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DISCUSSION
S.E. FIENBERG (University of Minnesota):

The three papers presented at this Session have been linked together under a
common title. In fact they are only loosely related to one another. The key links would
appear to be (1) between the Makov paper on sequential learning, and Section 6 of
Smith’s paper on change-point problems, (2) the use in all three papers of the idea of
recursive updating (this appears explicitly in the Makov and Smith papers, and only
implicitly in the Harrison and Smith paper via the use of smoothed data for the tension
and alienation variables in their prison riot example of Section 7). Having noted these
links between the three papers, I now turn to a separate discussion of each.

1 found Makov’s review of Bayesian-like approaches to unsupervised sequential
learning problems most interesting. This review is especially welcome since most of the
work on this topic has appeared outside the mainstream statistical journals. Clearly the
problem is a difficult one, and Makov and the others who have worked on various
aspects of it are to be congratulated for the progress they have made.

All three cases considered by Makov assume that the p.d.f.’s for an observation x,
given that it comes from class H,, are of the functional form:

SJix|0) = fix|6,H)

i.e., there is a common function form for the p.d.f.’s. Moreover, the number of

classes, k, is given. The more general problem of mixture with f;’s of possibly different

form, and unknown k, has been discussed quite recently by Good and Gaskins (1980

and the ensuing discussion). The computational complexities of the various approaches

to more general ‘‘bump-hunting’”’ problems make Makov’s restrictions quite
reasonable for statistical purposes. I should also mention the graphical methods of

Fowlkes (1979) for studying mixtures of normals where k is unkown.

I have three questions related to the procedures for Case A discussed in this paper,
which may have relatively brief answers:

(1)  Has there been any investigation of the adequacy of approximating a mixture of
Dirichlets by a single Dirichlet? Good (1967) has noted an example of the
inadequacy of a single Dirichlet when the true prior is a mixture.

(2) Isn’t part of the problem with the DD, (MDD,) and PT methods in your Figure 1
and in other studies due to choice of a ““weak’’ prior?

3) It would appear that the QB computations at step # are not invariant with
respect to the ordering of xy, ..., x..;. Is this the case, and if so is it something
that a good Bayesian striving for coherence should worry about?

Finally, I note that all of the methods in this paper assumne that observations
arrive sequentially, one at a time. Has there been work on related problems when
observations arrive in batches?

Smith’s paper provides us with a quick, guided tour of the Bayesian approach to
change-point problems. It begins in the land of exchangeable subsequences and a
consideration of problems representable in such form, and then proceeds with a series
of brief stops to explore the more general problems of changes in regression-like
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structures where the exchangeable subsequences approach is not directly applicable.
While the tour has been quick, offering little opportunity for dalliance with any one
problem, it has covered much territory in a spirited fashion, and may well whet our
appetite for return visits to selected locations.

My comments and queries focus primarily on the simplest of the problems Smith
describes in connection with binomial data in Section 2, but I suspect related questions
can be raised about the other problems discussed in the later sections. Although the
method of analysis described in Section 2 for the Lindisfarne Scribes problem seems
quite general, I believe further attention needs to be given to various consistency
questions such as the following: (1) If a change-point at r; = 5 has high posterior
probability when K = 1 is assumed, does it necessarily follow that ., = 5 will be
included in the pair of change-points with the highest posterior probability when K =
27 (2) Is it possible that when we place positive prior probabilities on X = 0,1,2,3 we
can get Bayes factors favoring K = 2 at say (ry, ry) = (4,5), but when we place positive
prior probabilities on K = 0,1,2,3,4, we get Bayes factors favoring K = 4 at (ry, rp, 13,
r9 = (4,5,6,7)? Such consistency properties would seem highly desirable, but would
seem to depend on the specification of the priors, p(6,,8,, ..., 6.). Perhaps Professor
Smith has already explored some of these matters in detail.

