DISCUSSION

1.J. GOOD (Virginia Polythecnic and State University):

I shall restrict my discussion to the historical aspects of the paper presented by
Professors Giron and Rios.

J.M. Keynes (1921) argued that not all logical probabilities could be compared.
B.O. Koopman (1940a, b), acknowledged Keynes’s influence and laid down fairly
convincing but complicated axioms for partially ordered ‘‘intuitive’’ probabilities,
where “‘intuitive’’ 1 think meant either logical or subjective. I propounded the simplest
possible acceptable theory of partially ordered subjective probabilities in Good (1950,
p. 119) and pointed out that such a theory is identical with the use of upper and lower
probabilities provided that it is agreed that we can imagine perfectly shuffled packs of
cards. I extended the theory to include utilities in an obvious manner in Good (1952) or
see Good (1954). At a 1960 conference in Stanford (Good, 1962) I showed that this
simplest possible theory of partially ordered probabilities implies formal axioms
connecting upper and lower probabilities. Cedric Smith (1961) justified my theory by
using arguments analogous to those used by Savage (1954) for the theory of sharp
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probabilities. For this justification he made use of convex sets of prior distributions.
Smith said he left some loose ends and presumably these have received the attention of
Rios and Giron. Whether this is so I have unfortunately not had time to check.

Most of my historical research was concerned with finding the publications where 1
had mentioned the partially ordered theory of subjective probability. I have found fifty
such publications, or perhaps only 49, ranging from 1949 to 1979. I have given the list
to the authors, to prove to them that I have emphasized the partially ordered theory
perhaps ad nauseam, but in the references to this discussion I have listed only Good
(1950, 1952, 1962, 1976 and 1977). For example, in Good (1976, p. 137) I pointed out
that my theory is a Bayes/non Bayes compromise, as Rios and Giron have now
recognized.

It may be helpful to mention that the theory of partially-ordered probabilities (and
utilities) is sometimes called a theory of comparative or qualitative probabilities (and
utilities). The subjective version could reasonably be called Good’s theory or the
Doogian theory or the comparative or qualitative or partially-ordered Bayesian theory,
and ‘‘quasi-Bayesian’’ is yet another name for the same thing.

Although I have always accepted this theory, in practice I often prefer to use sharp
probabilities and utilities for the sake of simplicity, as an approximation to the partially
ordered theory.

On a point of terminology, I think the expression ‘‘confidence interval’’ should be
restricted to the Neyman-Pearson sense. In the Bayesian theory one can use the
expression ‘‘Bayesian estimation interval’’.

Turning now to Professor Hills’ paper, the word ‘‘paradox’’ has at least two
distinct meanings which can be distinguished by talking about apparent and true
paradoxes. If 1 thought there were any true paradoxes in the theory of subjective
probabilities that I support, then I would be forced to abandon rationality. 1 am not yet
prepared to do that.

Perhaps the common denominator of all Bayesian statistics is the product law,
P(A & B) = P(A).P(B| A), meaning that if two of the probabilities mean anything then
so does the third, and this is so even if the probabilities are merely constrained by
inequalities. Have we any reason to doubt this product law, in the light of the various
apparent paradoxes mentioned by Dr. Hill? I think these paradoxes arise, at least in
part, through performing limiting operations in the wrong order. For example, the
limit of P.D. (x|y, < ¥y < ys + 6)¢) as 5y, tends to zero is not necessarily equal to P.D.
x|y = yg) when P (y = y,) = 0. (Here P.D. stands for ‘‘probability density’’). To
assume otherwise is equivalent to assuming that all Jacobians are equal to 1. Also, in
the problem of the distribution on a sphere, there is a difference between a random
great circle on a sphere rather than a great circle known to pass through a known fixed
point (the North Pole). These two comments 1 believe remove the paradox from the
example of the density on a sphere and the density on a longitude.

We all know that improper priors can sometimes be used if the limiting operations
are performed in the right order. But one interesting example where an improper prior
is definitely ruled out occurs in some work on Bayesian significance testing for
multinomials and contingency tables (Good, 1965, 1967, 1976; Good and Crook, 1974;
Crook and Good, 1979). In this work there is a Bayes factor F(k) depending on a non-
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negative hyperparameter k such that the null hypothesis corresponds to ¥ = o and
such that F' (k) tends to 1 when & tends to infinity. If a hyperprior $(k) is assumed for &
such that fom d®(k) is divergent, then the resultant Bayes factor F = Klim Sf,‘F (k)

dd(k)/ H{ dd(k) = 1. In other words the evidence against the null hypothesis is
completely annihilated by a prior that is ‘““improper at infinity’’. Satisfactory results
were obtained in the applications by using a proper prior that approximates the
Jeffreys-Haldane improper prior of density 1/k. The proper prior chosen for this
purpose was a log-Cauchy with appropriate hyperhyperparameters.

Now consider Lester Dubins’ problem (de Finetti, 1972, p. 205). An integer n has
been selected by one of two procedures A or B. In procedure A the probability of a
specific value of n is 2" (n = 1, 2, ...), whereas in procedure B the probability is
uniformly distributed. Thus

P (nis definable in less than 10199900 years | B) = 0.

So if B is true we can never get evidence for it. (The universe is only about 10 years
old). But it was assumed that »n has been defined. Therefore P(B) = 0. If we had
originally judged that P(B) = 0.5, then we must change our minds in view of this
additional thinking. I don’t regard this as an inconsistency, in fact I have argued the
value of what I call ‘‘dynamic probability’’. According to this theory we must admit
that probabilities can change without new empirical information. See Good (1977).

