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SUMMARY

The elimination of nuisance parameters has classically been tackled by various ad hoc
devices, and has led to a number of attempts to define partial sufficiency and ancillarity.
The Bayesian approach is clearly defined. This paper examines some classical procedures
in order to see when they can be given a Bayesian justification.
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1. INTRODUCTION

Problems with nuisance parameters, where we are interested in only a
part of the parameter that governs the distribution of our data, are of prime
practical importance, yet our theoretical understanding remains limited and
confused. One attractive approach is to simplify the model, by reducing the
data or by conditioning on some statistic. Attempts to justify such
simplification may be based on generalization of the concepts of sufficiency
and ancillarity, but this generalization may be made in many ways. Another
approach is to be, or to act like, a Bayesian, and integrate out any unwanted
parameters. This in itself leads to a particular form of generalized sufficiency
and ancillarity which, while of little direct interest to the Bayesian, is useful as
a standard for judging other definitions.

In this paper we use examples and theory to indicate both the similarities
and the differences between the Bayesian and classical approaches. Section 2
introduces nuisance parameters. Section 3 and 4 describe the Bayesian
approach to generalized sufficiency, and Section 5 some classical definitions.
In Section 6 we illustrate various possible ways in which these properties can
hold, alone or together. Section 7 introduces specialized Bayesian versions of
generalized sufficiency and ancillarity which are of particular relevance for
comparison with the classical approach, and Section 8 takes up this
comparison. In particular, it is shown that, under certain conditions, the
classical approach can be given a Bayesian justification only for very special
prior distributions. '
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Notation.

A capital letter will normally be used to denote an uncertain quantity
(random variable or parameter), and the corresponding small letter for a
realized or hypothetical value. However, this convention is not rigid. We use
the symbols f, f and 7 to denote probability densities, leaving the relevant
variables to be understood from the context: thus S(t}|s,0) denotes the density
at ¢ for the distribution of 7, conditional on § = s, when © = 6. Our
manipulations with such densities will be informal and far from rigorous,
though all can be made precise. Thus f(x|\) = f(#|6)f(x|t,¢) means that the
parameter A is equivalent to the pair (©,%); that the marginal distributions of
T depend on A through © alone; and that the conditional distributions of X
given T depend on & alone. Such concepts can be conveniently and accurately
expressed using the notation of conditional independence (Dawid, 1979a): the
above properties would read: 71 A |©, X LA | (T,®). However, as this
notation is still relatively unfamiliar, it has been avoided in this paper.

2. NUISANCE PARAMETERS

Suppose we are interested in the value of some unknown quantity 6,
(which, like all other abstract quantities we shall consider, may have several
components) and can conduct a statistical investigation to learn about ©. The
outcome of this investigation will be our data x, the realised value of a random
variable X.

If we are fortunate, the distribution of X will be completely determined
by the value of ©; this is the state of affairs treated in greatest depth in the
inference text-books. However, in most real problems such simplicity is an
unattainable ideal, even after we have made simplifying assumptions, such as
normality, in setting up the model. Instead, the distributions of X might be
governed by a parameter A, which is in some way connected with ©. The most
common case, to which we shall restrict our attention in this paper, is that ©
gives only a partial description of the distributions of X, so that © is a
function of A.

The usual approach to such a problem is to introduce a further parameter
& which, combined with 8, completes the specification of the distribution of
X. Then the pair (©, &) may be taken to be A. For example, if our experiment
consists of an unbiased measurement of ©, where the measuring instrument is
subject to a normally distributed error of unknown variance, it would be usual
to take ® to be this variance. In such a case, $ would be designated as ‘‘the
nuisance parameter’’, and inference about © becomes ‘‘elimination of $’’.
This seems a natural and obvious stance, but it should be pointed out that
there is an arbitrariness involved in the choice of nuisance parameter. For
instance, in the above case, why not take, for &, the coefficient of variation of
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the distribution? There is, indeed, a whole host of possible choices of the
nuisance parameter. For some purposes (in particular, Bayesian inference)
this will make no difference to our inference about © but, as we shall see, it
may frequently be important to recognise the arbitrary nature of the nuisance
parameter.

3. THE BAYESIAN APPROACH

A coherent Bayesian B has no conceptual difficulty in making inference
about © in the presence of nuisance parameters. The distributions of X
depend only on A, so that the observation X = x provides a likelihood
function, f(x|\) say, for A. To use this coherently requires a prior distribution
for A, which B can specify. He now derives, in the usual way, his posterior
distribution for A and, being interested in © alone, simply summarises his
posterior opinions about © by means of the implied marginal posterior
distribution for ©.

No specification of a nuisance parameter is neccesary for this calculation,
and if such a choice is made —as it normally will be— it is for convenience
alone. For example, knowledge of the real world problem at hand may often
make it possible to choose a ¢ for which it would be reasonable to take © and
® as a priori independent. In the measurement problem of the previous
section, this might pick out the variance, rather than the coefficient of
variation; but is easy to think of similar problems, with the same normal
family of distributions, where this preference might be reversed. In any event,
such a choice of nuisance parameter serves merely to simplify the
psychological problem of specifying one’s prior distribution, and is in no way
essential to the statistical analysis.

