Approximations of unsupervised Bayes learning
procedures

U.E. MAKOV
Chelsea College, London

SUMMARY

Computational constrains often limit the practical applicability of coherent Bayes
solutions to unsupervised sequential learning problems. These problems arise when
attempts are made to learn about parameters on the basic of unclassified observations,
each stemming from any one of & classes (k =2).

In this paper, the difficulties of the Bayes procedure will be discussed and existing
approximate learning procedures will be reviewed for broad types of problems involving
mixtures of probability densities. In particular a quasi-Bayes approximate learning
procedure will be motivated and defined and its convergence properties will be reported
for several special cases.
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1. INTRODUCTION

Problems of unsupervised learning arise when attempts are made to learn
about parameters on the basis of sequential unclassified observations each
stemming from any of k classes (k =2). General discussions of such problems
in the contexts of Pattern Recognition and Signal Detection are given in Fu
(1968), Patrick (1972), Young and Calvert (1974) and references there cited.

In this paper, we shall consider the following special cases. (See a survey
in Ho and Agrawala (1968), for a discussion of these and other cases).
Case A. The probabilities, 74, ..., 7, that an observation belongs to class H,,
i =1, ..., k, are assumed unknown; the conditional probability densities
fAx|0) = fix|8., H) of an observation x, assuming it to come from class H,,
are assumed completely known (i.e. both the functional form and the
parameter vectors §; are known). These assumptions may be appropriate when
large training sets can be made available from each individual class, but there
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is little initial information regarding the ‘“mix’’ of observations in the context
under study.

Case B. The class probabilities, m;, ..., m, are assumed knowrn; the
conditional fi(x|6) = f(x|6, H) are assumed to have known functional
forms, depending on parameter vectors 6, some, or all, of which are
unknown. For example, in many contexts it may be appropriate to assume
that underlying densities are Gaussian with unknown means, while the
variances and the class probabilities are known.

Case C. The class probabilities =y, ..., 7, are assumed unknown; the condi-
tional densities fi(x|6,) are assumed to have a known functional form, depen-
ding on parameter vectors 6,, some, or all, of which are unknown.

In all the cases, the problem is as follows. A sequence of (possibly vector-
valued) observations, xy, ..., X,, ... are received, one at a time, and each has to
be classified as coming from one of a known number & of exclusive classes H,,
..., H. before the next observation is received. Each decision is made on the
basis of knowing all the previous observations, but without knowing whether
previous classifications were correct or not. We assume that the x’s are
received at a high rate and that strict computational constraints are imposed.
We thus limit ourselves to learning procedures whose demand for
computational resources is small. ’

Defining Y = (x,0), where 7 = (wy, ..., ), § = (04, ..., 6,), we assume
that, conditional on ¥, the x, are independent with probability density

k
foalp) = I w6, M

(we shall assume throughout that the fs are such as to make this mixture
identifiable (see Yakowitz, 1970)). For a sequence of observations, xy,..., x,, it
follows from (1) that

n k
P Xal ) = I £ mx:16) @)

This is a sum of k" products of component densities, each term in the
summation having an interpretation as the probability of obtaining a certain
partition of the observations among the classes.

The Bayesian algorithm for learning about ¢ (or the components of

_interest) involves the specification of an a priori density for ¢, and the
subsequent recursive computation of the posterior density p(y | xy, ..., X,) using

DWW | Xyyeens Xa) & flX | DO | X150 0X00) (3)

Classification of x, is based upon any specified loss structure, and for
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i=1,....,k the values of p.(x.eH.|xy,..., X,) the probability that the n*
observation belongs to class H;, given the observations Xxy,..., x,. These
probabilities are computed using

PAOeH | X, ooy Xa) € filXn| Xqyeney Xny).

DeH | Xqy ooy Xnsy) @
here
./:'(xn le, eeey x"'l) =
fi(xn 0;), in Case A
[£4x.09p(8:] X1, ..., X,.1) dO,, in Case B,
§ 1filxa 09D (@B, | X1, .., Xy dr df,, in Case C, )
and

DX H | X1y ooy Xnop) =
j7r,p(7r.' |x1, ey x,,_l)dﬂ',', iIl case A
w;, in case B

§imp(7s0]x1,..., X..y) dO d,, in case C (©6)

It is obvious that due to the mixture form inherent in (1) and (2) there
exist no reproducting (natural conjugate) densities for unsupervised Bayes
learning. This results in an unavoidable increase in computer time and
memory requirements, and leads to the solution being impractical in the case
of signals arriving at a high rate, where speed of computation and small
memory requirements are basic prerequisites for a solution. For this reason,
the formal Bayes learning procedure (B) has been regarded as of little practical
use. Among the ad hoc solutions proposed in its place, we note the Decision
Directed approach, Recursive Moment Estimates and Learning with
Probabilistic Teacher, all of which are discussed in the references given above.