Regarding the drunken-sailor problem, I don’t see the advantage of explaining it
in two dimensions rather than in one dimension. I think the problem then reduces to
one discussed at the Waterloo conference on statistical inference, following a paper by
Fraser.

L. PICCINATO (University of Rome):

In principle I have some difficulty to ynderstand fully what ‘‘complete ignorance’’
is, and I would prefer a slightly different approach. The model of professors Giron and
Rios generalizes the usual model for decision problems in that it considers that we have
not just one probability distribution on the states but that such law is known to belong
to a given set. This generalization could be seen in a different way: the standard
bayesian model is an ideal paradigm and it is surely useful to have some flexibility when
we turn to practical applications (the case mentioned of several decision makers is an
example). Therefore the perspective I would like to suggest is that of sensitivity
analysis, or robustness, with respect to the choice of the prior.

The paper gives useful indications about how to proceed in this type of analysis.
Anyway I am inclined to think that all Bayesians act sometimes as quasi-Bayesians in
the sense of this paper: when we use conjugate distributions we are actually dealing
with a problem which is in an intermediate position between total ignorance and a fully
Bayesian approach where only one probability distribution on the states is requested.
But in that case the use of classes of priors is only a matter of formal generality, which
is attainable without any practical complication.

I think that these concepts about quasi-Bayesian procedures and the related



52

mathematical aspects could be remarkably interesting in the framework of practical
statistical analysis, I mean when K* is suitably chosen in order to provide a better
understanding of some decision problem. Some good examples of this kind were given
e.g. by M. Skibinski and L. Cote (1963). The tools proposed by Giron and Rios could
then usefully experimented along similar lines.

I suppose that professors Giron and Rios are substantially in agreement with me
about the fact that the Bayesian approach provides an ‘‘ideal paradigm’’, in fact they
essentially apply the Bayesian scheme in the rigourous classical way in correspondence
with each element of K*. This makes a remarkable difference with the approach by
Skibinski and Cote who, unfortunately in my opinion, do not avoid integrations over
the sample space. Let me recall about this that quasi-Bayesian procedures are
sometimes imbedded in non-Bayesian frameworks, so that they can be misleading. For
example, when two decision functions are compared in the standard non-Bayesian way
(i.e. through the risk functions) one can find that decision d, is better than decision d,
when § belongs to a given subset Q' of the state space Q. It is then implicit that if you
have a partial information that 6 belongs to that subset (k* could be a class of
distributions with a support contained in Q) you can say that d, is simply better than
d,, and hold that further information about § is irrelevant. However this is not true, in
general, also from an “‘objective’” viewpoint (i.e. without using a specific prior) and in
standard cases you could find experimental outcomes such that the terminal decision
provided by d, is worse (in terms of losses) than the terminal decision provided by d,,
for every 8¢Q’. This depends of course on the fact that the risk functions are not
admissible tools for a Bayesian analysis in post-experimental situations.

In conclusion let me say that I agree firmly with professors Giron and Rios in their
attitude to relax usual assumptions without losing the basic aspects of the Bayesian
approach, that is logical coherence.

A problem I would raise in connection with professor Hill’s paper is the following:
how to deal with statistical models if we must get rid with conglomerability? Of course
the ground for accepting or refusing conglomerability (or complete additivity) is a
logical one, and must be independent from the mentioned question. However, even if |
agree that a logically sound approach needs essentially finite additivity only (so that
complete additivity becomes a mathematical simplification to be used with care), it
seems to me not irrelevant to seek what kind of implications this attitude has with
respect to the standard statistical practice.

For ‘‘statistical model’” I mean as usual a set of probability distributions on the
space of possible outcomes, possibly indexed by a parameter whose actual value is
unknown. Suppose that all conditional distributions are equal: then the value of the
parameter seems irrelevant, at least from an intuitive viewpoint. In fact, if
conglomerability holds, we can easily predict the future observations without knowing
anything about that value. But, if conglomerability doss not hold, it seems that
something does not work well with our model, and our usual way of thinking, for
example about the role and use of identifiability.

It is clear that a possible answer is that also statistical models must be handled with
care, just as the assumption of complete additivity. For example, I think that this view
is maintained by de Finetti, who dislikes such things as ‘‘statistical hypotheses’’ and so
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on; in fact he often suggests to deal only (or at least preferably) with well defined
events, which could be actually falsified or verified; a specific quotation could be de
Finetti (1971).

Nevertheless, as a statistician, I find that statistical models are quite useful, at least
as a communication tool among the various kinds of researchers involved in a given
joint work, and that often some relevant theoretical information can be imbedded in
the model.

So, let us come back to the initial question: can we live with non-conglomerability
(as professor Hill is proposing) without giving up with statistical models?

C. VILLEGAS (Simon Fraser University):

I will comment only on B.M. Hill’s paper.

Finitely additive probability measures are conceptually important and are certainly
useful in the foundations of probability and statistics. As a matter of fact I have used
finitely additive probability measures in two papers (Villegas 1964, 1967). But for
technical reasons it is usually better to assume countable additivity.