In general, for any choice of ®, B’s distribution of A can be re-expressed
as a joint distribution for (6,%), which can then be decomposed into the
marginal distribution for © (which may be easy to specify, and will not
depend on which @ is used) and a conditional distribution for & given ©
(which may not, and of course will). Representing parameter-densities by the
symbol 7, Bayes’theorem gives

R

0,0 | x)
andso w(0|x)

7(60,6) fx16,6)

J fx16,8)7(0,9)do

= | fx|6,6)7(6) (¢ |6)ds
Sox[6) 7(6)

R

where f(x|0) = [flx|6,¢) w(¢|0)dp gives the density of B’s coherent
distributions for X given only that © = 6, which we shall call the marginal
model (for B). The marginal model does not depend on the choice of nuisance
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parameter $. As a function of 8, f{x|6) is known as the marginal likelihood of
O, based on data X = x.

From the point of view of the single Bayesian B, the marginal likelihood
is as good as any ordinary likelihood, but there are differences so far as the
whole scientific community is concerned. There will normally be a good
measure of agreement about the full model f(x|8,$) (is not this what we really
mean by a model?); but the marginal model f(x|6) is constructed by an
operation involving B’s subjective opinions, through #(¢|#), and so does not
appear to share the objectivity of f(x|8,¢).

Armed with the marginal model, we can consider such concepts as
sufficiency and ancillarity in it. We shall call T marginally sufficient for ©(for
B), if it is sufficient in the marginal model, and similarly for marginal
ancillarity. Note that these concepts depend on the prior distribution, but only
through the conditional distributions for A given ©, the marginal prior
distribution for © being arbitrary. Thus a collection B of Bayesians, with
various prior distributions {I1; : B € B} for A, will all agree on the marginal
model, and so agree whether or not a statistic 7 is marginally sufficient or
ancillary, as long as they agree on the model and on the distributions of A
given O (in which case we shall call B a bevy of Bayesians). An alternative
statement of this last condition is that, for the family {1} of distributions,
regarded as a model with ‘‘data” A and ‘‘parameter’> B, © is a sufficient
“‘statistic’’.

4. MARGINAL SUFFICIENCY

Suppose T is marginally sufficient for © (for B). Thenf(x| ) has the form
a(x) f(tl@) wheref(t|0) is the marginal density of T given 6 = 4. Thus =(#|x)
« w(0) fix|6) « =(0) f(t|6), whence 7(8|x) = =(0|f), and B’s posterior
marginal distribution for © depends on T alone, just as in the case of ordinary
sufficiency with no nuisance parameters. Under some regularity conditions,
the converse will hold. Our definition is therefore in accord with those of
Raiffa and Schlaifer (1961) and Lindley (1965).

In a sense, marginal sufficiency is unimportant: B will get the same
posterior distribution for © whether he bases it on the complete data X or on
T alone, and for this very reason there is little point in his reducing his data to
T before processing. However, it is often necessary to discard some data in the
interests of manageability, and if B knows that he can do this in such a way
that he loses no information about O, so much the better.

This raises the question: How can B know that T 'is marginally sufficient?
It seems that he must first either evaluate his posterior for ©, and discover its
dependence on T alone, in which case it is too late to use the knowledge, or
else calculate the marginal model, which seems to be as laborious as a full
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analysis. However, as we shall see, B may be able to profit from certain
special structure in his model and prior to deduce that a statistic is marginally
sufficient. '

5. GENERALIZED SUFFICIENCY
It is not only, nor indeed primarily, the Bayesian who is motivated to
simplify his problem of inference about © by discarding data. One obvious
motivation for reducing the data to some statistic T is the possibility of
eliminating nuisance parameters by satisfying the following definition:

Definition 5.1 (Basu, 1977). A statistic T is O-oriented if its sampling
distribution is entirely determined by the value of O.

However, this property does not in itself justify one in discarding all the
data but 7, since one might be throwing away information relevant to
inference about ©. The Bayesian has, in marginal sufficiency, a coherent
theory to tell him when he can reduce his data without essential loss. From the
classical point of view, a variety of ad hoc, more or less intuitively reasonable
ideas has been put forward, intended to identify properties of sampling
distributions which serve to justify such reduction of the data.

A good account of these ideas is given by Barndorff-Nielsen (1978,
Chapter 4). (See also Basu, 1977, 1978; Dawid, 1975) We shall concentrate on
just two approaches, specializing Barndorff-Nielsen’s definitions slightly.

5.1 G-sufficiency

This concept was introduced by Barnard (1963). The essence is as
follows. Let the model be given by the family P = {P, } of distributions for da-
ta X, and suppose these distributions are equivariant under the action of exact
homomorphic transformation groups, G, acting on X, and G acting on A.
That is to say, if X ~ P,, and g € G, then ge X'~ P;,, (for further background
see, for example, Dawid, Stone and Zidek, 1973).

Suppose the parameter of interest O is invariant under G, so that O(\) =
O(g-\), and let T be the maximal invariant function of X under G. Then Bar-
nard proposed that, in the absence of prior information, T should be regarded
as containing all the available information about ©. Such a statistic T is ter-
med G-sufficient for ©. It can be shown (see e.g. Lehmann, 1959, p.220) that,
if © is a maximal invariant function of A under G, then a G-sufficent statistic
T will be O-oriented.