As an alternative to these, we propose a Quasi-Bayes procedure which is
both highly computationally efficient and retains the flavour of the formal
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Bayes solution. Our discussion will be in terms of Cases A, B and C as above,
but the approach can be extended to more general solutions. The statistical
literature abounds with papers on the estimation of parameters of mixture
distributions. The proposed methods (maximum likelihood estimators,
moment generating function estimator, method of moments) demand
considerable computational resources and thus will not be discussed here.
(For references, see Quandt and Ramsey, (1978) and the ensuing discussion).

2. APPROXIMATE PROCEDURES FOR CASE A,

For convenience of notation, we shall write # = (my,...,m) for the
unknown class probabilities, and f{x,) for the known densities. Prior
knowledge about 7 is specified in the form of an a priori density p(x).

If we denote by p (w|X,) the posterior density for = given X, =
(x1,-.-,%.), and by p{x | X.) the posterior density for  if it is also known that
x.€ H,, then, by Bayes theorem,

k

P (x| X.) = T wiX.) pdx | X.), ¥
where
wiX.) = p (x,€ H,|X,) = _&%_(fii ®)
Sy i Xo )
and
(X, = [ 7p (x| X, Dd. ©)

We now consider the special case where p (7) has the form of a Dirichiet
density

T(a, @ +... + '™ k
p(m) = I =
I(a®)..(a®) 3= (10)

ai(())_1

“which we denote by D (r]a,'?,...,0.'?), where T" () is the standard gamma
function. Such a form might arise, for example, following a multinomially
distributed training sample whose correct classifications were known.

It follows from (7) and (10) that after observing x, we obtain
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k

p (X)) = E wiX) D (x|as® + igpeeycre® + 810, (11)
where
Jlxpa, .
wiXy) = /" (i =1,....,k) (12)
I flx)e®
and

6y, =1 1if i = j,
= 0 otherwise.

Many well-known approximate learning procedures for this problem can
be seen as arising from approximations to (11) of the form

P (@] X)= D (x|as® + Sygpeesas® + b31), (13)

where the 3,-,-’5 take values according to some specified method. Two
approaches are suggested.

I. Averaging. The 3,-,-’5 are chosen such that the mean and variance of the
approximating density (13) are identical to those of the mixture (11). A similar
approach (though in a different context) is taken in Owen (1975); Athans,
Whiting and Gruber (1977); Harrison and Stevens (1976).

II. Selection. Here one of the 3,-,- takes the value one and the others zero
according to some decision rules. This approach is akin to the engineering
concept of ‘learning without a teacher’, see Agrawala, -A(1973); Spragins
(1966); Fralick (1967), where the unknown ‘teacher’, the &, is the missing
label identifying the observation with its class. Particular examples are the
Decision-Directed learning and the Probabilistic Teacher Scheme. A
comparative study (in the context of jumps in linear systems) of several
averaging and selection methods is given in Smith and Makov (1980).

(i) Decision-Directed Learning (DD)

According to the DD approach one of the 3,-,- is set equal to one and the
others zero in such a way that using (4) and some specified loss function, this
results in a minimum expected posterior loss. In other words, by setting 3,-,- to
equal zero or one we regard our own (unconfirmed) classification as if it were
true. For example, in Scudder (1965),* the 3,-,- was set to equal one if w, (X,) -

* In context of Case B.
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was maximized for i = j. The approach in effect assumed that the most likely
H;was, in fact, the true one (and thus zero one loss function assumed).

The DD scheme was further studied in Davisson and Schwartz (1970),
where it was shown that the approach did not guarantee asymptotic
unbiasedness and could also lead to problems of runaways. Runaway occurs
when the scheme commits a sequence of errors resulting in a degradation of
performance and consequent convergence to biased values. In Davisson and
Schwartz (1970), Davisson (1970), the detection of signals in Gaussian noise
was considered and bounds on the probability of runaway were provides using
random walk theory. It was shown that except for very low signal to noise
ratio, the probability of runaway of the class probabilities to the extreme
values 0 and 1 was very small.