In recent years increased interest has been shown in the use of betting schemes for
the analysis of statistical inferences. In those betting schemes the statistician plays the
role of a bookie that posts odds on a family of events, and has to withstand the bets of
a gambler. The odds posted by the statistician are said to be coherent (relatively to the
betting scheme) if the statistician cannot be made a sure loser. In this betting context
support for countable additivity comes from Theorem 6 of Heath and Sudderth (1972).
Roughly speaking, the theorem says that if, in the absence of data, the gambler is
allowed to make countably many bets, then the posted odds will be coherent if and only
if they are based on a countably additive probability measure.

Similar results hold when data are available. Thus, Corollary 1 of Heath and
Sudderth (1978) says that, if the gambler is allowed to make only a finite number of
bets, then the posted conditional odds will be coherent if and only if they are based on a
posterior distribution corresponding to a finitely additive, proper prior.

These results can be extended to obtain a justification for countably additive
proper priors. Thus, in a future paper, I will prove that, if the gambler is allowed to
make countably many bets, then the posted conditional odds are coherent if and only if
they are based on a posterior distribution which corresponds to a proper, countably
additive prior.

A new conditional frequency interpretation of statistical inferences has been
offered in Villegas (1977a). Future repetitions used in frequency interpretations are not
real but hypothetical or simulated, and they should be considered only as a means for
learning from the data. In Villegas (1977a) it is argued that better inferences may be
obtained if only future hypothetical samples similar to the actual data are considered,
because in this way the noise may hopefully be reduced, and we may get a better picture
of what the actual sample has to say about the population.

Looking only at future samples which are similar to the actual one means
conditioning on the future hypothetical sampling belonging to a compact set. Within
the context of a betting scheme this means that all bets are off if the observation does
not belong to a compact set.
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Using this form of conditioning, the results of Heath and Sudderth can be
extended to obtain justifications for improper priors. Thus, in a future paper, 1 will
prove that, if the gambler is allowed to make countably many bets, but all bets are off
when the observation is outside a compact set (which may be chosen by the gambler),
then the posted conditional odds are coherent if and only if they are based on a
posterior distribution which corresponds to a possibly improper, countably additive
prior.

Objections against the use of improper priors have been raised also from the point
of view of admissibility. Thus, in the estimation of a location parameter, the Bayes
estimators based on a uniform prior may be inadmissible (Stein, 1956), However,
results will in general be different if we condition on the observed value belonging to a
compact set. Then the risks become conditional risks, and a new concept of conditional
admissibility emerges. In a future paper it will be shown that it is not difficult to modify
C.R. Blyth’s (1951) proof of admissibility of Bayes estimators based on improper priors
are conditionally admissible in the above mentioned sense. And, according to the new
frequency interpretation of Villegas (1977a), this is all that is needed in statistical
inference.

It should be recognized that there are two lines of development for Bayesian
statistics: one is the personalistic line, based on personal, subjective priors, and the
other is the logical probability line, based on logical priors that represent ignorance.
The second line is not so well developed as the first one, but some progress has already
been made (Villegas, 1977b).

Logical priors are usually invariant under a given group. Therefore they are not
only relative to a given model, but even more, they are relative to a group that is given
as an integral part of the model. Fraser’s structural models are useful from a logical
probability viewpoint. Stone’s example becomes a structural model if the group with
two generators is considered as an integral part of the model. In that case the logical
prior is the uniform prior. But the story of the lady and the sailor brings other
considerations which favor the selection of the other prior. Since the likelihood
principle ignores the possibility that a group may be given as an integral part of a
model, it is not valid in a logical probability approach to statistical inference.

J.M. DICKEY (University College of Wales Aberystwyth):

I find the paper by Professors Giron and Rios intriguing, especially the idea of
working with ‘‘extremal’’ posterior distributions to surround, so to speak, the coherent
inferences of persons whose prior distributions lie within a range of distributions. This
harmonizes closely with my idea of ‘‘scientific reporting’’ as a reporting of the prior-to-
posterior transformation over a class of prior distributions conceived as containing the
reasonable uncertainties of a population of scientists (Dickey, 1973). Various graphical
methods are available for reporting such a distribution-valued functional. Bounding
methods are also proposed in both papers.

The idea of Giron and Rios seems simple and straightforward, and in view of the
long story of statistical theorists saying they could not know their prior distributions,
one would have expected this idea to have developed much earlier. The authors have
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done a great service in carefully setting out the theory. I look forward to seeing more
applications.

An obvious direction of generalization which may interest the authors is to replace
the set X* of permitted, equally acceptable, prior distributions by a new distribution of
distributions, an expression of uncertainty concerning uncertainty. This could be used
to generate sets K*, for example, by setting thresholds on some density for the new
distribution in function space. My own paper in this meeting investigates the form such
a distribution might take and its use in the problem of assessing (choosing) a subjective
probability distribution. See also Dickey and Freeman (1975). There are, of course,
logical difficulties with the meaning of such a second-order belief distribution, and in
both our settings one would need to resist the temptation to marginalize by taking the
second-order average of first-order beliefs.

Finally, I should like to complain that the term ‘‘agreement set’’ for K* or its
convex closure could be misleading. Presumably, the decision makers agree in having
their opinions fall in the set. But then they disagree on which distribution is appropriate
within the set.

There are many diverse issues raised in Proffesor Hill’s paper. The main point for
me is that he argues with De Finetti in favour of merely finite additivity, and
consequent nonconglomerability. In the sphere example this would mean that all the
great circles through the poles could have uniform distributions within a circle, while
the two-dimensional probability on the sphere could also be uniform. This conflicts
with the conditional distribution that would be obtained by a limiting argument
conditioning on an observed small interval of longitudes.