Example 5.1. Let X = (X":i=1, ..., n) be a random sample from N(u,s%). Ta-
ke G as the additive group of real numbers, a typical element a taking X into
X +al; then we way may take G =G, with a (1, 0 = (n+a, 0. A maximal
invariant statistic is X - X1 = (X"-)? ti=1,...,n) (where nX = E:_'=1 X ), which
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is thus G-sufficient for the invariant parameter ¢2.

Further reduction is possible using ordinary sufficiency, either in the full
or in the reduced model. Either way, this yields the statistic
T(X-X)? in the above example, as containing all the available information
about ¢? in the absence of prior knowledge (about g, in particular).

Example 5.2 Let X' (i=1, ..., n) be a random sample from the bivariate nor-
mal distribution with entirely unknown mean-vector and dispersion matrix.
Let G consist of the group of location-scale transformations acting on each
component separately (but identically for all §). After reduction by suffi-
ciency, this yields the sample correlation coefficient as G-sufficient for its
population counterpart.

Example 5.3. Sample Survey. Consider a sampling frame of labelled units,
denoted by i=1,2, ... ,m. With unit / is associated an unknown quantity Y.,
and we take as our parameter A the ordered set (¥,,Y5, ..., Y,.). The sampling
scheme is determined by a known probability distribution P yielding S, a ran-
dom subset of {1,2, ... ,m}, and the data consist of X = {(i,Y.):ieS}.

Let G and G each be isomorphic to the group of permutations of (1,2, ... ,
m), acting on data x = {(i,y.):ieS} as gox = {(g4,Y): i ¢ S}, and on
parameter A = (Vy, ... » Vm) 8 BN = (Vo1 ... » YVem). The sampling
distributions are equivariant under G and G if and only if, under P, all
subsets of the same size are equally probable; that is to say, for simple random
sampling with a possibly random sample size. We have maximal invariants:
T =the order statistic of (¥::ieS), and © = the order statistic of (Y, ...,Y..),
and thus, under simple random sampling, T is G-sufficient for ©.

An ancillary statistic based on T is N, the size of sample taken, and the
conditional distribution of T given (N,0) is a multivariate hypergeometric
distribution.

Example 5.4. (Schou, 1978). Let X‘(i=1, ..., n) be a random sample of unit
vectors in R? drawn from the Fisher-von Mises distribution on the circle. The
paraineter A can take any value in R?, and the model densities have the form
c(IZDexp A x) (x| = 1). A sufficient statisticis S, = E:’=1 X'

A typical element of G rotates each X’ about 0 through the same angle «,
and has the same effect on both S, and A. After a sufficiency reduction to §,,
the maximal invariant is ||S,|, which is thus G-sufficient for the maximal in-
variant parameter |A|.

5.2. S-sufficiency
Let T be a statistic. The experiment which yields observation of X, with
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model densities f(x|\), can be regarded as made up of two components:

(i) the reduced experiment, yielding observation of T, with model densi-
ties f(¢|\) derived by marginalization from f(x|\); and

(ii) the conditional experiment, after observing T'=¢, yielding observa-
tion of X but with model densities f{x|#,\) derived from f(x|\) by condi-
tioning on 7.

We suppose T is ©-oriented, and try to express the fact the conditional
experiment, discarded on reduction to 7, contains no useful information
about ©. One such expression is the requirement that the conditional experi-
ment is determined entirely by nuisance parameters. Because of the arbitrary
nature of nuisance parameters, this may be interpreted eitser in terms of some
nominated choice of nuisance parameter, or as a requirement that there exist
some choice of nuisance parameter yielding this property. For non-triviality in
this latter case we must impose some restrictions (otherwise A itself might be
regarded as a nuisance parameter!) and this motivates the insistence that O
and the nuisance parameter ® should be variation-independent: that is to say,
as A varies over its range of possible values, © and ® range over a product-
space. Thus the property of S-sufficiency may be expressed as:

SN = f]6) fix|1,0) G.1

where O and & are variation-independent.
[Note that this property does not, in general, hold for G-sufficiency]

Example 5.5 Let X,, X, have independent Poisson distributions with respecti-
ve means Ay, A; known only to be positive. We are interested in © = Ay + A,.
Then T = X, + X,is ©-oriented, and is in fact S-sufficient for ©; for the con-
ditional distribution of X given T '= t is Binomial B(f;®), where & =
Ay/(A+ A,) is variation-independent of ©.

A trivial case of S-sufficiency arises when X = (7,S), A = (6,9)
(0, variation-independent), and

St,s510,0) = f2|0) fis| ). (5.2)

Then the experiments producing T and S may be considered as entirely unrela-
ted to each other.

Example 5.6. Components of variance. The data are (X,: i=1,
S j=1, ...,J), generated as

X,'j = 'U,+TY,'+UZU, (5.3)
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where the Y’s and Z’s are independent standard normal variables, and
(u, 7%, o?) the value of the parameter. A minimal sufficient statistic is
(54,52,53), where

Si= Xy S, = JE| (XX )% 8y = T Zhy X XY,

and where the dot operator averages over the replaced suffix.