I also have some concerns regarding the beta structure used for the Lindisfarne
Scribes problem. Smith notes that the assignment of independent beta priors may well
be unreasonable, but then he goes on to use them nonetheless due to the computational
simplicity they provide. Although I have no compelling reasons to suggest in their
support, two alternatives that may bear further examination are: (a) a Dirichlet for the
joint density of 6,/X%, 6,,j =1,2, ..., K; or (b) variants of generalized Dirichlets. The
major advantage to these densities (aside from the dependencies they introduce) is that
it can be represented as a product of independent betas for the random variables
t9,-/i)£j 6.. This property may be helpful in achieving the consistency properties
Ireferred to above.

Having revisited the land of exchangeable subsequences with you, 1 would
encourage you to take Smith’s complete guided tour for yourselves and choose your
own location for an extended visit and prolonged statistical investigation.

While Professor Harrison’s oral presentation of this paper can be viewed as
nothing short of a tour de force, after several readings of the written version of the
paper I am at a loss in my assessment of its contributions to Bayesian decision making.
Some of the mathematical aspects of the paper are very interesting, and the discussion
of expected loss functions with multiple minima seems quite novel. But there appears to
be a fundamental discontinuity in my appreciation and understanding of the paper, as I
go from the mathematical formulations to.their application. Let me elaborate.

In the initial results they describe, Harrison and Smith investigate decision
problems involving bounded utility functions, and they are interested in the behavior of
the expected loss, E[8,u], with respect to the belief distribution of future outcomes, ¢,
and where 6 is the decision, and u represents environmental variables expressible in
terms of the parameters of the distribution of ¢ and the loss function, L(6,¢,u). In
Section 3, they illustrate that, if the bounded loss function is a monotonically
increasing function of 6-¢ and the distribution of future outcomes is unimodal, then

-9
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E[6,u] may have two minima. The keys to this result are two: (1) a parameter, «, that
appears only in L, (2) monotonic behavior of the scores function over an interval linked
to kinks in L. When o takes on one set of values we get the first Bayes decision, and
when it takes a different set of values we get a different optimal decision. Despite the
fact that slight variations in o may lead to different decision, we must recognize that
different values of « do correspond to different loss functions, even though they have
the same general shape. If one-of the two Bayes decisions has smaller expected loss, the
decision maker, who after all determines his own loss function, might do well to alter
his value of « to achieve the minimum. If, as in the case of the exponential distribution
there is a value of « leading to an interval of Bayes decisions with the same expected
loss, it does not matter which & the decision maker chooses since the expected loss does
not change. Still, this basic result of Harrison and Smith is somewhat disquieting and
bears further examination.

Once we move to multimodal densities for beliefs and for multimodal loss
functions, it is not quite so surprising that the possibility of multiple Bayes decisions
exists. The main examples Harrison and Smith use to illustrate such situations involve
belief distributions which are mixtures of normals and loss functions which are
mixtures of Lindley’s conjugate normal loss functions. The simplest example here is
what the authors refer to as the E:[ﬁ] model, and involves just the normal distribution
with its conjugate loss function, where one of the parameters of the loss function, k,
increases with 6. That this situation leads to bifurcating Bayes behavior simply
heightens the latent suspicion I have long harboured regarding the appropriateness of
Lindley’s conjugate loss functions. Yet this result, like the earlier one, is somewhat
disquieting.

Up to this point my comments have been technical ones, and have focussed on the
mathematical developments described in the paper. The catastrophic discontinuity
comes when we turn to the ‘““‘applications’’ of this theory.

The first major application of the theory is via an E; model for prison riots. I have
been involved in a study of prison-related rehabilitation activities in the United States,
have visited with various corrections officials, and actually have spent a little time in a
major corrections facility. Thus, I was especially keen to see how a catastrophy-theory
like Bayes decision model could be use in ‘‘illuminating the dynamics of prison riots’’.