I am grateful to Professor Hill for personal conversations in which he informed me
that his issue in the sphere example is not the same issue as brought forward by
Kolmogorov (1933, Ch. V, Sec. 2). Kolmogorov cites Borel for what I have called the
Borel-Kolmogorov nonuniqueness, whereby a conditional distribution obtained in the
usual way from a joint density will depend on the conditioning variable used to define
the conditioning event, rather than just on the conditioning event itself. In the sphere
example, a different experiment which slices the earth by paralle! planes will produce
uniform distributions within the circles produced.

Apparently, Hill is not thinking of any experiment at all when he asks for the
distribution within a great circle, but wants to base a conditional distribution on the
purely logical statement that a particular great circle obtains. He wants finite additivity
“‘in part for purely logical reasons’’. He also claims to need it for practical reasons,
since ‘‘one will often find it advisable to make approximations using infinite models’’.

I simply do not understand the practical need for merely finite additivity. When I
make approximations to finitistic situations using infinite models I shall not restrict
myself to using only a few logical statements to obtain a mathematical model. I shall
look at the real-world problem and the real uncertainties involved. For example, just
because some exercises in textbooks fail to give information distinguishing between
equal-length intervals would not be enough to tempt me in a real-world problem to use
a uniform pseudodensity over the whole real line. It seems to me that countable
additivity, conglomerability, and proper integrable distributions enable us to treat real
problems realistically, without worrying that the mathematics itself will deal us an
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unpleasant surprise. I should like to hear further about the practical issues. Mervyn
Stone’s lazy-Bayesian examples over the years have only served to warn us against
nonintegrable distributions, which were already ruled out by the axioms of coherent
behaviour.

M.H. DEGROOT (Carnegie-Mellon University):

In the paper by Rios and Giron, partial information about a prior distribution is
represented by simply dividing all distributions in Q* into a set K* of possible prior
distributions and the complementary set of impossible prior distributions. Wouldn’t it
be more reasonable to assign probabilities to the distributions in Q* ; i.e., to assign a
probability distribution P** to the set Q* . In turn, one might then assign a distribution
P*** to the set Q** of all distributions P** | etc. In brief, why not develop a
hierarchical model?

D.A.S. FRASER (University of Toronto):

I wish to discuss three points connected with Professor Hill’s paper: how the Stone
example provides a strong counter example to the Strong Likelihood Principle; how the
modelling of the internal variable of the Stone example leads to the overriding
probability statements; and how information concerning a realization from such an
internal variable must satisfy certain requirements as to how it was produced in order to
be acceptable for probability calculations.

The Stone example A has seemed to me to be a very striking counter example to
the Strong Likelihood Principle. Professor Hill has doubts and discusses the
distinctions between the full parameter and two interesting component parameters. The
full parameter for the model is § = p, the path from the origin to the treasure; a derived
parameter of interest is 6, = 6,() = x, the last directed segment of p; a further derived
parameter of interest is 6, = 0,(f) = X, the end point of the path p. These parameters
are not the same and yet, given a data-point p (the path to the sailor), the possible
values for them fall into a one-one equivalence. The observed likelihood function is a
function of the full parameter 6; as presented it is not a likelihood for either component
parameter but does of course provide information concerning each. The full parameter
spaceis @ = {p}, the free group on two generators.

A salient feature of the Stone example is the striking contrast between the
following two results: the likelihood function from data assigns equal likelihood ( ,1,) to
each of four possible paths to the treasure; direct probability arguments based on an
internal variable put an operational 3/4 probability on a preferred one of the four
possible paths. Thus, likelihood says the four possibilities are on a par one-with-
another, whereas an internal variable nominates one of the four possibilities as a 75%
favourite. The example seems to make clear that likelihood does not contain all the
needed information.

Perhaps some further details can add emphasis to this result. For the Strong
Likelihood Principle my own preference is a prescription in the following form: from a
statistical investigation use only the observed likelihood function. An alternative form
closer to that proposed by Birnbaum is the following: if the likelihood function from a
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first model + data-point is the same as the likelihood function from a second model +
data-point then the inferences should be the same in the two cases, For this we note that
the likelihood function is a nonnegative function on the parameter space Q left
indeterminate to a positive multiplicative constant; that is, it is a positive ray from the
origin in the vector space R®. The equality, then, of two likelihood functions requires
the same parameter space ( and the same ray in R®. _

Is the probability imbalance and the constant likelihood on four parameter points,
a necessary consequence of the unusual parameter space? Or could we find another
model + data-point that yields an identical likelihood function but with a different
probability imbalance or more simply with say symmetry on the four possible
parameter values? We examine this latter possibility.

For this suppose we start with some particular likelihood function obtained from
the Stone example with a data-point; let j, be the data point and 61, §2, 63, 6 be the four
possible parameter values consistent with py. For a second model we take the same
parameter space {2, the same sample space S = Q, and the following very special
probability structure:

P(5,|0) =3, p(e|6) = i=1,..,4
Pelp) =1
P@|6) =3 Ple]d) = 06,0 %p

where e is the identity element. The likelihood function from the sample point g, is the
same as that from the Stone example and yet the model treats the four parameter values
symmetrically. This provides the formal contradiction to the Strong Likelihood
Principle.

Clearly the likelihood function alone is not enough. Of course many statisticians
do not accept the Strong Likelihood Principle, usually on the good grounds that many
fruitful statistical results are available outside the Principle. The Stone example
however is direct: the likelihood function alone omits an essential probability property.