In the sampling distribution, S,, S, and S; are mutually independent, with
Sy~ N, 08/1)), S;~ o} !/, and Sy~ 02 X%y, Where of = o2 + J72. Thus
taking © = 0%, ® = (4, 03), T'= S;, S = (S, S,), we have the factorization
(5.2). However, © and ¢ will not normally be variation-independent , since
(with 72 = 0) we must have o4 = ¢?, and it therefore seems that information in
S may be relevant to ¢2. There are two ways in which we can get variation-
independence: (1) restrict the parameter-space, for example requiring o? < ¢
and o = b (= a), u being unrestricted; or (2) extend the parameter space to
allow 72 < 0. (This condition makes sense if interpreted in terms of the cova-
riance structure of the (X)), rather than the synthetic representation (5.3):
Dawid, 1977; we can then allow any combination of u, ¢ > 0, ¢% > 0).

The former approach appears to distort the real problem to fit the
Procrustean bed of theory, and in any case the appropriate implied
parameter-space for (u,72, 0%) will depend on the value of J. The latter appro-
ach may or may not be regarded as appropriate, leading as it does to the possi-
bility of negative correlations between the (X..), and again involving the value
of J.

The above problem is the subject of Stone and Springer (1965).

6. EXAMPLES OF MARGINAL SUFFICIENCY
Marginal sufficiency may or may not go hand in hand with its various
classical counterparts, as the following examples illustrate.

Example 6.1. Full sufficiency. If Tis sufficient for the full parameter A, thenT
is marginally sufficient for © for any prior distribution on A. Moreover,
usually the converse will hold (Hajek, 1965; Martin, Petit et Littaye, 1973).

Example 6.2. G-sufficiency. In the model of 5.1, consider the family F of
prior distributions for A which are invariant under G; thus if I1 ¢ F, g ¢ G, then
A ~II = g A ~I1. By general results on invariance (see e.g. Dawid, 1979a,
Section 8), O is a ‘‘sufficient statistic’’ in F, so that F corresponds to a bevy of
Bayesians, and thus leads to an agreed marginal model for X given ©. It may
now be seen that any of these distributions for X given O is invariant under
the action of G on X, whence T is sufficient for this marginal model, and hen-
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ce marginally sufficient. Thus all Bayesians in the bevy would agree to work
with the marginal model for the reduced data T, and since T'is, in any case, G-
oriented, this is equivalent to using the sampling distributions of the G-
sufficient statistic 7.

In the context of Example 5.4, suppose that the prior distribution for A is
rotationally symmetric about 0 (as a particular case, A, and A,, might have in-
dependent standard normal distributions); then the posterior distribution of ©
= | A| will be a function of T = |8, alone, and could be derived by combi-
ning the marginal prior of © with the (O-oriented) reduced experiment for 7.

Likewise, in Example 5.3 with simple random sampling, if in the prior
distribution the variables (Y4,...,Y,.) are exchangeable (which means, simply,
invariance under the group G of permutations), then the order statistic T of
the data will be marginally sufficient for the order statistic © of the parame-
ter, and coherent inference could be based on its multivariate hypergeometric
sampling distribution (for given sample size).

The general theory developed above is of somewhat limited applicability.
A proper G-invariant distribution exists only when G is compact as a topologi-
cal group. Usually this condition does not hold; it fails, for instance, in
Examples 5.1 and 5.2. Then G-invariant measures exist, but are improper
distributions. Difficulties can now arise. For example, it is possible for the
posterior distribution of © to depend on the data through T alone, but not to
be derivable from the reduced experiment based on 7. This is the marginaliza-
tion paradox of Dawid, Stone and Zidek (1973). Such problems do not arise
for proper priors. .

A difficult technical problem is to discover whether a G-sufficient statis-
tic can be marginally sufficient for a non-invariant prior distribution, and, in
particular, for a proper prior in the case of a non-compact group. Case studies
suggest that this will not normally be: possible (Jaynes, 1980). If so, then re-
duction to a G-sufficient statistic, when the group is not compact, will be
intrinsically incoherent, in the sense that the only prior distributions which
allow such reduction are improper, and possibly paradoxical.

Example 6.3. S-sufficiency. Suppose (5.1) holds, and the prior distribution for
A is such that © and ® are independent. (Thus, so long as the parameter-space
is redefined, if necessary, as the support of the prior distribution, © and ¢
must be variation-independent). Then n(6,9) = #(0) w(¢), whence

(0,0 |x) = 7(0) f(t]6) w($).f(x|1,0). (6.1)

It follows that 7"is marginally sufficient for O, and the reduced experiment gi-
ves the marginal model.
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In Example 5.5, suppose that we take a conjugate prior distribution:

A; ~ T'(a, b) independently. As is well known, this implies that & =
Ay/(AL + Ay ~ B (ay, ay), independently of © = A; + A, ~T(a,+a,,b). It
follows that 7 = X; + X, is marginally sufficient, so that inference for ©
follows on combining the reduced data 7, having distribution P(©), with the
marginal prior: © ~I'(a, +a,, b).

The above simplifiéation is an important (but little-known) general pro-
perty of conjugate inference for exponential families (Barndorff-Nielsen,
1978: Corollary 9.3). Under weak conditions, whenever a S-sufficient statistic
T exists, yielding a factorization (5.1), then © and the nuisance parameter &
will turn out to be independent, for any conjugate prior (where the term ‘‘con-
jugate’’is suitably defined). Thus conjugate Bayes inference about such a pa-
rameter O can always proceed in the reduced experiment.