Now prisons are complex institutions, and to think that an accurate portrayal of
behavior in prisons can be made by looking at three crudely defined and artificially
interpreted variables seems naive at best. The model assumed by Harrison and Smith
involves a single normal belief distribution and a bimodal mixture of two conjugate loss
functions. Why did they pick such a model? We are told in such loose, heuristic, and
ambiguous terms that even the statistically uneducated reader might scream: Stop!
What I find even more distressing in the material presented is that we are shown no
attempts at model criticism or parameter estimation, the key features of statistical
inference when models are used as part of the scientific method (see the related
discussion of the role of models in the paper by George Box, given at this conference).
You may think from a reading of Section 7.2 that aspects of the requisite data analysis
(Bayesian or otherwise) are contained in the referenced papers of Zeeman, Hall,
Harrison, Marriage, and Shapland (1976, 1977) but this simply is not so. Although
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these papers do contain a more detailed description of the data plotted in Figure 7.2,
the motivation and justification for the model and the assessment of the adequacy of
the model’s fit to the data are attended to in a manner just as facile as in the present
paper. Even with such a loose approach as the authors choose to present, the model
shifts in midstream as a result of ‘‘a higher tolerance of tension in the institution after
the first mass protest’’!

Next we come to the interpretation of the E; model in prison disturbance context. I
would claim that all anyone can get out of the model ‘‘applied to the data’’ is what the
authors have put into it to begin with. The catastrophes in the prison behavior they
“‘account for’’ are really only a restatement of the fact that the model contains
discontinuities (see the related critique of applied catastrophe theory in the behavioral
sciences by Sussman and Zahler, 1978a, 1978b). The Bayesian Bloodhound referred to
in Section 7.3, after reading such a description of statistical modelling, would clearly
accept this torment no longer, and would visciously attack the authors until they
completed a more satisfactory job of analysis and modelling. All of this is not to say
that the E; model is inappropriate for the prison riot example (although I have my
suspicions). Rather I believe that the authors have not presented very effective evidence
in support of their claims.

Finally, to illustrate my concerns with the other major application described in
Section 8, I will give my own ‘‘application”’, henceforth to be known as: ‘‘Bayesians,
Luggage, and the Butterfly Catastrophe’’. The decision maker involved is a recently-
married Bayesian statistician who upon arrival at the Valencia Airport with his wife en
route to this Meeting discovers that theirNuggage has not arrived with them. The loss
function involved is much like the one in Section 8.2. There is (1) “‘pressure from
above’’ by his wife to stay at the airport until the luggage arrives, (2) ‘“‘pressure from
below’’ by all the other participants who are waiting for the statistician and his wife
aboard the bus that is to take them to the Meeting, (3) the statistician’s own criterion
and beliefs which fall somewhere in the middle. Since this structure is essentially the
same as in Section 8.2.1 it should be clear to all readers that we are faced with an
example of a butterfly catastrophe. The two conflicting extreme Bayesian decisions can
be translated into (1) staying overnight at a hotel near the airport waiting for the
luggage to arrive, and (2) immediate departure on the bus. The ‘‘middle course”’
decision is a little too complex to describe here (it involves a non-exponential waiting
time distribution with a heavy tail), but we hope to publish a detailed description at a
later time. Needless to say, the butterfly cross-section was very helpful in resolving the
conflict in this particular problem, as I will indicate quite shortly.

Does the mathematical phenomenon of a butterfly catastrophe follow from my
assumptions in a nontrivial way? Indeed, does it really follow at all? Or is this
implementation of the E; model simply the consequence of a vague specification, and
some hand-waving (perhaps I should say ‘‘wing-flapping’’)? For this example, I readily
admit to a contrived ‘‘application’’ of the models and descriptions in the Harrison and
Smith paper. I don’t believe the resulting butterfly catastrophe tells us anything of
practial value at all. Yet I find my own description not all that much different from that
of Section 8 of the Harrison and Smith paper. I believe the value of their models in real
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applications can only be judged by a more careful statistical treatment than the one we
are offered in this paper.

All in all, I found the Harrison and Smith paper both stimulating and highly
provocative. I look forward to seeing elaborations of their ideas in the future. Lest it
appear that I am finishing my comments on a note of dispair, let me note the ‘‘luggage
example’’ described above was factual, and that my use of it in this discussion did have
one practical consequence. The beleaguered statistician in question (who will remain
anonymous) did in fact decide to board the waiting bus and travel without his luggage
to the site of the Meeting in Las Fuentes. My description of his plight in the oral
presentation of this discussion inspired me to loan him, along with other apparel, my #-
shirt with the brilliantly-colored image of the famous Dunk Island (Australia) blue
butterfly on its chest. Never let it be said that Bayesian decision theory does not have its
useful applications!

