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SUMMARY

Problems of making inferences about abrupt changes in the mechanism underlying a
sequence of observations are considered in both retrospective and on-line contexts.
Among the topics considered are the Lindisfarne scribes problem; switching straight lines;
manoeuvering targets, and shifts of level or slope in linear time series models. Summary
analyses of data obtained in studies of schizophrenic and kidney transplant patients are
presented.

Keywords: CHANGE-POINT; SWITCHING STRAIGHT LINES; BAYES FACTOR; KALMAN FIL-
TER.

1. INTRODUCTION
In the simplest possible case, a sequence of random quantities yy,...,y, is
said to have a change-point at r (1 < r < n) if ¥y,...,y, and ¥,.,...,¥, are
exchangeable subsequences, but the combined sequence is not exchangeable.
Assuming the usual mixture representation of exchangeable sequences, the
most frequently used model of a change-point at 7 can be written in terms of
densities as :

P Oyl M) = S S Ty po(¥:[69) H'i'=r+1pz(y."02)ﬂ (61,0)d0,db,, 8y

where M, denotes the model which assumes a change-point at r, and
p(¥|8) # p(v)0,), p (6,,8,) have obvious interpretations. It is convenient to
denote by M, the model which assumes the entire sequence exchangeable and
defines

p ()’i,---,yrn|Mo) = S §H:=1P1(Yi191)P (6,,0,)d6,d0,. 2
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With such a formulation, inference about change-points, given y; = y,,...,V»
= y,, reduces to consideration of the set of alternative models M,, M,,...,
M, ;. These may be conveniently compared pairwise using Bayes factors -
ratios of posterior to prior odds - so that, as is easily seen from Bayes
theorem,
Bij= p(.yl’---:y"|M-‘) , (3)
P (G1y--5¥a | M)

the required densities being obtained from (1) and (2). A detailed study of this
approach for univariate sequences and a variety of standard parametric
distributions is given in Smith (1975). In Section 2 of this paper, we shall
outline the extension to more than one possible change-point and illustrate the
approach by applying it to the Lindisfarne Scribes problem (Ross, 1950).

In the more general setting of changes in structure of a regression or time
series model, the simple characterization in terms of exchangeable
subsequences no longer applies, but, provided we specify the model, M,
corresponding to a change at r, we can use (3) directly to compare alternative
models. This approach will be presented for regression models in Section 3
and a possible extension to linear time series models will be outlined in Section
4. Also in Section 3, we shall comment briefly on special problems of interest
that arise in the case of switching straight lines.

The analysis in Sections 2-4 concentrates on retrospective analysis. In
Section 5, we shall consider an alternative linear model formulation, in terms
of Kalman filters (FHarrison and Stevens, 1976), that seems more suited to on-
line detection of changes.

2. BINOMIAL DATA: THE LINDISFARNE SCRIBES PROBLEM

The Lindisfarne Scribes problem (Ross, 1950; Silvey, 1958) is of the type
described at the beginning of Section 1, but admitting more than one possible
change-point. A text divides into 7 sections, and it is assumed that only one
scribe was involved in the writing of any one section, and that sections written
by any one scribe are consecutive. We wish to infer how often, and where,
changes of scribe occurred. The analysis is to be based on the frequency of
occurrence of a certain word which has just two alternative forms. A version
of some of the data, taken from Ross (1950), is set out in Table 1.
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TABLE 1

Number of occurrences of present indicative 3rd. singular endings s and & for
different sections of Lindisfarne

Section

1 2 3 4 5 6 7 8 9 10 11 12 13
s...12.26 31 24 28 34 39 46 41 19 17 17 16
6...9 10 13 6 24 11 9 11 7 3 3 4 4

Total... 21 36 44 30 52 45 48 57 48 22 20 21 20

The assumption is made that a scribe is characterized by the propensity
with which, when using the present indicative third person singular, he adopts
one or other of the two variants. We thus arrive at an example of a change-
point problem, with many possible changes, where it might be reasonable to
assume underlying binomial distributions.