For Example 5.6, S; will be marginally sufficient for o2 (and (S;, S,) for
(u, 0%))if o? and (u,0d) are a priori independent. Again, interpreted in terms of
(n, 7%, %), this requirement cannot hold for more than one value of J, and so
appears quite artificial.

Example 6.4. Complex sampling (Sugden, 1978). Suppose a sample survey is
conducted as in Example 5.3, but with a complex sampling scheme which is
not equivalent to simple random sampling. Consider again the family of
exchangeable prior distributions, which constitute a bevy for inference about
the order-statistic © of A, and hence yield an agreed marginal model for X gi-
ven O. Once again, the order-statistic 7" of X is marginally sufficient for O;
this follows because the posterior distribution does not depend on the
sampling scheme, and since, for the particular case of simple random
sampling, the posterior for © with an exchangeable prior depends on 7 alone,
this must hold for any sampling scheme. Consequently, the bevy can confine
itself to the reduced experiment for T.

Now in general 7 will not be ©-oriented, and it would therefore seem that
reduction of the data to T does not afford much simplification. However, it
may be seen that simplicity returns if we work with the marginal model for T
given O, as follows. Firstly, since sample-size N (a function of T) is ancillary
in the full model, it is ancillary in the marginal model; and now a symmetry
argument shows that, conditional on N, the marginal model for T will be mul-
tivariate hypergeometric, exactly as for simple random sampling.

Example 6.5. L-independence. (Barndorff-Nielsen, 1978, Example 3.8). Con-
sider a birth and death process, with birth and death intensities A and M, ob-
served continuously from time 0 to time 7, in which there are initially £ indivi-
duals. Let B, D and Z denote respectively the number of births, the number of
deaths, and the total time lived by all individuals. Then (B, D, Z) is sufficient
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for (A, M), and the likelihood based on data (b, d, z) is proportional to

Az 4 Atz ' 6.1)

Since this factorizes as a function of A and p, we call A and M L-independent,
although (6.1) can not be produced by S-sufficiency, and is not of the form
(5.1).

Suppose that A and M are a priori independent. Then w(\ |data) o« w(\).
A e')‘z, a very straightforward calculation. For inference about A, all the Ba-
yesian has to do is to store the relevant factor of his likelihood and combine it
with his prior.

Here T = (B, Z) is marginally sufficient for A, but it would not be quite
so straightforward to make inference about A from the reduced experiment,
since (B, Z) is not A-oriented and has a complicated distribution. In this case,
it does not help to derive the marginal model for (B, Z) given A, which is also
complicated and depends on the distribution assigned to M.

The lesson here is that, even when a marginally sufficient statistic ex1sts,
it may not be most profitable to the Bayesian to work with its sampling distri-
butions (in either the full or the marginal model); other uses may be more
appropriate. The same moral is pointed by the next example.

Example 6.6. Optional stopping. Consider again the Fisher-von Mises distri-
bution of Example 5.4, but with sequential observation of X!, X2, ..., stop-
ping according to the following rule: if X!, X2, ..., X" have been observed
with values x, ..., x’, then observations terminates if the first component x; of
x" is negative; otherwise X"*! is observed. This rule leads, with probability one
for all A, to termination of observation at some random finite stage N.

The data may be expressed as (#,x!, ..., x"), the observed values of (V,
X1, ..., X"). By a standard result on optional stopping, the posterior distribu-
tion for A will be identical with that based on observing values (x!, ..., x*) for
(X, ...,X") in the non-sequential set-up of Example 5.4, for the appropriate
value of n.

In particular, consider the bevy of prior distributions for A which are ro-
tationally symmetric about 0. Then, by the results of Example 6.2, the poste-
rior distribution of © = | A | will depend only in the value of (N, |Sy|) (the
value of N, taken for granted as known earlier, must now be specified). As in
the last two examples, the marginally sufficient statistic (N, |Sy|) will not in
general be ©O-oriented (the non-invariant stopping rule destroys that
property), and so the bevy might wish to focus attention on the marginal mo-
del for (&, |Sw[)- It might be conjectured, in analogy with Example 6.4, that
N is ancillary in this marginal model, and that conditioning on it produces the

12
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same distribution for |Sy| as in Example 5.4. However, N is not ancillary.
For example, it may easily be seen that, for © = ¢ (which gives an uniform
distribution on the circle), the distribution for N given O is geometric with
probability parameter 1/2; while for © very large, corresponding to the (X¢)
being tightly concentrated about the same random unit vector e = A/O,N will
tend to be either 1 (if e; < 0) or otherwise very large (if e, > 0); each extreme
holding with probability about 1/2.

Consequently, conditioning the marginal model on N is inappropriate,
and we do not recover the same reduced marginal model as for Example 5.4.
It seems that our bevy cannot shortcut the complicated task of calculating the
reduced marginal model.

However, this is, in reality, quite unnecessary. We know that posterior
distributions will be identical with those for Example 5.4, which are easily
found, so that use of the marginal model may be completely by-passed. Alter-
natively, we might say that it is in order to use an entirely fictitious model, in
which N = nis regarded as fixed and (X, ..., X") drawn as a random sample
of size n. Once again, we have a simple marginally sufficient statistic leading
to a simple Bayesian inference, but it is not all helpful to work with sampling
distributions.