The Stone example contains a primary random system - the spinning of the woman
at the end of the taut thread. Based on this process, there is an overriding 3/4
probability that the path is extended, and correspondingly an overriding 3/4 probability
that the last path segment comes from the treasure. This seems to provide the
motivation for Stone’s ‘‘classical statistician’’ although details are not given. A formal
version of the preceding appears in my Comments on the Stone paper but was
sidestepped in Stone’s elusive rejoinder. The recognition of the fundamental
importance of primary or internal random systems seems long overdue in contrast with
the intensive activity in some areas of contemporary statistics.

Prof. Hill also considers the system in which a point is selected uniformly on the
surface of a sphere with a designated north and south pole; an investigator is given the
exact longitude of the point. Prof. Hill seems to show preference for a uniform
distribution for the point on the given great circle of longitude. This is in conflict with a
basic probability position, both classical and Bayesian, that marginal and conditional
probabilities go together to give joint probabilities. For we note that the standard
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conditional distribution given that longitude equals the recorded value has density
proportional to the cosine of the latitude.

What is the key element in the preceding conflict? We have a situation where there
is information concerning a realization from a random system, and yet the information
does not fully identify the realization. Discussions of conditional probability show that
we need to know not only the information as to possible values for a realization but
also how that information was produced; see for example Fraser (1976, Ch. 4), Fraser
and Brenner (1979).

Most discussions of conditional probability overlook the need to know how the
information is produced concerning the possible values for the concealed realization.
Without it, contradictions are obtained and various ‘‘paradoxes’’ are to be found in the
literature. Information without knowledge concerning its production does not support
probabilities. This is a very fundamental argument against the Bayesian position.

S. FRENCH (University of Manchester):

I wish to comment upon Giron and Rios’s paper. First, a few points of a technical
nature. The authors have to use topological properties of Q and ideas of continuity in
case (a) of their theory. I wonder if these assumptions can be weakened by using the
approach of Krantz et al. (1971). These latter authors have avoided the use of
topological assumptions in their measurement systems instead relying on weaker
solvability conditions applied to the underlying qualitative orders. Perhaps Giron and
Rios could generalise their results similarly.

Early in their Paper, Girén and Rios discuss partial orders derived from convex
cones in IR”. 1 wonder if they have seen the recent work of Hartley (1978). His
approach seems to give the weakest set of conditions available for playing with such
orders. Also for a practical illustration of the use of such cone-orders in the sensitivity
analysis of a decision problem, the authors have referred to Fishburn (1964). His paper
(1965) in Operétions Research is also of relevance and, perhaps, easier to find.

Turning now to what I believe to be a more important question. The authors
consider a decision maker who knows his utility function perfectly and his subjective
probabilities imperfectly. Is this a reasonable model? It says essentially that he can
locate for each possible consequence an exactly equivalent gamble based upon some
auxillary experiment. Is it feasible to suggest that he can do this, yet be unable to locate
a gamble based on the auxillary experiment equivalent to a gamble based upon an
unknown state of nature? The problem of measuring subjective probability is just as
easy, or difficult, as that of measuring utility. In terms of axiom systems my point is
this. In assuming the existence of a utility function # (=) the authors are hiding under
their decision space another decision space in which the ordering of decision rules is
complete.

Finally, since I see the primary use of this theory to be in the area of sensitivity
analysis, perhaps the following suggestion is appropriate. I have seen papers in which,
as here, the utilities are known and the probabilities only partially known and also
papers in which the probabilities are known and the utilities partially known. I wonder
if duality theorems of mathematical programming can give us a means of allowing both
quantities to be partially known? Perhaps the authors know of a reference in this area.
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D.V. LINDLEY (University College London):

1 have a brief comment on the paper by Giron and Rios. How does a partially
ignorant person act? Bayesian decision theory is a recipe for the selection of a single
act: Bayesian inference provides all the information about the unknowns in the
problem needed to select the act. The authors’ theory ends with a class of acts: if this
class contains more than one member, how is a unique act to be selected in cases where
no more data is available? A possible application of this theory is to multiple decision
problems where several opinions are present, but again there is the difficulty of the
choice of a single act. :

Turning now to Hill’s paper, Kolmogoroff (1933 Ch. 5), makes the point that
conditional probability is either defined with respect to an event of non-zero
probability, or for a random variable x (w) defined over a space of values of w, and not
for the single event x (w) =Xx, when this has probability zero. My understanding is that
Kolmogoroff would want to know what random variable gave longtitude 30; was it
longtitude, or was it some other variable? This seems right to me and I'd welcome
Hill’s comments on this. It constrasts with the likelihood principle since it requires
knowing not just that the longtitude was 30 but what other values (like 25) one might
have had. What are the ‘‘gaping holes’” - mentioned in the first paragraph - in a sigma-
additive theory using proper distributions?

REPLY TO THE DISCUSSION

F.J. GIRON (Universidad de Malaga) and S. R1OS (Universidad de Madrid):

We would like to start by paraphrasing Dempster, quoted by Bernardo (1979): *‘In
the area of statistical inference, there must be little that any one has thought about that
Dr. Good has not written about, to the point that a computerized information retrieval
system would be very helpful to scholars in the area’’.

Our paper does not intend to be a historical paper nor a paper on the history of
partially ordered probabilities, and explicit reference to previous ideas on the subject
are mentioned in section 1.