J.M. BERNARDO (Universidad de Valencia):

The need for approximations in the problem discussed by Mr. Makov is fairly clear
to me. However, I would like to know more about the quality of the approximation he
proposes. For instance, one could try to estimate the expected distance, in some well
specified sense, between the exact Bayes posterior predictive distribution

{p(xneHi|x1!'--,xn)’ i= 17'--’kl

and its quasi-Bayes approximation. Moreover, since the true source of the x,’s is never
known it might happen that wrong allocations are piled up thus making convergence to
the correct allocation as new observations occur difficult, or perhaps impossible.

P.J. BROWN (Imperial College, London):

1 should like to amplify a point raised by Professor Fienberg concerning the
adequacy of the Dirichlet distribution. The problem with the Dirichlet is that it has a
very straightjacketed variance-covariance structure. Indeed it involves virtual
independence apart from correlations resulting from normalisation to unity. Elsewhere
Brown (1976), 1 have documented some unfortunate features of the Dirichlet prior. To
see that an unsupervised learning situation may have a rather different variance-
covariance structure consider the following example. There are K=3 populations
which are N(6,,1), i=1,2,3. Imagine the case where 6, and 6, are close together and
quite distant from 6,. Then unsupervised learning will quickly and accurately determine
7, and 7, + w5 but 7, and =, will be highly correlated together and will have a low
correlation with ,. In this situation the Dirichlet representation will not be able to
reflect these second order properties. Thus although Professor Makov’s scheme will
result in eventual convergence to x,, w, and w, it may be difficult to discern the
reliability of one’s estimates at any stage. Use of an approximating multivariate normal
distribution would get around this problem but would of course involve heavier
computation.
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A.P. DAWID (The City University, London):

I want to stress the need for care in setting up models of the kind that Makov has
been working with. I am sure these are appropriate for the engineering applications
with which he is concerned, but I am none too happy when I see them used in other
fields. In particular, I am extremely doubtful about their general suitability in the
setting of medical diagnosis, as in the work of Titterington and others.

In this context, the classes {H,} represent diseases, and the observation x
corresponds to medical symptoms: thus = may be thought of as describing the
prevalence of disease, and 6 the “‘clinical pictures’ of the diseases. My unease stems
from the seeming possibility, when using a mixture model as described, of obtaining
consistent estimates of the parameters. This mean that, if we collect a large enough
data-base of patients and record only their symptoms (never discovering what diseases
they are suffering from), we can nevertheless gain accurate knowledge of both disease
prevalences and clinical pictures. My possibly naive reaction to this remarkable state of
affairs is one of distrust: how can one learn about anything other than the marginal
distribution of symptoms from data such as these? If our model says that we can, it
may be a signal that we should discard the model.

It is easy to set up alternative models which behave more reasonably. Instead of
splitting up the joint distribution of disease D and symptoms S as fd,s|y) =
S| m)f(s|d, 8), as is normally done, decompose it instead as f{d,s|y) = fis|a)f(d|s,B).
(There are good practical reasons for regarding this as more meaningful in a diagnostic
context: see Dawid, 1976). We are just as much at liberty to make assumptions about
the new parameters («,8) as about (w,6). In particular, it does not seem unreasonable to
me to assume that « and 8 are, a priori, independent. If so, it is easy to show that
observation of patients’ symptoms alone will modify the distribution of «, but leave
that of 8 unchanged. Now for purposes of diagnosis (prediction of D from S) only 3 is
relevant: consequently (and, I consider, quite reasonably) such a data-bank is entirely
valueless.