In Katopis and Schwartz (1972), a modified version of DD (MDD) was
proposed in which a bias-removing transformation of the observations was
introduced such that the convergence to the true value of the class probability
w was ensured. Another modification was given in Schwartz and Katopis
(1977). In Kazakos and Davisson (1979), in adittion to a bias-removing
transformation, a specific gain function (in the DD recursion) was suggested
that guaranteed fastest mean square error convergence of the estimates of the
7.’s. All these modifications were shown to avoid the problems associated
with the DD scheme, but at the expense of requiring numerical integration
after each observation.

(ii) Learning with a Probabilistic Teacher (PT)

According /Eo this scheme, proposed in Agrawala (1970), a randomized
choice is made; 6,; being set equal to one with probability w/(X}). In Silverman
(1979), the theoretical properties of the PT for Case A were discussed;
convergence was proved and asymptotic relative efficiency properties were
examined.

The scheme which we propose is as follows:

Quasi-Bayes Learning (QB), see Makov an/c\l Smith (1977); Smith and
Makov (1978); Makov and Smith (1976), replaces 6,; by w,(X;), and so takes

P (| X)) = D (m|a,'V,...,ax'V), . (14)
~where
o = oY + wl{X) (i=1,...,k). (15)

Subsequent updating proceeds in the same way, so that with p (x| X...,) having
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a Dirichlet form with parameters oV, it follows that p (x|X,) will be
Dirichlet with parameters

@ = @D+ wlX,) (= 1,...k), (16)

where, corresponding to (12),

wiX,) = S a7 i=1,...k) )

Ll flx,) a7

In the special case k = 2, the Quasi-Bayes procedure leads to recursive
estimates of =, if the form

f,‘rl(,nl) — %.1(") - an(ﬁ,\rl(n) - Wl(n+1))’ (18)

where
a, = (al(m + O12(0) +n+1) (19)

and

Wyt = JiXne)) T 0)

A A
JiXas)T ™+ S (X)) TR

(18) is a typical QB recursion (for this case and others), which
corresponds to a Robbins-Monro (Robbins and Monro, 1951) type of
Stochastic Approximation. Using existing theorems in this field (e.g.
Gladyshev, 1965, and many other) we were able to prove that the QB scheme
converges to the true value of 7 in mean square and with probability one.
Convergence properties were established for the case & = 2 in Makov and
Smith (1977), Makov (1980), and for general k in Smith and Makov (1978). It
was also shown in Makov and Smith (1976), that the QB scheme provides a
better approximation to the Bayes solution than does the MDD. In Silverman
(1979) the QB was proved to be more efficient than the PT.

In Kazakos (1977), a recursive estimation algorithm was provided which
was based on the minimization of the Kullback-Leiber information number.
The algorithm was shown to be consistent (for any k) and efficient (for £ =2).
In Makov (1980), it was shown that the QB scheme, (18) - (20), is a special case
of the one of the discussed in Kazakos (1977).

In Fig. 1, we show the paths of successive estimates of =, 7, for a three-
class simulated example (k =3), where f1,f3./5 are circular bivariate Gaussian
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distributions with all variances equal to one and means given by (-0.5,0),
(0,0.5) and (0.5,0) respectively. Comparisons of the QB approach with the B
solution have been made in Makov and Smith (1977), Smith and Makov
(1978), and we have omitted calculation of B here. Comparison of QB with
MDD was made in Makov and Smith (1976), where the latter was shown to be
definitely inferior. Since the MDD would, in fact, require successive two-
dimensional numerical integration for this example, it is also omitted. The
results from the DD, PT and QB schemes are shown for the first 50 simulated
observations, where «; and w, were both equal to 0.33. The estimates for QB
were obtained using (9) and (16), which, from the well-known form of the
mean of a Dirichlet distribution, implies that
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A ai(n)
T (X,) = ————— (i=1,...,k) 21

E:‘:l CY,'(")

The estimates for PT use successive randomizations as described above,
or in Agrawala (1970); the estimates for DD follow the procedure as described
above, or in Davisson and Schwartz (1970). The prior parameters used were
;= 0.1, a,'® = 0.15 and «3'® = 0.1, representing a very weak form of
prior knowledge, implying prior means for my, m;, w3 of 0.286, 0.428 and
0.286, respectively.

In this and similar examples, where classification is made difficult
because of the high overlap of the underlying distributions, the QB method
shows marked superiority over the PT method, while the DD method
performs very badly indeed. When the underlying distributions have only
moderate overlap, there appears little to ¢hoose between QB and PT, whereas
both are markedly superior to DD.