7. D-SUFFICIENCY AND D-ANCILLARITY

The examples of Section 6 demonstrate that, even when a simple margi-
nally sufficient statistic 7" exists, leading to a simple marginal posterior distri-
bution for ©, it may well not be fruitful for the Bayesian to concern himself
with the sampling distribution of 7. In particular, whether or not T is ©-
oriented will depend on irrelevant properties of the sample-space (compare
Examples 6.4 and 6.6 with Example 6.2). Consequently, our next definition
may be of little interest tc the whole-hearted Bayesian.

Consider a model for data X, with parameter A, and a Bayesian B with
prior distribution I1 for A

Definition 7.1. A statistic T'is D-sufficient for © (for B, or IT) if T'is (i) margi-
nally sufficient for ©, for B, and (ii) ©-oriented.

This definition is important for purposes of comparing Bayesian and
classical concepts. In particular, we shall be examining the classical prescrip-
tions for reduction to 7, which do depend on the sample space and do,
usually, have 7" O-oriented, to discover when they can be given a Bayesian
justification.

From the classical viewpoint, there is another common way of elimina-
ting nuisance parameters, namely by conditioning. This involves replacing the
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original experiment for X by the conditional experiment for X, given a statis-
tic 7. In parallel with reduction, this is motivated by the possibility of
achieving the following simplification. :

Definition 7.2. A statistic T is ©-inducing if, for any ¢, the conditional experi-
ment for X given T = tis determined entirely by the value of O.

Using only the conditional experiment involves discarding the reduced ex-
periment for T, and we therefore require criteria which allow us to do so
without losing “‘useful information’’. These are entirely analogous to the cri-
teria involved in discarding a conditional experiment, as already considered,
and the two problems are in effect two faces of the same coin, labelled ‘‘non-
formation’’ by Barndorff-Nielsen (1976, 1978).

We shall specifically consider the following criterion.

Definition 7.3. A (B-inducing) statistic 7' is S-ancillary for © if there exists a
nuisance parameter ®, variation-independent of ©, which determines the re-
duced experiment for 7 (which is to say that T is $-oriented).

A S-ancillary statistic T gives rise to the factorization

Sx|N) = fix|6,6) ft] $). (7.1)

Comparing this with (5.1), we see that T'is S-ancillary for © if and only if T'is
S-sufficient for ®. Thus, in Example 5.5, T = X, + X, is S-ancillary for & =
Ay/(Ay + Ay), and this might justify basing inference about ¢ on the condi-
tional (binomial) model for X given T.

For the Bayesian, a generalized ancillarity criterion, which would allow
him to work with a conditional model.rather than the full model , seems even
less worthy of attention than generalized sufficiency, since he is not normally
concerned with sampling models anyway, and in this case does not even gain,
in general, by being able to discard data. One again, the foliowing definition is
of most importance for purposes of comparison between Bayesian and classi-
cal ideas.

Definition 7.4. A statistic T is D-ancillary for © (for B, or IT) if it is (i) margi-
nally ancillary for ©, for B, and (ii) ©-inducing.

(Recall that ““T is marginally ancillary for ©°’’ means that 7is an ancillary
statistic in the marginal model, so that f{¢|6) does not depend on 6).

If Tis D-ancillary for ©, then fix|\) = fix|t, 6) f(t|\), whence f(x|6) =
JAxIN) T 0N = fx|1,8) | D) 7N [6)dN = fx|1,6) z[6) o fx|£,6). Tt
follows that the posterior distribution for © satisfies #(0|x) o« f{x]|t,0) 7(8),
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and so can be found by combining the prior marginal distribution for © with
the conditional model given 7. Conversely, when T is ©-inducing, marginal
ancillarity of T is necessary for this property to hold. Thus D-ancillarity may
be regarded as a Bayesian justification for working with the conditional mo-
del. Note once again that the definition involves only the conditional prior
distribution for A given ©, and so is relevant for the whole bevy of Bayesians
sharing this conditional distribution, the marginal prior distribution for ©
being arbitrary.

Suppose T is S-ancillary for O, so that (7.1) holds. Trivially, if © and &
are a priori independent, then w(¢ |x) = w(¢) flx|t,¢), so that Tis marginally
ancillary. The use of the conditional model is thereby justified if the prior in-
dependence holds. Again, it will normally hold for conjugate inference in ex-
ponential families.

The following example (from Dawid and Dickey, 1977) shows that prior
independence is nof necessary for a S-ancillary statistic to be D-ancillary.

Example 7.1. Suppose f(x|\) = fix|t,0) f(t|$), where (©,®) takes values in
[-1,1] x [-1,4). We need not specify f(x|?,§), but suppose f{t|¢) =
203 (1 +o 0) 7g(¢p) fort = 1, -1 = ¢t < ¥4; 0 otherwise. The normalizing
constant is

g9) = (1+¢)2 (1=
(1 +2¢-8¢%) (0 <

In the prior, © and ® are not independent, and in fact

m($]0) = (4/3) (1-69) g(¢) (-1 = ¢ =< 'A).

(This does define a density, for any f ¢ [-1,1].)

0 (otherwise)

so that T'is both S- and D-ancillary for ©.

(A similar example may be constructed to show that statistic 7 may be
both S- and D-sufficient for ©, although 6 and ® are not a priori indepen-
dent).