A simple example may make my point. Suppose D takes only two values, d, and
dy, and likewise S takes values s, or s,. Let 7, = P(D = d)), 0, = P(S=s;|D=d)), and
suppose that = and 6 are a priori independent, with 7, ~ 8(a,.,a;.), 61, ~ 8(@11,812)s 021 ~
B(ay,a;;) all independently (where a,. =a;;+a;;). This is an example of Case C of
Makov’s classification, although it does not satisfy the condition that mixtures should
be identifiable. In fact, for this model, a data-bank of unconfirmed cases is quite
useless for diagnosis. For, letting o, =P(S=s)(=m0,+7182), B, = P(D=d;|S=s,)
(=0,m./a,), we have P(d,s|y) = P(s|ca) P(d]s,8), where it is easily found that « and 3
are a priori independent, with, in fact, oa;NG(a.1,a.5), 81;°3(a11,821) B12™3(a13,a55), all
independently. So the considerations of the last paragraph apply.

The moral of all this is that, when we choose a particular mathematical model to
represent a real-world process, and make seemingly harmless assumptions (such as
‘‘identifiability of mixtures’’), we must be careful that any deductions we make are
““‘qualitatively stable’’ in the sense that similar conclusions would be derived from other
reasonable ways of modelling the process. (The term ‘reasonable’’ here depends, of
course, on the particular application).

Much as I appreciate Makov’s contributions to signal detection, I fear that his
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models may come to be used all too uncritically in other applications, for which they
fail to be qualitatively stable.

J.M. DICKEY (University College of Wales):

A comment may be of some interest here relative to Professor Smith’s paper and
other papers in this conference in which an inference is made between nested sampling
models. The Bayes factor, or ratio of posterior odds to prior odds in favour of one
sampling model versus another, depends on each prior distribution conditional on a
model. But what prior distributions should one use and how should they be related?
The obvious answer is, of course, that pair of tractable distributions which most closely
models actual prior uncertainty conditional on each of the models. Savage’s condition
continuity offers a reasonable guide to such a choice (Dickey and Lientz 1970, Gunel
and Dickey 1974). This requires that the prior distribution within the smaller nested
model be identical to the conditional distribution induced in the usual way from the
joint prior distribution in the larger model. (In this case, the Bayes factor will equal
Savage’s density ratio, the ratio of posterior to prior densities of the conditioning
constraint parameter at the null value).

To see that Professor Smith’s choices do not satisfy condition continuity, consider
the joint density of the regression coefficient # and the variance ¢2. The pair (#,0%) are
dependent under the larger model; the smaller model is obtained by a constraint on 6;
hence one will not satisfy condition continuity by having the prior distributions of o2
identical under the two models. Professor Smith takes them identical. On the other
hand, my own papers on Bayes factors for the normal linear model use condition
continuity (Dickey 1971, eq. (5.40), 1974 Prop. 4.2).

Note that by the Borel-Kolmogorov nonuniqueness mentioned in my discussion to
Professor Hill’s paper in these Proceedings, the answer in each case to the question of
whether condition continuity is satisfied will depend on the choice of conditioning
constraint variable in terms of which the question is framed. If it is not satisfied for a
given pair of distributions for one choice of conditioning variable, perhaps it will be for
another choice of conditioning variable. (The same smaller model can often be defined
by various essentially different constraints in the larger model). In fact, we shall see this
happen for the generalizations of Jeffreys’ Bayes factors to be presented later in these
Proceedings by Professor Zellner. If the new parameter is used, n = 079, and if 4 is
independent of o, the condition on  will not have an effect on the distribution of o.