3. QUASI-BAYES PROCEDURES FOR CASE B

In order to illustrate our approach to problems which fall within the
framework of Case B, we shall consider two special cases, both for the case
k =2, and both involving known w4, 7, (= 1-wy). The first is that of Bipolar
signal detection, where fi(x|#,) is a Gaussian density with unknown mean
>0, fAx|0,) is a Gaussian density with mean -6, and the variances are known
and equal (to ¢2, say). The second is that of Signal versus Noise detection,
where fi(x|6,) is a Gaussian density unknown mean 6, fy(x]0;) = fy(x) is a
Gaussian density with mean zero, and the variances are known and equal (to
a2, say).

From the general results given in the introduction, it can be shown that if
we take p°(6) to be normal with mean p and variance 72, then after observing x;
we have

PO = L, w,Y NO;r2%u + ,}-23,.1;(1, 772 + g2 gul) (22)

where w,'!) = p,(xyeH,|x,) is derivable from (4), (5) and (6), N(8; g,d) denotes
that # has Gaussian distribution with mean c¢/d, variance d-!, and 53\,-,- =lor-1
according as i = 1 (x; € Hy), or not, in the Bipolar signal case, 6, = 1 or 0
accordingasi = 1 (x; € Hy), or EOt’ in the Signal versus Noise case.

Our proposal is to replace 6, by E (6:;), which is equal to 2w,‘¥’-1 in the
Bipolar case, and equal to w,'" in the Signal versus Noise case, and to take
pY @) =N@;7%u + 02 E (8:)xy, 72 + 072E (|6,1])). Subsequent updating
now takes place entirely within the Gaussian family, and we obtain
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PO =N@O;7% + 021 E 6,)x;, 72 + 02Z, E (

841))- (23)

The posterior means give a sequence of estimates of #, and the following
recursive relations are obtained:

For the Bipolar case

A A o2 A
gy — fom T(—Tz { 8 - Qw " -1)x,,) (24)
74+ (n+1)o

For the Signal versus Noise case

A A o a
el — g . {0 - x4y Wy} (25)

72+ g2 Irlw,®

Various modifications can also be considered for large »n, but these are
not discussed here. In Smith and Makov (1981), the convergence properties of
the Signal versus Noise scheme were discussed for the case where the w's are
replaced by w* = p, (x, € H,|8"V, 7). The resulting recursion was shown
to converge to § with probability one. In Titterington, 1976, a technique
similar to the QB was applied in the context of medical diagnosis where
unconfirmed cases (= unsupervised) were incorporated into data banks. The
’fractional updating’ was used to estimate the means and covariance matrices
of multivariate normal densities.

The performance of the DD scheme and its improved version have been
studied in general in Patrick, Costello and Monds (1970); Young and Farjo
(1972). At the present time, following the criticism of Agrawala (1970), made
in Cooper (1975), there would appear to be no satisfactory account of the
theoretical properties of the PT scheme for this case.

In Fig. 2, we show the paths of successive estimates for a simulated
example of the Signal versus Noise problem. A comparison is given, for the
first 50 observations, of the Decision Directed, Improved Decision Directed,
Probabilistic Teacher and Quasi-Bayes methods. The underlying parameters
were as follows: § = 2.0, 0 = 4.0, m; = 0.5, p = 5.0, 72 = 25.0; the latter
represent very vague prior knowledge about §. Again the pattern shown by

“this example is typical. Both the Probabilistic Teacher and the Quasi-Bayes
procedure perform better than the Decision Directed schemes.
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4. QUASI-BAYES PROCEDURE FOR CASE C

Few results are available in this rather difficult case. In Young and
Coraluppi (1970), stochastic estimation of a mixture of normal densities using
an information criterion is discussed. In Katopis and Schwartz (1972);
Schwartz and Katopis (1977), modified DD schemes proved to be consistent in
a two-class decision problem where the mixture consisted of two normal
densities, the mean of one of which was unknown (as well as the mixing
parameter). In Makov (1980a), the QB scheme was attempted in a Kalman
filter context in which an attempt was made to track a process when there was
a non-zero probability that the observation contained nothing but pure noise.
Simulations results showed that the QB scheme is by far more reliable than the
PT or DD so long as the process is going through the contaminated
environment. Work is in progress on the mathematical properties of the QB in
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Case C. Preliminary results indicate that convergence may be guaranteed if
certain restrictions are imposed on the parameter space. This will not be
discussed here.
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