If M (rq,...,rx) is the model which assumes K changes of scribe, with
change-points ry,...,ry, then if 6,,...,0., denote the propensities of the
assumed K + 1 scribes, and m,,y,, i = 1,...,n, the numbers of word uses and é-
variant uses, respectively, in each of the n sections, we have

n ml'
p D’l,...,y,.‘M(rl,...,I'K)] = H ,'=1<y ) X
' )
feee [ T1567 (1-0)) p Bys....00)db1s..., 011,

where

§; = S(ria+t L) =y, mt...+Y,
&)
Ji =+ L) =m, g+ .. +m s+ 1,r).

There are, of course, no general prescriptions for the choice of
D (04,...,0x+4). In some change-point contexts, for example in reliability
studies, one might expect monotonic relationships to hold (Smith, 1977), but
for the purpose of this illustration we shall simply consider the (perhaps
unreasonable) assignment of independent beta prior densities, so that

P Oy = 120571 (18)°7 / B(a,8), ©)
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where B (.,.) denotes the usual beta function. Substituting (6) in (4), the
required integration is immediate, and it is easily seen, for example, that

B(a1+5(1,ﬂ),61+f(1,n))/

Bo,(rl,...,rk) =
B(alsBl)

)

1 B(o, +5(riq+ 1,1),8,+ f(r; 1+ 1,1))
1
B(a,-,ﬁ,—)

K+
%2

For the particular choice kK = 1, oy = a, = 8; = 8, = 1, and converting
(7) into posterior probabilities on My, Mj,...,M5 (taking prior probability 2
on M,, 1/26 on the others) we obtain the results shown in Table 2.

TABLE 2
Posterior probabilities assuming at most one change-point

MO Ml MZ M3 M4 MSMG M7 MS M9M10M11M12M13
- - - - 50.41.07.02 - - - - - -

If we go on to consider k=2, «,=8;=1, i=1,2,3, and
Pr(k =0) = Pr(k =1) = Pr(k = 2) = 1/3, with equal prior probabilities
on all thirteen models, given that ¥ = 1, and on all seventy-cight models,
given that K = 2, we obtain the results shown in Tables 3 and 4.

TABLE 3
Posterior probabilities of up to two changes

no change one change two changes
0.00002 0.06856 0.93142
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TABLE 4

Posterior probabilities of selected pairs of change-points

5 6 7 8 9 10
1 .029 .029 - - - -
2 .027 - - - - -
3 .037 .026 - - - -
4 287 .049 - - - -
5 - .042 .043 .048 .029 .029

The analysis so far would appear to indicate strongly that there was a
change of scribe after section 4 and again after section 5. In fact, further
analysis suggests that there is no strong evidence for further changes. As an
example, we note that the Bayes factor for M (4,5) against M (4,5,6) is given,
from (7), by

<45)<236>

46.237 \11\ 41

'~ 3.29 ®)

282 (281)
52

Bo,<4,5,s) /Bo,(4,5) =

This is, of course, the same result as is obtained by taking sections 6-13 and
testing for a change after section 6.

Finally, we note in passing that the calculations required in (7) can be
greatly simplified by applying Stirling’s approximation. For example, if we
have K = 1 and define s,,5;, f1, f2 by (5), then (7) has the form

By, = _SHATDEAD (76179 o
(n+1) <s1:1_s2>

which can be shown to be well approximated by

B _[”(51+f1)(52+f2)
0,ry —

2w(sy+s2) (i +f2)

1/2
] exp {-1/2 x%}, (10)

where
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v n (s1./7-52/1)?

= 1D
(51+ D2+ /)51 + )1 +12)

the latter being the usual y2-statistic for testing the equality of the underlying
propensities of two independent binomial samples. For (8), the approximation
(10) gives 3.37.

At least in the case of a single change-point, the above approach has
many points of contact with the Bayesian significance testing approaches of
Jeffreys (1961) and Dickey and Lientz (1970).