A theorem can even be stated showing that an arbirtrary given distribution in the
smaller model can be obtained by condition continuity from the larger model by
suitable choice of conditioning variable. This then would seem to make condition
continuity a mathematically vacuous requirement. However, I should like to point out
that in practice there are often natural conditioning variables y, that is, variables for
which one would like to define the smaller model as the consequence of additional
information of the form, ‘‘y lies in some small hyperinterval centred at the point »,”.
This is often the case when the overall mixed type distribution, having positive prior
probability attached to the smaller model, is intended as an approximation to a
continuous density on the full parameter space with a high mound or ridge over a
neighborhood surrounding the constraint set.
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In practice, one must be careful to model real uncertainty, and not let the
mathematics do one’s thinking for one. Professor Smith very wisely took his prior
parameters in the binomial Lindisfarne scribe problem so that the uncertainty
concerning a single scribe alone was the same as the uncertainty concerning the first
scribe among many scribes, instead of the same as if he had been told the many were
one. If he had used condition continuity based on any linear conditioning variable,
such asn = (0; - 0y, ..., Ok - 6, then the conditional distribution of 8, given n = 0
would have been beta with parameters a; + .... + axq-Kand 8; + ... + Bxq-K. For
a; < land B, < 1,i =1, ..., K+1, and K large, this distribution of 6, would have had
a small variance, instead of the same variance as 8, under the larger model. That is, if
one were told that only one scribe was involved, one’s opinion would have been less
vague than one’s opinion concerning the first scribe of many. Of course, if o; <1 and
B:<1 for all i, then the conditional opinion would have been more, rather than less
vague than the unconditional opinion. In fact, for small enough (positive) «; and 8, the
conditional distribution would have been degenerate, even though the joint distribution
was proper. (1 am greteful to Professor P.R. Freeman and Professor A.P. Dawid for
personal discussions on this example).

J.B. KADANE (Carnegie-Mellon University):

The assignment of prior distributions under the different models is a very sensitive
matter for model selection. There is no particular justification for the independent beta
prior of equation (6), for example. Allowing dependent priors can change the answers
in the direction of more scribes, and in fact, can in principle suggest up to 13 scribes.
Thus Smith’s conclusion that there were probably 3 scribes is heavily dependent on the
“‘perhaps unsatisfactory’’ assumption (6). The same type of comment applies to the

" ARMA regression and examples. I welcome, however, the interesting applied problems
in this paper, especially the Kidney transplant data.

A more decision-theoretic, and I believe more satisfying approach is developed by
Lindley (1968) and continued by Kadane and Dickey (1980).

T. LEONARD (University of Warwick):

I think that Professor Smith’s approach to change-point inference is very useful
and interesting, but I wonder whether he might be over specialising his model simply to
facilitate a particular type of conclusion? It would seem to be more natural to assume a
Kalman-type model permittting different process levels at each time-stage (e.g. the
Harrison-Stevens steady model). A whole range of posterior conclusions could then be
reached to suit the practical situation at hand. In particular, we could find the restricted
Bayes estimates, for the process levels, amongst a suitable class of step functions, thus
providing a very simple way of detecting change-points. Further restricted Bayes
procedures would cope with the more complicated situations discussed by Professor
Smith. This seems to me to provide a conceptually and technically simple way of coping
with change-points, and avoids choosing an unduly complex model simply to cope
with a single very special type of posterior conclusion. These aspects have been
discussed by Leonard (1978).
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REPLY TO THE DISCUSSION

U.E. MAKOY (Chelsea College, London):

I wish to thank our discussants for their interesting questions and comments and
make the following points:

1.- The choice of a Dirichlet prior in case A was made simply to exploit the
conjugacy property. As described in the paper, neither the ‘unfortunate properties of
the Dirichlet prior’ nor the possible inadequacy of approximating a mixture of
Dirichlets by a single Dirichlet affect the desirable assymptotic properties of the QB
procedure. However, these inadequacies are bound to affect the small sample
properties of the procedure and I suspect that in acute situations, like the one suggested
by Dr. Brown, the QB might be painfully slow.

One possible remedy, which was tried numerically,. is to approximate a mixture of
size n by a mixture of size k£, k¥ < n. In Makov (1978) the mixture of Dirichlets is
allowed to grow so long as is computationally possible (rather than collapsing the
mixture after each observation). Thereafter, the mixture build-up can be restarted. In
Makov (1978), the mixture, once collapsed, was replaced by a single Dirichlet and no
further growth was allowed. In Smith and Makov (1980), in the context of case B, the
approximating mixture consists of Gaussian p.d.f’s. Here, in the case of detection and
estimation of jumps in linear systems, the combined quality of the detector/estimator is
considerably improved when the number of terms in the approximating density is
increased.