In the next Section we examine in more detail the connexions between S-
and D-sufficiency and ancillarity.

8. S- AND D-NONFORMATION
The material of this Section draws heavily on Dawid and Dickey (1977).



181

The concepts of sufficiency and ancillarity being considered may usefully be
expressed in the general framework of conditional independence (Dawid,
1979a), and our theorems below are applications of general properties of con-
ditional independence to our specific problems. For further technical back-
ground and rigorous proofs, see Dawid (1980).

8.1. Ancillarity

Suppose we have S-ancillarity: fix|\) = flx|t,6) f(¢|$). Suppose further
that 7T strongly identifies ®, as defined in Dawid (1980): that is to say, if we
consider the marginal distribution of 7 induced by assigning a prior distribu-
tion to @, two different priors will induce distinct marginal distributions. This
property is commonly known as ‘‘identification of mixtures’’ (Teicher, 1960,
1961, 1967; Barndorff-Nielsen, 1965; Chandra 1977). Clearly, strong identifi-
cation implies ordinary identification.

Theorem 8.1. Under the above conditions, 7 is D-ancillary for © ¢ © and @
are g priori independent.

Proof. We have already shown ‘‘«=’. For “=’, we note that f (t19) =
S fltid) w(¢|0)dy, and marginal ancillarity gives that ft|6) = ft]6y
for any 0,, 0,. Since f(¢|6) is a mixture of f(¢|¢) with mixing measure
w(¢|6), strong identification implies that 7{¢|6,) = {4 |6,), so that we have
independence.

We can summarize this result as saying that, with the strong identifica-
tion property, use of S-ancillarity to allow inference from the conditional mo-
del is coherent (i.e. has a Bayesian justification) if and only if © and ® are a
priori independent; more informally, it is necessary and sufficient that © and
$ each carry no information about the other.

The next result gives conditions on the prior distribution, not involving
the model, under which S- and D-ancillarity can never co-exist.

Theorem 8.2. Suppose that the prior conditional distributions of ® given O,
considered as a parametric family, are boundedly complete; that is, if A(P) is
bounded with E[A(®)|O] = 0 a.s., then A(®) = O a.s. If (7.1) holds, then T'is
not D-ancillary for O,

Proof. Suppose the contrary, and let k(7) be a bounded function. Since T is
d-oriented, E[k(T)|O,®] = E[k(T)|®] = h(P) say. Then E[Aa(P)|O] =
=E[k(T)|0] = E[K(T)] a.s. since T is marginally ancillary. So by bounded
completeness h(®) = E[k(T)] a.s., i.e. E[k(T)|0,®] = constant a.s. As this
holds for any k£, T must be independent of (6,9), so that T'is in fact ancillary,
and so cannot be O-inducing (barring the trivial case that X is ©-oriented).
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8.2. Sufficiency
Suppose we have S-sufficiency: fix|\) = f(¢|6) fix|t,¢). We look for a re-
sult analogous to Theorem 8.1.

Theorem 8.3. If, for each value of ¢, the distributions of X given T = ¢
strongly identify their parameter ®, then 7 marginally sufficient for © = O
and & are independent in their distribution posterior to observing T.

The proof parallels that of Theorem 8.1.

Under the strong identification condition of Theorem 8.3, the distribu-
tion of ® given (7,0) does not depend on ©. Also, since T is O-oriented, T is
independent of & given O, so that the distribution of ® given (7,0) does not
depend on T. We appear to have shown that ¢ is independent of (7,0), and
thus that © and & must be independent @ priori. However, this reasoning is
fallacious without further conditions (Dawid, 1979b).

Example 8.1. The parameter is (0,%) with & > 0, © +# 0. The data are (5,7)
=(Y/®,Z/0), where Y and Z have independent standard exponential distri-
butions, with density f(y) = e*(y >0). We thus have ‘‘unrelated problems’’.
Given T, the data X reduce to S, with distribution unchanged, and § strongly
identifies &, by the uniqueness property of the Laplace transform.

Suppose the prior distribution has

w(®]0) = e®(¢p>0)whend >0
2e2%(¢ >0) when § < 0.

Then T'is D-sufficient for O; indeed, we may take

fsit,) = (1+5)2(s>0)whent >0
22+5)2(s>0)whent <0

independently of §. However, © and & are not independent in the prior distri-
bution.

The further condition needed to ensure the validity of our informal argu-
ment above is the non-existence of a set A for which P(T ¢ 4]6) is always 0 or
1, both values being taken as 6 varies. Such a set is called a splitting set for T
given © (Koehn and Thomas, 1975). In Example 8.1, the positive half-line is
such a splitting set.

We thus have the following result.

Theorem 8.4. Suppose T is S-sufficient for © and that there does not exist a
splitting set for T given ©. Suppose further that, for each value of ¢, the distri-
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butions of X given T = ¢ strongly identify the nuisance parameter ®. Then T
is D-sufficient for © if and only if © and ® are a priori independent.

Thus, under appropriate conditions on the model, reduction by S-
sufficiency is ‘‘coherent” if and only if © and & are a priori independent. (No-
te that this result, in common with Theorem 8.1, does not use the property
that © and ® be variation-independent).