3. CHANGE IN A REGRESSION RELATIONSHIP
We shall consider the problem of investigating the stability over time of
the regression model

Vi =xI8W +&, t=1,...,n, (12)

where at time, ¢, y, is the observation on the dependent variable, x, is the
column vector of observations on p regressor variables (including, possibly, a
constant), 8¢ is the column vector of unknown regression coefficients and &,
is the error term, assumed normally distributed with mean zero and variance
o2,

In this section, we shall work with independent, homoscedastic errors
and non-stochastic regressor variables. In the next section, we shall show how
to extend the approach to cover more general situations.

The regression structure defined by (12) will be said to have a change-

pointatr (1< r < n)if
Y = ... =8"=8,8"=_..=80"=8+39$

with unknown 6 £ 0. We shall denote this model by M,. The model of no
change, & = 0, will be denoted by M,

If we adopt the notation,

yi= (}7;9"-,9:), 377(-"—") = (§:+1’---sﬁ),

X7 = (X1y.,%,)s Xbnory = (Xrige-r%0),

we see that model M, (1 < r < n) can be written in the form
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Yy~ N(AG,0%L.), (13)

where ¥ = ¥,, L. is the n x n identity matrix and

A = , 0 = (14)
X(n-r) X(n—r) b

In the case of M, (13) still holds, but with Ay, = X,,, 0 = §.

Again, inference about the change-point (is there one? and, if so, where?)
reduces to consideration of the possible models M,. To calculate (3) in this
case, we require

P IM) = [..[p(¥|A. 0, o) p (6, 0|A) dbdo, (15)

and thus need to specify p (8,0]|A,). This specification, and its relation to the
whole question of significance tests and choice procedures among alternative
linear models has been discussed at some length in the literature. A recent
discussion is given by Smith and Spiegelhalter (1980).

In this paper, we shall examine the consequences of the specification,
p (0,0|A) =p (@]|A,0)p (0), (16)

where p (¢6) « ¢, and p (0| A.,0) cotresponds, for 1 < r < n, to a normal
distribution with mean 6, and covariance matrix o2V, where

Vm 0 ﬁ()
Vo = » 0o = ; 17
0 Vg, 8o

in the case of M, we simply have V, = Vg, 0 = 3.

With this prior specification, it is easily verified that, performing the
integration with respect to 6 in (15), p (y| M.,0) is equal to

(27‘.0-2)41/2 IV0| -1/2 | V0-1+A’7“Arl -1/2
exp{-(1/269[R, + (6-00)7(Vo + (AA,) )1 (B-6p)1), (18)
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A
where 6 denotes the usual least-squares estimate of #, and R, the
corresponding residual sum of squares.

If V3! may be considered small in relation to A’A,, (18) may be simplified
somewhat to give

D (Y| M,,0) = Quo?)™?| V| 12| V| V2| ATA, | V2 exp{-R./20%}, (19)
and
P (y|My0) = 2ro?) 2| Vs | V2| AfAg| V2 exp {-Ry/20%}. (20)

Noting that |A7A,| = |XX,| |X{...,X (... |, the Bayes factor for M, against
M., conditioned on known o, is seen to be,

Voo | | XX | | XTor X o [V
| XIX,.|

By = ’ exp{-(1/20®)(RyR.)}. 21

Integrating (19) and (20) with respect to the assumed form for p (o), we obtain
the unconditional Bayes factor

A\’ XX, | 1 XY X ey | V12 -n/2
B, = | 06| | | i (n-r)ad ( )D é + p F. / ’ 22)
[XTX.| (n-2p)

where F, = [(RyR,)/p V/[R./(n-2p )] is the usual F-statistic for testing M,
versus M,.