With respect to the priority claimed by Professor Good, it is worthwhile
mentioning here that the idea of approximating sharp probabilities by means of an
interval is to be found in an early paper by Fréchet. Unfortunately we have not been
able to trace back the appropriate reference thought it might be found in
Econometrica. To what extent early ideas influence a theory is always a controversial
subject. As an example some french authors and others refer to the Kolmogorov
axioms as the Fréchet-Kolmogorov axiomatic set up.

We agree with Professor Piccinato that the Bayesian approach is the “‘ideal
paradigm’’. Yet to contemplate the quasi-Bayesian theory merely as a sensitivity
analysis approach is, we believe, to focus just on a particular aspect of the model. Its
interest resides in that the hypothesis of the model are more general than that of the
Bayesian model; more mathematically tractable than other former approaches (the one
mentioned by Professor Piccinato of Skibinski and Cote (1963) could be an example);
and above all in the main theorem that establishes an equivalence between the ideas of
partial ordering of decision rules and partial information in terms of probability
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measures. On the other hand, the interpretation of the theory from the point of view of
sensitivity analysis also stressed by Dr. French in his contribution to the discussion,
allows for a unified and systematic treatment of the problem of sensitivity analysis in
Bayesian decision making.

With respect to the problem of non-admissibility of quasi-bayesian procedures
that Professor Piccinato mentions nearly at the end of his contribution, the situation
here is exactly the same as in the Bayesian case. Problems of admissibility in post-
experimental situations depend on three facts: 17, prior partial information may be
incompatible with some experimental outcomes; 2", the support of distributions of K*
may be a proper subset Q@ of Q, thus discarding some states of Nature; 3", the
judicious use of Fubini’s theorem.

We are grateful to Professor Dickey for his comments and, like him, we would
also like to see more applications of the theory. We have taken up his complaint and
have change the term ‘‘agreement set’’ into the more innocuous term, and we believe it
more apt, ‘‘feasible set’’.

The generalization suggested by Professor Dickey, which is also pointed out by De
Groot in his contribution, of developing a hierarchical model seems interesting,
specially the idea of setting thresholds on some distribution of distributions (the second
stage in the hierarchical model) to generate sets K* of first-orders beliefs. This idea is
also closely related to the paper by De Robertis and Hartigan (submitted for
publication to the Annals of Statistics) about ranges of measures as an expression of
partial ignorance. :

Professor De Groot’s suggestion of developing a hierarchical model is discussed at
length in the paper by Good at this conference. However as he presents the hierarchical
model we would have in the first stage a complete ordering given by the probability
measure P**, In the second stage, we would now have as new states of Nature the set of
all probability measures on Q*, that is Q**, on which a new distribution P***, could be
assigned, and so on; so that this would drive to a complete ordering of decision rules by
marginalizing on succesive stages unless in any of the stages the probabilities assigned
were partially ordered (cf. Good, p. 7, line 12 of his revised manuscript) and thus the
final ordering of decision rules would only be partial.

Our paper is an attempt to characterize these partial orderings which, of course,
can be embeded in a hierarchical model, one of the stages of which at least corresponds
to partially ordered probabilities.

Dr. French suggests a generalization of our paper by using the approach of Krantz
et al. (1971). We believe this program can be carried out along their lines. Another
possible generalization of the results of our paper for partial comparative probabilities,
that also takes into account the role of experimentation, could be based on the works of
Fine (1971, 1973). Yet we want to point out two facts: 1%, in the Krantz et al. approach
the subjective probability derived is finitely additive as in case (b) of our paper, in
which the only requirement is the existence of a bounded utility function; 2", the
topological assumptions of case (&) guarantee the g-additivity of probability measures
of set K* and neither compacness of Q nor continuity of acts can be dropped if one is
seeking for o-additive subjective probability measures. Further, this allows for a
parallel and systematic treatment of cases (a) and (b) and renders the proofs of main
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theorems almost trivial by using the topological dual of spaces C() and B(Q),
respectively.

Unfortunaltely the paper by Hartley (1978) French mentions has not reached our
hands at the time of writing the rejoinders.

We are in agreement with Dr. French when he says that our model is not
reasonable because it takes for granted that utilities are perfectly known and, in
practice, both quantities, probabilities and utilities, are only partially know. However
we know of no duality theorem of mathematical programming that can accomodate the
case when both quantities are partially known, although we think this to be a very
important issue in practical decision making.

The question Professor Lindley raises is a key one; namely, how does a partially
decision-maker act? The answer is in the premises of the theory, precisely in the
formulation of Axiom 1. If a partially ignorant person has only a limited amount of
information, then he selects a class of non-dominated acts such that it is worth while
betting on these acts against other acts. Usually, this class contains more than one act,
and then it is not clear how a single act is to be sclected. A possibility would be to
randomize among these acts, but this would be equivalent to consider a hierarchical
model and this, in turn, is equivalent to having your decisions linearly ordered.

On the other hand, Bayesian decision theory may also lead to a class of acts (when
several decisions attain the same Bayes risk) and then it is not also clear how to
randomize.

In short, if one is partially ignorant one cannot expect to be able to linearly order
the set of possible decisions.

Quasi-Bayesian theory takes into account the possibility of partial-instead of total-
information thus generalizing Bayesian theory. Then, it is proven that such a
hypothesis is intimately related to partial ordering of decisions as opposed to the
complete ordering of decisions in Bayesian theory. Which is more plausible is a
question of applicability and even of taste.