Example 8.2. In the components of variance problem of Example 5.6, take
0 = (1,09, ® = 0%, T = (51, S3), S = S;. Then the conditions of Theorem 8.4
hold, so that inference for (u,0?) based on (S,,S,) alone is coherent if and only
if (1,03 is a priori independent of o?%: a condition which, as indicated earlier, is
unrealistic. The same condition is necessary and sufficient for coherent infe-
rence about ¢? based on S; alone.

In this example, interest may well centre on p alone, so that reduction to
(S1,S,) would not eliminate all nuisance parameters. It seems likely that (S,,S,)
will be marginally sufficient for p (although not, of course, u-oriented) only
under the above prior independence; however, I do not have a proof of this.

Stone and Springer (1965, Rider) prove a theorem very similar to The-
orem 8.4 and apply it to the variance-components model. However, they omit
the splitting-set condition.

Example 8.3. We show that the strong identification condition of Theorem
8.4 may not always be required for the result to hold. Consider again Example
5.5, and suppose T is D-sufficient for ©. We have

Fealn8) = (1) [} o (1-¢) m(s] 1,0)dé

and w(¢ | £,6) may be replaced by n(¢ |8), since T is ©-oriented, so that Tand &
are independent given ©. Thus f(x,| 1,0) will be determined by the first f mo-
ments of =(¢|6#), and, so long as these are the same for every value of 6,
Slx1]4,6) will not involve 8. Here the distributions of X given T = ¢ do not
strongly identify &, for any ¢. However, the marginal sufficiency requirement
that f(x,|1,0) should not involve 8 for all t ensures that a/l moments of w(¢ |6)
are constant, whence n(¢ |6) is itself constant, so that we must have © and &
independent.

REFERENCES
BARNARD, G.A. (1963). Some logical aspects of the fiducial argument. J. Roy. Statist. Soc.,
B.25,111-114.

BARNDORFF-NIELSEN, O. (1965). Identifiability of mixtures of exponential families. J. Math.
Anal. Appl., 12, 115-21,

— (1976). Nonformation. Biometrika 63, 567-571.



184

— (1978). Information and Exponential Families in Statistical Theory. Wiley: Chichester -
New York - Brisbane.

BASU, D. (1977). On the elimination of nuisance parameters. J. Amer. Statist. Ass. 72, 355-366.
— (1978). On partial sufficiency: a review. J. Stat. Plann. Inference, 2, 1-13.
CHANDRA, S. (1977). On the mixtures of probability distributions. Scand. J. Statist. 4, 105-112.

DAWID, A.P. (1975). On the concepts of sufficiency and ancillarity in the presence of nuisance
parameters. J. Roy. Statist. Soc. B. 37, 248-258.

— (1977). Invariant distributions and analysis of variance models. Biometrika 64, 291-7.

— (1979a). Conditional independence in statistical theory (with Discussion). J. Roy. Statist.
Soc. B 41, 1-31.

— (1979b). Some misleading arguments involving conditional independence. J. Roy. Statist.
Soc. B 41, 249-252.

— (1980). Conditional independence for statistical operations. Ann. Statist. 8, 598-617.

DAWID, A.P. & DICKEY, J.M. (1977). Problems with nuisance parameters-traditional and Baye-
sian concepts. Tech. Report., University College London.

DAWID, A.P., STONE, M. & ZIDEK, J.V. (1973). Marginalization paradoxes in Bayesian and
structural inference (with Discussion). J. Roy. Statist. Soc. B, 35, 189-233.

HAJEK, J. (1965). On basic concepts of statistics. Fifth Berkeley Symposium on Mathematical
Statistic and Probability 1, 139-162.

JAYNES, E.T. (1980). Marginalization and prior probabilities. Bayesian Analysis in Econo-
metrics and Statistics: Essays in Honor of Harold Jeffreys, (A. Zellner, ed.). Amsterdam:
North Holland.

KOEHN, U. & THOMAS, D.L. (1975). On statistics independent of a sufficient statistic: Basu’s
lemma. American Statistician 29, 40-42,

LEHMANN, E.L. (1959). Testing Statistical Hypotheses. New York: Wiley.

LINDLEY, D.V, (1965). introduction to Probability and Statistics from a Bayesian Viewpoin:.
Part 2: Inference. Cambridge: University Press.

MARTIN, F., PETIT, J.L. & LITTAYE, M, (1973). Indépendance conditionelle dans le modéle
statistique bayésien. Ann. Inst. Henri Poincaré, B, 8, 19-40.

RAIFFA, H.A., & SCHLAIFER, R.S. (1961). Applied Statistical Decision Theory. Boston: Har-
vard University.

SCHOU, G. (1978). Estimation of the concentration parameter in von Mises-Fisher distributions.
Biometrika 65, 369-377.

STONE, M. & SPRINGER, B.G.F. (1965). A paradox involving quasi prior distributions. Bione-
trika 52, 623-627.

SUDGEN, R.A. (1978). Exchangeability and the foundations of survey sampling. Ph. D. Thesis,
University of Southampton.

TEICHER, H. (1960). On the mixture of distributions. Ann. Math. Statist. 31, 55-73.
— (1961). Identifiability of mixtures. Ann. Math. Statist. 32, 244-248.
— (1967). Identifiability of mixtures of product measures. Ann. Math. Statist. 38, 1300-2.