In the special case of a univariate normal distribution with prior variance
A\o? for 6, the Bayes factor (22) reduces to

B, = )\r(n-r)\{’z1 LB )'"’2 23)
n / n-2

where ¢, is the two-sample 7-test statistic corresponding to the samples y,,...,y,
and Y,.,...,¥.. The form (23) is similar to that derived for the two-sample
problem by Jeffreys (1961, see comments following (13) of Section 5.41).
Application of (22) to the case of switching straight-lines has been made
by Smith and Cook (1980). In this case, if 6,, §, are the components of §
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representing possible changes in intercept and slope, respectively, then the
parameter of interest is often vy = -8,/6,, the intersection point between the
two straight-lines. Two cases are possible, according as a change at r
necessarily implies x, < vy <x.,.;, or not, where x; < x, <...< x, denote the
(time) ordered x-values. In the unconstrained case, we need to calculate

p(y|y) = Zp(y|r,)p(r|y),

the latter term being calculated using an appropriate transformation. In the
constrained case, denoted by ¢, say, we require

p (y|ay) = Z.p (c|v.r,y)p (v,r|y)/p (c|¥), (24)
where .
1 ’yE (xr’xn
P(c|v,ny) =¢ if
0 YE (XrXosp)
and

pcly) = Z {{ o €lvryp Glrnlp ¢y = . {p (uriydy.

Similarly, we can obtain

P rley) = [ (ror|pav/E. (7 Grr [ 9)dy. 25)

These results were applied in Smith and Cook (1980) to data from kidney
transplant patients, with the object ‘of inferring the time of rejection of
transplanted kidneys. It is thought that the constrained switching straight-line
model provides a good model of the behaviour of reciprocal body-weight
corrected serum-creatinine over the days following a transplant. Table 5
summarizes the data from a particular patient and the result from (25) when
large prior variances are attached to the straight-line parameters and all
change points are equally likely. The posterior density for vy given by (24) is
symmetric and sharply peaked, with a mode at 4.15 and an approximate 95%
credible interval is given by (3.71,4.59).
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TABLE 5

Renal transplant data and posterior probabilities for r

r 1 2 3 4 5 6 7 8
y. 484 583 623 731 683 553 491  43.9
plrlc,yy —  .012 316 .657 .012 .003 — —

Retrospective studies of this kind are proving valuable in identifying
patterns in the time to rejection of transplants and seem to have removed a
great deal of the arbitrariness arising from doctors’ attempts to ‘‘eyeball’’ the
data. On-line analysis of this kind of data will be considered in Section 5.

Related material on switching straight lines can be found in Ferreira
(1975).

4, SHIFT OF LEVEL IN AN ARMA PROCESS

In order to illustrate a reasonably straightforward extension of the
approach of Section 3 to cover more general linear time series models, we shall
consider the problem of investigating a shift in level of an ARMA (1,1)
process. The material in this and the previous section is a direct development
of some preliminary ideas given in Smith (1976).

We shall consider the following representation of a stationary ARMA
(1,1) process with unknown mean level A\, and a shift in mean level of
unknown magnitude é occurring between the r* and (r+ 1)"* observations,
where r is unknown, Let

=N+ 8
L=N+8&+ ()Lt E. =2, (26)
Z=AN+0+&+ (T a0 8., t=r+l,.,n
with A, 6, g, ¢ and r unknown, |g| <1, |¢| < 1 and & independently and
normally distributed with mean 0 and variance o?, with ¢2 unknown.

In order to utilize the development of Section 3, we make, conditional on
¢ and g, the transformations

}7; = Z.I, )7; = ZT' (Q'd)) E:;: d)s_l i;—:, t = 2,...,". (27)

It is then easily seen that the vector y* = (y,,...,y.) satisfies (13), where,
forr £ 0,
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a,...a, Arrye. N
Al =Al(e.9) = 0 = < , o (28)
0..0 a...a..;/ )

witha; = 1, a, = 1 - (¢-9) E;;iqb-“, t = 2,...,n If r = 0, the “no-change”’
model, then § = \ and A consists of just the first row of the matrix in (28).