2.- The QB procedure is not invariant to the order of the observations, an
undesirable property in small samples. One possible solution is to take the observations
in batches, where each batch is processed coherently (Bayes) and then approximated by
a QB procedure. (In Smith and Makov (1980) batches of 2 and 4 observations were
used). Another possibility is to choose two (or more) possible sequences (the most likely
in some sense) and then to average the QB estimators for these sequences.

3.- The consistency of the QB recursion (when so proved), as opposed to the
possible asymptotic bias of the DD and PT, is inherited in the mathematical structure
of the recursion and is invariant to the choice of prior. According to Stochastic-
Approximation theory, certain properties of the regression E{x-w,} (see (18) above) are
required for consistency. The analysis of such regressions shows that consistency is not
affected by the choice of priors but by the degree of overlap between the densities of the
corresponding classes. While the QB remains consistent for any degree of overlap
(though its rate of convergence is affected), the other methods are consistent only for
overlaps below a certain threshhold (or signal-to-noise ratio larger than some value).
This also explains why the QB is asymptotically immune to initial errors (or wrong
allocations).

4.- The only QB qualities investigated were asymptotic unbiasness and relative
efficiency. We have no ‘distance measure’ to compare the QB with the coherent Bayes
procedure.

5.- Prof. Dawid expresses doubts about the possibility of obtaining consistent
estimator for both the ‘clinical picture’ and ‘prevalences of disease’. His reaction
cannot be contradicted as no proof of such consistency exists for case C, to which he
refers. As for case A, and several models in case B, such consistency is proved on the
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basis of identifiability. When this assumption cannot be made, the QB should not be
adopted, nor should any other procedure which is based on an inappropriate model!

There are, however, cases in the medical context where the assumption of
identifiability is acceptable. For instance (see Hermans and Habbema (1975)), in the
diagnosis of Haemophilia carriership the identifiable mixture consists of two bivariate
normal densities whose means and covariances are estimated from the data, while the
mixing parameters are established through genetical considerations. Though the QB
may prove to be consistent for this problem, I have my own reservations about the
adequacy of its use (and indeed of the exploitation of uncorfirmed cases as a whole) in
the case of small samples. (See Makov (1980) for further details).

I am not at all sure how qualitatively stable is the choice of linear discriminant
function in medical diagnosis. However, in recent papers*, (O’Neill, 1978;
Ganesalingam and McLachlan, 1978), it is shown that the ratio of the relevant
(asymptotic) information contained in unclassified observation to that of classified
observation is quite considerable for a statistically interesting range of separation of the
populations. In Ganesalingam and Mclachlan (1979), simulation studies of small
misclassified samples produced satisfactory results.

A.FE.M. SMITH (University of Nottingham):

The points which have concerned the discussants of my paper also concern me.

(i) I agree with Professor Kadane that model selection criteria should really be
derived using an appropriate loss or utility framework. My current work on these
problems is now proceeding along decision-theoretic lines.

(ii) While the consistency properties mentioned by Professor Feinberg might seem
appealing at first sight, it is not clear to me that they would be implied by all
specifications of priors: I have not succeeded (yet) in sorting out precisely when they
would hold.

(iii) The general points raised by Professor Dickey concerning ‘condition
continuity”’ are very interesting and have been well-aired at this conference. As he
himself admits, however, there is often considerable arbitrariness in the way in which a
smaller model is derived from a larger by conditioning and this leaves us with the
problem of providing a rationale for any particular choice. Dickey is, of course, correct
in noting that my regression specification violates condition continuity, but 1 am also
using the improper form p(o) « o~ and suspect that when this pragmatic approximation
doesn’t make me feel too uncomfortable neither will I feel too bad about the other.

(iv) Dr. Leonard may well be correct in suggesting that other formulations of the
change-point problem could lead to simpler ways of detecting change; I look forward
to seeing further details.

