;, but the results are general.
Then, given x;, Xz5+sx Xns the density of y is given by (8) with u(8) = g(y|6). The
leading term is g(y|#) and the correction allows for the uncertainty about 4.
Moments for the predictive distribution are available if the moments of g are
expressible as functions of #. A related use is in empirical Bayes problems
which have been treated by Deely and Lindley (1979).

Dunsmore (1976) writes the predictive distribution as
fq (v 10) p Bxy,...x.) d6 and uses asymptotic results for the posterior
distribution to obtain approximations for the univariate case that are similar
to those in the prese{\xt paper. The main differences are that Dunsmore’s
asymptotic resulits use 4, not 4; g, not 7.

Table 2. L(#) = 14 log 6 - 6X log (8 + 46x,) and its differences for the
sample (15)

0 L Ly Ly Ly
0.79 -108.814 597 6

+ 20 320
.80 2 565 6 - 12 868

+ 7452 + 428
.81 1 820 4 - 12 440

- 4988 + 414
.82 2 319 2 - 12 026

- 17014

.83 4 020 6
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3. BIVARIATE APPLICATIONS
With two parameters, 6, and 6,, there are only 4 third derivatives and the
notation L, etc., in lieu of Ly, etc., seems preferable. The correction term
3 Lywtio,0. (equation (3)) becomes one half

Lygtt0%y + 43011015} + L1{301041012 + Uy(01102; + 20%)))

+ Lypfuy(011022 + 20%) + 31301202} + Loalty01302 + U305},
An alternative form uses U, = IE u,0,,. The whole expression (3) is then

1 1 1
u+3Xuo,+ LU + 3 Lyo Uy + 3 L21(2?12U1 + 01,Uy)

+ 3 L1p(022U; + 200,U) + % Loo22U> . (16)

These expressions are complicated but well-adapted for numerica}\l work. With
L, u and g evaluated, as in §2, on a grid of values of 6, §, about 6, differences
may again be used to form the derivatives, the matrix of minus the second
derivatives inverted to give o, and then easy arithmetic gives the value of (16).

For the posterior mean of 6,, say, we have u(f) = 6, and hence 4, = 1,
u, = 0and u;; = 0 for all , j. Hence (also from (7))

A 1 3 1 2
01-01 = 01011 + 02021 + 3 L300%1 + 3 L21011012 + 3 L13(011022 +20%5)

1
+ 3 Lo301202; - (17)

We illustrate these results for the analysis of a one-way table. This
example differs from those studied in §2 in two respects. First, we operate
directly with the posterior distribution rather than the likelihood. Second, the
case is more interesting because the modal values (and the maximum
likelihood ones) are known to be misleading, so that evaluation of means by
methods that avoids tedious bivariate integrations may be of real value in the
appreciation of data from such a table. There are possibilities of extensicns to
more elaborate analyses of variance.

The data x,;, (( = 1, 2,... m; j = 1, 2,...n) are, given [u} and o2,
independent with x,; ~ N(u,, 0%) that is, m groups with n observations in each
group. For the prior density of the u’s, we suppose them i.i.d. Mg, %), and
independent of ¢2. This distribution can be thought of as part of the
likelihood, in which case we have a Model 11, rather than Model I, situation.
Finally the distributions for o2, 72 and u are supposed independent with v \,/0?

2 2 . .
N Xp1 s PA/TE N Xy, and pouniform. The prior for ¢ and 72 has not been
expressed in the mathematically more convenient, conjugate form in terms of
o* + nr? since we believe that a prior depending on the sample size is
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unrealistic. Tedious calculations show that the joint posterior distribution of
o? and 7% has logarithm equal to a constant plus '

3 (N-m+v, + 2)log 6%- 3 (v, + 2) log 72 - 3 (m-1) log (n7% + o?)
-nT%/2(n1? + 0%)- vy Ny/27%- (8% + vy N\ /207, (18)