By considering appropriate limits corresponding to ¢ = 1, ¢ = O and ¢
= (0, respectively, the above framework can be used to study the special cases
of IMA(1), AR(1) and MA(1) models. Related material can be found in Box
and Tiao (1965) and Smith (1976). '

Noting that the Jacobian of the transformation from z to y is unity, and
denoting by p (M,,e,9) a prior specification for M,, ¢ and ¢, we see from the
results of Section 3 that p (M.,,g,¢ | ) is proportional to

(V)\ Vé)llz l Arl—- (Q ,¢)Ar(Q ’(b) | -2 (Rr(e !d’))_"/z p (MraQ 9d)), (29)

where Vio%, V;o? are the prior variances (conditional on o) for A and 6, and
R.(o,¢) denotes the residual sum of squares from a least squares fit of M,,
given g and ¢.

The matrix whose determinant is to be evaluated in (29) has elements
&+ ... +a%and a3+ ... + 42, on the diagonal, and a,a,.,+ ... +a,., a,as off-
diagonal entries. The determinant and inverse are thus easily calculated.

Assignment of the prior probabilities for M,,¢ and ¢ depends, of course,
on the situation under study. In any case, it seems that perfectly adequate
results can be obtained by the crude form of numerical integration resulting
from a suitable discretization of the ranges of p and ¢, so that calculation of
marginal posterior probabilities are simply obtained from (29) by summation
over the remaining variables. Inferences about \, &6 or o?, or predictive
distributions for future observations, are obtained by forming weighted
averages, with weights given by p (M, |z), of the standard results obtained by
conditioning on a particular model M,.

The procedure outlined above has been applied to a series of daily
measurements of the time (in seconds) taken by an individual performing a
certain psychological test repeated on 33 successive days. The data are
presented in Table 6.
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TABLE 6

Psychological test data

4.09 3.52 3.72 4.43 3.97 3.85 3.65 3.31 3.55 3.47 4.32
3.77 3.77 3.90 4.05 3.97 3.64 4.28 3.83 3.91 3.44 3.77
3.40 3.29 3.21 2.95 3.13 2.97 3.25 2.95 4.18 3.65 3.03

The individual has already passed through a ‘‘learning’’ phase on this test and
it is believed that the observations would follow a stationary process, except
that during this period of 33 days there has been a switch in background
treatment regime. It is thought that this could have the effect of causing a
sudden shift in performance level. The data were originally given to us with no
information about where the change in treatment regime occurred. In fact, the
change occurred between the 20th and 21st days.

Preliminary exploration of similar, unchanged, sequences of
observations suggested that either an ARMA(1,1) or an AR(1) model might be
suitable, and two corresponding analyses of the data were made. The first
analysis assumed an ARMA (1,1) model with uniform priors over the range of
r, the range of @ from -0.95 to 0.95 and ¢ between 0.000 and 0.95, the latter
two in steps of 0.05. The second analysis considered an AR(1) model with a
uniform prior for g over the range -0.95 to 0.95. A summary of the results
obtained are given in Table 7. No specification for V, is required, and V; is
taken equal to 3.

TABLE7

Summary inferences from the psychological test data

Posterior
Summary ARMA(,1) AR()
mean 21 21
r mode 22 22
median 22 22
o mode - 0.17
g joint 0.17 -
¢ mode 0.00 -
A mean 3.83 3.83

6 mean -0.53 -0.52
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5. ON-LINE DETECTION OF CHANGE

Detailed description of the use of a set of alternative Kalman filter
models has been given by Harrison and Stevens (1976) in the context of
adaptive Bayesian forecasting procedures, and by Smith and Makov (1980) in
the context of jump detection and estimation in linear systems, as required,
for example, in the tracking of manoeuvering targets.