B.M. HILL (University of Utah and University of Michigan):

I would like to thank all of the discussants for their comments. Before responding
to individual discussants it may be helpful to make some general remarks. The primary
purpose of my article was to focus attention on the axioms for Bayesian inference and
decision theory. The de Finetti axioms are weaker than others in that they allow finitely
additive distributions and non-conglomerability. It is hard to imagine satisfactory
axioms for quantitative probability that are still weaker than those of de Finetti, and
failure to abide by axioms 1 and 2 can subject one to sure loss. Should, however, these
axioms be strengthened? Should, for example, one require that decision procedures be
extended admissible, or perhaps even admissible. If there are serious arguments so to
strengthen the de Finetti axioms, then there should exist telling examples clearly
demonstrating the shortcomings of the finitely additive approach. The examples that I
chose were those that seemed most clearly to suggest possible shortcomings , and 1
attempted to determine just how serious a case could be made to strengthen the axioms.
Thus in Mervyn Stone’s example, I think most of us will prefer the Bayesian solution
based upon a uniform prior distribution for N, whether this is taken literally or as an
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approximation using proper prior distributions. The de Finetti axioms, however, do
not exclude the finitely additive prior distribution g(+) that leads to the Stoned
Bayesian Posterior. So it seems natural to ask exactly what ill consequences will occur if
one were to use this prior distribution. Stone suggested that over a long sequence of
repetitions of the experiment the Stoned Bayesian would get the treasure less frequently
than someone who used the confidence solution. My discussion of the sphere example
was meant to suggest why his argument is not very convincing even within the
frequentist theory. For it is circular. Only if you have already rejected finite additivity
and non-conglomerability does the argument suggest an unambiguous frequency for
obtaining the treasure.

Now let me turn to the individual discussants. Professor Good suggests that the
paradoxes (if such they be) arise from incorrect limiting arguments. I do not think so.
indeed, there are no limiting arguments in my article, and I tried to avert such a
misinterpretation by conditioning upon an exact great circle. Admittedly this is an
idealization for real world problems. But so conditioned the problem is still logically
meaningful, analogous idealizations are commonly made in statistics, and there can
easily arise situations where the appropriate conditioning event is not specified, i.e., we
are not told whether the measurement process restricts us to the region between two
parallel planes, or between intersecting planes through the poles, or still other regions.
(Such sensitivity to the precise form of the conditioning event is still another reason to
argue for the freedom of the finitely additive approach). Would Professor Good, along
with Professor Fraser, simply refuse to discuss the question in the absence of such
information? Professor Good then refers to the distinction between a random great
circle on a sphere and a great circle known to pass through a fixed point (See also my
footnote # 3). He should then be able to point to the ill consequences from taking the
point as uniform on the great circle in the latter case. But I suspect that he will only be
able to demonstrate such consequences if he has already assumed countable additivity
and consequently also conglomerability. With regard to Professor Good’s discussion of
the Dubin’s problem, I find his argument that P (B) =0 even less convincing than my
own that Pr{T,}=0 in Exampie 3. First of all the age of the universe is not so terribly
well known as he implies. Would Professor Good be greatly surprised if by the year
2,079 some new theory suggested that the age should be revised upwards to 10% years,
or whatever? Secondly, I am concerned with his emphasis on “‘definability’’. Suppose
we are discussing the number of elementary subatomic particles in the universe, and for
the sake of argument assume that there is a well-defined number. Then although under
hypothesis B it will probably take awfully long to ‘‘define”’ this number, the number
has been assumed to exist, and the finitely additive uniform distribution (at least in the
upper tail) may represent ones’ opinions much more adequately than any countably
additive distribution. What if, for example, one simply cannot name a number such
that the probability to the right of that number is less than 10-1007

I find Professor Good’s discussion of ‘‘dynamic probability’’ intriguing. But ]
doubt that it is relevant to the Dubin’s problem or Example 3. The reason for my doubt
is that the alteration in Pr{B} or Pr{T,} that he suggests would be made merely to avoid
non-conglomerability, without having advanced any serious argument as to the need
for conglomerability. Finally, I was sorry that Professor Good did not choose to
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discuss the drunken-sailor problem. Although the one dimensional version has much in
common with it, there are certainly real differences between the two versions, for
example, the non-amenable free group on two generators, and in particular the finitely
additive analysis of the problem in two dimensions would appear to be new.

Professor ‘Dickey questions the practical need for merely finitely additive
distributions. I think all three of the examples I discussed suggest such a need. In the
drunken-sailor example Professor Dickey presumably would object to the uniform
finitely additive distribution on N, and at best would view it only as an approximation
for a proper countably additive distribution. Even so, is it not sometimes useful to have
available such a simple approximation, rather than to labor over the fine details of ones
prior distributions in a situation where there is little to be gained from such labor?
Similarly for the problem on the sphere. What if Professor Dickey does not have
available all the real-world information he would like, so that the shape of the region
delimited by the actual measurement process is not known. Keeping in mind the
possibility of parallel hyperplanes, would he exclude the uniform distribution on a
great circle, even as an approximation? Would he simply ignore the problem, as so
many non-Bayesians do with regard to any problem that doesn’t fit into a neat
Kolmogorov-frequentistic mold? Finally, improper prior distributions can often be
given a finitely additive interpretation, so that they are in fact consistent with the de
Finetti axioms for coherent behaviour. (See my footnote n® 4.) )