In the notation used above this is A(f;, §;) = A(c?, 7?). The unexplained
notation is N = nm, nT? = nZ(x.. -x..)* and §? = Z(x, - x;.)?, the between and
within sums of squares. The modal values for ¢? and 72 are easily found from
(18), and these can be used to find approximate posterior means for the p,,
which are weighted averages of x,. and x.. with weights dependent on these
modes. However the distribution (18) is skew and the preferred means may
differ from their modes. '

We illustrate using a numerical example with p = 0, 62 = 72 = 1, having
the hyperparameters, v, = v, = 4, \; = A\, = 1, and with data §? = 37.34372,
T? = 4.556774, for m = 8 and n = 5. Notice that the prior information about
72, with 4 degrees of freedom, is comparable with the information from the
data, through 7?2, having 7. The prior expectation of 72 is A, /(v - 2) = 2,
and the standard deviation is infinite, but the mode is at A\p, / (v, + 2) =
2/3. This does not seem unrealistic in some applications, though each case
must be decided in the light of practical experience. Table 3 gives the value of
A(o?, 7%, equation (18), for a grid of values of o? and 72

Table 3. Values of 30 + A (0%, 7%), equation (18), for the values given in
the text. All entries preceded by -0.

2
.
a? 0.4 0.5 0.6 0.7 0.8
0.9 8728 5212 4522 5287 6847
1.0 5654 2319 1727 2548 4139
1.1 4894 1718 1213 2083 3701
1.2 5728 2693 2267 3181 4823
1.3 7683 4773 4417 5370 7033

around ¢? = 1.1 and 72 = 0.6. Interpolation shows that the modal values are
ot = 1.08 and ™ = 0.59. (The estimates obtained by equating the values of S?
and T? to their expectations are for o2, 1.17 and for 72, 0.42.) To evaluate the
correction terms, the differences are used to obtain the derivatives. Thus A,
= {(-0.2267 + 0.1213) - (-0.1213 + 0.1727)} /0.01 = -15.60 . Similarly A, =
-13.75 and A,; = +0.63 . The small value of this mixed, second derivative, in
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comparison with the larger values of the unmixed ones, means that ¢ and 72
are almost locally orthogonal and we will treat them as such in what follows.
Exiending to the third derivatives A3y = 59., Ag; = 97. and A, and A4, are
virtually zero. Hence we may use the two univariate formulae for E (¢?) and
E (%) separately. For ¢2 the mode is 1.08 and the variance is (-A,5) ' = 0.0641,
with standard deviation 0.253. The correction term is %59 x (.0641)? = 0.12,
raising ¢% to 1.20 as the posterior mean. For 72 the mode is 0.59 and the
variance is (-Agp)! = 0.0727, with standard deviation 0.270. The correction
term is %97 x (.0727)2 = 0.26 raising 72 to 0.85 as the posterior mean. Notice
that the two correction terms are both positive, the means exceeding the
modes, and that they are comparable with the standard deviations: for ¢? the
correction is about half the standard deviation, whilst for 72 they are about
equal. Hence the term of order n-* (for the correction) is comparable with that
of order n 1’2 (for the standard deviation). The claim sometimes made that
terms of smaller order may be neglected in maximum likelihood (or maximum
posterior) theory may not be true for some skew distributions. Notice, that
because of the large, unmixed, third derivatives, the skewness in both
parameters is quite large. It is interesting that the standard deviations of ¢?
and 72 are about equal (0.25 and 0.27 respectively) whereas one might have
expected o? to be better determined than 72,

4. DISCUSSION

The analytic results of this paper enable one to calculate the difference
between the mean and mode of certain distributions as far as the dominant
term of order n-! in the sample size n. The difference involves the second and
third derivatives of the log-likelihood at the mode and is in a form suitable for
numerical calculation. Such calculations tentatively suggest that the
differences are appreciable even in comparison with the standard deviations,
but much more needs to be done before these claims can be substantiated.

The method used here is essentially that of steepest descents. This tool
has been used by Barndorff-Nielsen and Cox (1979) to obtain sampling
distributions that enable inferences to be made about one parameter, 8,, say,
in the presence of nuisance parameters 6,, 6,, ... 8,,.;. It will be of interest to
see how these sampling-theory approximations compare with the Bayesian
results of this paper.
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