* ] am indebted to Dr. D.M. Titterington for these references.
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P.J. HARRISON (Warwick University):

We wish to thank Professor Fienberg for his amusing comments and hope to
clarify some of the points which seem to have been misunderstood. We shall begin by
dealing with the theoretical points.

(1) It is not the kinks in our loss function L which generate the pertinent
discontinuities. Smooth loss functions with no jumps can exhibit the same kind of
discontinuous trajectory of the corresponding Bayes decision. It is simply easiest to
illustrate this behaviour by using a double step loss function which just happens to be
discontinuous.

(ii) Although different values of « give different loss functions it should be noted
that any loss function combines a utility with a function representing quantifiable loss
(see DeGroot, 1970). It would be a brave man who would suggest that he knew this
utility function precisely or, indeed, that it did not change with the decision-maker’s
environment. However, we have shown that slightly different utilities can give rise to
extremely different Bayes decisions even when the posterior density is from a smooth
and well-known family.

(iii) We hold that bounded loss functions should always be used in a Bayesian
analysis. The discontinuities we discuss here cannot be considere a fault of using the
normal conjugate loss function. Indeed, if we use quadratic loss, for example, then the
corresponding expected loss function does not represent the decision-maker’s dilemma
when he is faced with a very bimodal posterior density. This indicates to us that this
form of analysis must be lacking in some fundamental way. Under practical
considerations bounded loss is a necessity due to the boundedness of the resources of
the decision-maker. Theoretically the use of unbounded loss L(5-8) can give rise to
some very awkward paradoxes. For example if L(6-0) is convex then it is easily shown
that the corresponding Bayes decisions always depend solely on the comparative
steepness at T oo of the two tails of a posterior density on the real line (see Kadane and
Chuang, 1978). We must therefore reconcile ourselves to the fact that under any
sensible analysis it is possible to get these sudden changes in decision.

We shall now reply to the discussion about some of the examples that we
presented. Obviously in the time and space available we were only able to give the bare
bones of the structure of the analysis of what are vast macro-models. A little more
detail will be presented in Smith, Harrison and Zeeman (1979) and Smith ( 1980) has
developed the ideas given in Zeeman et al (1974). Because of this lack of space we
considered it most important to indicate how discontinuous phenomena can be
analysed in a Bayesian way so that the underlying discontinuities of the system are not
obliterated by our model. It is obvious, but not always realised, that before we can
criticize a statistical model we must choose one. Either we acknowledge the absence of
developed theory, and construct our own model, or we undertake the often very
difficult task of translating a theoretical model (e.g. chemical or psychological) into an
appropriate statistical one. For the prison riot case study we had to translate the
theories of Konrad Lorentz first into a mathematical and then a Bayesian model. This
translation was informative in itself, necessitating, for example, the use of bounded
loss structures in our description. Since Lorentz’s model is qualitative it generates a
class of statistical models containing posterior densities and loss functions
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geometrically ‘‘similar’’ to the normal and double conjugate respectively. Any sensibly
parametrised model in this class will give the same kind of ‘geometry to the data. We
worked with the normal and its conjugate solely for computational ease. Professor
Fienberg’s contention that the reader can get nothing out of the model other than the
data is quite untrue since the model is now in a statistical form and therefore the
parameters can be estimated. These estimates together with other information can be
combined by any self-respecting Bayesian to give predictive distributions for the
outbreaks of violence as functions of ‘Alienation’’ and ‘‘Tension”’. These are in fact
being used in some British institutions. However this methodology, being long and
technically dull, would have been out of place amongst the contributions presented at
Valencia.

It seems very common, in forecasting and other fields, for a statistician to
construct a model with no regard to the dynamics of the underlying process and just
““fitting’’ it. Consequently the practitioner has little information communicated to him
other than a short term forecast which he probably could have achieved by eye anyway.
We sincerely hope that Professor Fienberg is not proposing this as the ideal (and only)
function of a statistician. Although we enjoyed the paper presented by Professor Box
at this conference, we felt that he might have emphasized the importance of picking a
sensible class of models to begin with. Unfortunately it seems likely that his paper may
be used by some statisticians as an excuse to avoid essential thought.
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