A general formulation allowing for sudden perturbations in either or
both of the system and observation equations is given by representing model
M., at time ¢, by

0: = Gv—lox-l + B“)(Ao)r + Ht—l (60)\‘! (30)
y. = Ff: + C (Ay). + (0y),, €3]

where (Ad),, (Ay). represent possible abrupt changes in either the system or
the measurement at time ¢, B¢, C*9 define the specific nature of these changes
according to model M;, and (66)., (8y). are the usual Gaussian ‘“noise’’ inputs
to the system and measurement equations. The matrices ¥, G, H define the
general characteristics of the system.

In the case of manoeuvering targets, 6, represents position and velocity
components in some chosen frame of reference and y, usually consists of
observed position components. If (A§), consists of a finite set of plausible
manoeuvres available at time #, models corresponding to particular choices of
manoeuvre are defined by appropriate choices of B!’ (assuming here that C*"
= 0).

In the case of the very useful univariate Linear Growth model (Harrison
and Stevens, 1976, 3.4), the case of no abrupt change is modelled by

Ye = e t+ (6}’).
B = fleg T ﬂ: + (6#):
Bt 2,6:-1 + (66)n

which can be represented in terms of (30) and (31) by
e U1\ [ e 11 (6p):
8. 0 1 B4 01 68),

e
y=00 0) + (6y ).
<B> (6y)

t
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with B¢ = C% = @. If we define this no change model to be M,, and define
Mla M29 M3: by

1 0 0 0
B = , B® = , B® =0,
0 0 0 1

Cc = 0 , C? = 0 , c® =1,

we can represent ‘‘sudden change in level”’, ““sudden change in slope’ and
“‘outlying observation”’, respectively, as well as ‘‘no change’’.

The recursive updating of the system, given a choice of M; at time ¢,
proceeds straightforwardly using the standard Kalman filter equations.
Posterior weights on the individual models are also easily obtained using the
appropriate modification of (3). In fact, of course, there is the problem of
expanding mixture forms of posterior distribution, resulting from the
unsupervised learning context, and practical use of this approach requires
approximation of this mixture, at each stage, by a simple Gaussian
distribution having the same mean and covariance structure as the mixture:
see Harrison and Stevens (1976, 5.4) and Smith and Makov (1980) for further
details.

This Linear Growth model, with the four model variants outlined above,
has been used for on-line monitoring of kidney transplant patients, given data
of the type shown in Table 5. For many patients, the series is considerably
longer than the one shown, but we shall illustrate our procedure with this
small data set. Table 8 shows, for each of the first six observations, the
probability that it came from the situation modelled by M, M,, M, or M;. In
addition, the table shows the same probabilities one-step back and two-steps
back: thus, for example, p (YseM;|y1,...,.¥7) = 0-68. By studying the changing
pattern of these probabilities, the doctor can, hopefully, react to genuine
changes fairly quickly, whilst avoiding over-hasty reactions to outlying
measurements. Of course, the system depends on a number of prior inputs
regarding reasonable variance levels and other features. These are assessed
from knowledge of serum-creatinine measurement procedures and other
“background physiological information. Full details of this and other case
studies will be reported elsewhere. The prior probabilities set on the four
models for the first observation in this case were: 0.96, 0.01, 0.01, 0.02.

The results indicate that at observation 6 we suspect a slope change has
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occurred at observation 5. When we reach observation 7, we are fairly
convinced that a slope change has occurred and that the patient is now in a
new steady state. Posterior means of the slope parameter are positive up to
and including observation 5 and then they suddenly switch to negative values,
reinforcing the message of Table 8.

TABLE 8

On-line probabilities of My, M, M,, M,

Observation

1 2 3
My My M, M, My My M, M, My, My M, M,
O-back .99 - - - 99 - - - I
1-back .99 - - - 99 - - - 99 - - -
2-back .99 - - - 99 - - - 99 - - -

4 5 6
M, M; M, M; My My M, M My M, M; M,
O-back .99 - - - 96 - .01 - .64 .09 .09 .17
1-back .98 - - - .56 .02 .41 .01 .84 .05 .10 -
2-back .98 - - - .29 .02 .68 - .85 .04 .10 -
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