Professors Dickey and Lindley both point out that in the Kolmogorov approach it
is not sufficient to know the conditioning event, and that one also needs information
regarding the conditioning variable used to obtain that event, at least when the event
has probability zero. This is true, and seems to me to cast doubt upon the approach
itself. As 1 argued above, does this mean one should say nothing when such
information about the variable is not available? My notion of uniformity on the
surface of the sphere includes not only the evaluation of probabilities as proportional
to surface area for sets that have surface area, but also the notion that conditional upon
the point being in any specified finite sets of points, all such points are equally likely,
and conditional upon a great circle, probability is proportional to arc length. This
strong notion of uniformity is not possible in the Kolmogorov approach, but is
compatible with the de Finetti axioms. Why should such an opinion be excluded? The
contrast between the Kolmogorov approach and the likelihood principle is itself one of
the gaping holes. Conventional statistical models often assume the data to have
probability zero, and within the model Bayesians are forced to consider their
probabilities conditional upon an isolated event of zero probability, although
Kolmogorov (1933, p. S1) wishes to exclude precisely this situation. Of course one can
take refuge in a finitistic approach, but then we lose the advantages in simplicity that
we obtain with conventional models. I think the situation is somewhat akin to that with
regard to stopping rules and the likelihood principle. A conventional non-Bayesian
analysis is not really possible without knowledge of the stopping rule, and since we
rarely if ever know the true stopping rule, a conventional analysis could at best yield
only certain inequalities. In the same way, a conventional Bayesian analysis in the
Kolmogorov system is only possible if one knows the conditioning variables, and 1
submit that in most applications they too are unknown. But we will nonetheless draw
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inference and make decisions. I believe that the arguments against such an approach
are circular. They have force only if one has already accepted countable additivity.

Professor Villegas has an interesting alternative way to deal with inadmissibility,
but it does not seem appropriate to discuss this here.

Now let me turn to Professor Fraser’s comments. Despite my very best efforts
Professor Fraser still regards the Stone example as convincing evidence against the
likelihood principle. I cannot agree. First of all, the only kind of likelihood principle
that can have any credibility at all is one compatible with Bayesian inference. For even
a non-Bayesian would have to reject a version of the likelihood principle that was not
compatible with Bayesian inference whenever he thought that the prior distribution had
a frequency interpretation. This in turn implies that a data-dependent transformation
of the original parameter must be excluded as evidence against the likelihood principle,
since the transformed parameter would have a different *‘prior’’ distribution than the
original parameter, as I hope my discussion of E and E makes clear. Professor Fraser
apparently now accepts this but offers still another experiment to provide a ‘“‘formal
contradiction to the Strong Likelihood Principle’’ (nearly the same as my likelihood
principle). In order for his new experiment to make sense we must assume that the new
experiment consists in first performing the original experiment to obtain his data g, (my
P), and then performing some additional experiment to generate his new likelihood
function. (Note that this must be done for all possible j,, not just a particular
realization). Even if he is correct that the modified experiment yields the same
likelihood function as the original experiment the argument loses its force because
whatever asymmetry is involved in the original experiment must then be reflected in
Fraser’s modification. But his purpose was to treat the four parameter values
symmetrically.

Professor Fraser also argues against the likelihood principle on the grounds that it
counters many ‘‘fruitful statistical results’’. It is of course counter to conventional
significance testing, but Bayesians are hardly alone in regarding such tests with a great
deal of skepticism.

Finally, Professor Fraser discusses the need to know how information is produced,
as was raised by Professor Lindley and discussed above in my reply. This is presumably
a much more fundamental issue for Professor Fraser than for Professor Lindley, and is
at the root of much criticism of the Bayesian approach, dating back at least to Venn.
Thus Professor Fraser presumably would have us do nothing without such knowledge,
and also without knowledge of stopping times, etc. This perhaps restricts the
applications of statistics to the empty set. | would also ask Professor Fraser exactly how
we are to discriminate between the various forms of knowledge, i.e., between
knowledge that can be (in his sense) validly represented by a probability distribution,
and opinions that cannot be so represented?

Professor Piccinato raises some intriguing questions regarding the use of
conventional statistical models. As I see it finite additivity and non-conglomerability
offer us some additional freedom in the probabilistic expression of our knowledge. In
some applications it will be important to take advantage of that freedom, and in some it
will not. As in my reply to Professors Dickey and Lindley, I think that in the sphere
example it is important not to force oneself into the Kolmogorov mold, at least not
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without careful consideration as to the knowledge that one wishes to express. But I do
not think there is anything incompatible between the careful use of conventional
statistical models and the de Finetti theory. It is true that conventional parameters can
often be dispensed with, as for example in an exchangeable sequence of zero-one
variables, and where this is possible it seems preferable to do so rather than to invent
artificial parameters. (In Hill, (1969), it is shown how conventional linear models can
also be dealt with in this way). But on the other hand there are many situations which
cannot as yet be handled satisfactorily in terms of the observable variables, and
parametric models offer a convenient flexible way of dealing with such situations. In
any case it is not a question of incompatibility, but merely of seeing things in another
light. Finally the question as to the case where the conditional distributions are the
same, and so as Professor Piccinato suggests, the parameter might seem to be
irrelevant, is indeed a paradox of non-conglomerability. But despite the intuitive
plausibility of merely dispensing with the parameter, perhaps we should recall that we
must have had some reason to view the situation as non-conglomerable in the first
place, and then to choose as best we can between the conflicting intuitions.
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