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SUMMARY

In this paper the theoretical and practical implications of dropping-from the basic
Bayesian coherence principles- the assumption of comparability of every pair of acts is
examined. The resulting theory is shown to be still perfectly coherent and has Bayesian
theory as a particular case. In particular we question the need of weakening or ruling out
some of the axioms that constitute the coherence principles; what are their practical
implications; how this drive to the notion of partial information or partial uncertainty in a
certain sense; how this partial information is combined with sample information and how
this relates to Bayesian methods. We also point out the relation of this approach to
rational behaviour with the more (and apparently unrelated) general notion of domination
structures as applied to multicriteria decision making.
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1. INTRODUCTION

As it is well known, Bayesian coherence principles as applied to decision
problems imply the existence of a utility function, unique up to a linear
transformation, and what is more important from the inferential point of
view, a unique probability measure (known as subjective or personal
probability) such that in order to choose among acts that which maximizes
expected utility is selected.
2
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Thus these principles assume that in any decision problem under
uncertainty the decision maker is able - by instrospection or by any other
means - to assign unique probabilities to every possible event and he will
choose the decision which maximizes his expected utility.

On the other hand, if nothing is known about the true state of Nature,
and one does not want to stick to incoherent principles such as minimax, etc.,
the only solution is to turn one’s attention to admissible acts or decisions by
application of the dominance principle implied by the natural ordering of
decision rules once utilities have been assigned.

Between these two cases: 1%) - prior distribution is completely known;
and 2"¢) - nothing is known about the prior distribution (except the trivial fact
that it is a probability measure, the existence of which may be even
questioned), we may place the case of partial ignorance or partial uncertainty.

What we call partial ignorance refers to the fact we represent our
knowledge about states of Nature by means of a set of probability measures to
which the true distributions belongs.

In a more general sense ‘‘partial ignorance’’ could represent information
about the states of Nature not necessarily given in the form of probability
distributions. However our axioms or rationality principles will rule out this
second interpretation of partial ignorance. In other words, we shall prove that
a weakening of Bayesian coherence principles characterize partial ignorance in
terms of a set of probability measures and that this characterization embodies
the two extreme cases (of total ignorance, and perfect knowledge of prior
distribution) which are but particular cases.

The idea of representing partial ignorance by convex sets of probability
measures or by means of the related concept of lower and upper probabilities
is not new and dates back to Smith (1961, 1965), Good (1962) and Dempster
(1968)%, and more recently to Suppes (1974) and Rios (1975a, 1975b, 1976).
However, none of these authors give a complete characterization of partial
ignorance. Smith (1961) gives a partial answer to this question for the finite
case. More refined results are found in Girén (1978).

Partial ignorance may be looked at in two different ways. First, suppose
the decision maker is uncertain about his prior P so he expresses his beliefs in
the form of a statement such as P belongs to k*. The form and size of k*
measures his relative uncertainty. It is remarkable (see theorems 3.2, 3.4 and
3.6) that if a decision maker reflects his uncertainty about states of Nature in
such a way that he is not able to compare every pair of acts (Axiom Al, sec. 3)
whilst other axioms hold, then his uncertainty can be measured in terms of a

1 As early as 1940, Koopman (1940) pioneered the idea that not every pair of events are

comparable. In our approach this is a result of dropping the completeness axiom C (see section 3).
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set of probability measures and he compares acts in terms of expected utilities
against the probability measures of this set.

Second interpretation runs as follows: suppose an arbitrary number of
decision makers each one being perfectly coherent (that is, their preferences
- satisfy axioms A1 to AS, and C of section 3). Suppose further that the utilities
they assign to consequences are in agreement but they differ in their
preferences, that is, their personal or subjective probabilities differ. Then the
intersection of their preference systems is a new preference relation satisfying
axioms Al to AS. In this case, partial information or uncertainty is
represented by the convex set generated by the set of all prior distributions
corresponding to the decision makers, which, in this second version, could be
named the feasible set.

If we call coherence principles the axioms Al to AS, and C, we shall now
discuss, briefly, the implications of dropping any of them. We do not discuss
the necessity of axioms Al, A2, A3 and A4 as it is well known from the
literature that dispensing with any of them drive to incoherent decisions.

As to axiom A5 we could dispense with it. In this case the preference
relation would be a lexicographic order that would be characterized by a
multidimensional (or lexicographic) subjective probability P= (P;, P,,...).

So the principle under discussion is completeness (axiom C). In its favour
one may say that whichever the decision or inferential problem one is faced at
a decision has to be made, and this imply that the decision maker or
statistician is able to compare every pair of acts. However in case of partial
ignorance the decision maker restricts his attention to non-dominated
decisions. If this set is a small one and the corresponding Bayes risks do not
differ much, this might be considered as though one would be performing a
sensitivity analysis in a Bayesian case (e.g., see Fishburn (1964)).

From the purely inferential view point both approaches - partial versus
Bayesian knowledge - are even closer. In the Bayesian case all information is
in the posterior distribution while in the quasi-Bayesian case all relevant
information is in the posterior set. But this last situation can be assimilated to
the first one by taking a greater sample (see, €.g., example a) of section 4).

Note the difference between dropping the completeness axiom in utility
theory (Aumann (1962, 1964), Criado (1978)) and in subjective probability
theory. In the first case partial knowledge of utility function is not reduced (in
fact sample information is independent of utility) by sample information; yet
in case of partial knowledge of prior distribution, sample information reduces
uncertainty?, That means that our initial partial preorder converges to a

2 See Giron (1979) for a discussion on duality between the concepts of utility and
subjective probability.
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complete preorder when sample size increases.

Thus dropping completeness axiom is not made for sake of mathematical
generalization but to convey a rational model for the case when it is difficult
to choose among decisions. The practical conclusion is: ‘‘if you feel unsure
about your decisions, then take a greater sample than the one you would take
if you were able to compare every pair of decisions and you will do (nearly) as
well”’.

2. DECISION MODEL WITH PARTIAL INFORMATION
Let (2, D;L) be a decision problem, where € is a set of states of Nature or
parameter space that for illustrative purposes we suppose is finite and will be
denoted Q@ = {#,,...,0.} (later on this section this restriction will be lifted); D is
a set of possible decisions, which allowing for randomization may be
supposed convex, and L is a loss function (the negative of a utility function),
that is:

L:QxD - IR.

In the Bayesian case we also have information on  given in the form of a
single probability measure, known as ‘‘the prior distribution’’, which we
denote by P. In our case P can be identified with a point of the n-simplex of R”
that will be denoted

Q* = [ (Do sD)s Z P = 15 pi = 0;i=1,...,n},

where it is understood that p,=P(f,), so that Q* would be the set of all
probability measures.

If k* is a nonempty subset of Q*, then partial information about P (the “‘true’’
prior distribution) is to state simply that P e k*. If k* in fact represents partial
ignorance, it may be taken to be convex, for if the decision maker is uncertain
about P, and P, ¢ k*, then he is uncertain about o« P; + (1-a) P, (O <a =< 1).
So convexity of k* is not introduced for mathematical convenience but as a
fairly natural condition.3

3 The topological condition of K* being closed is not really essential for as we shall show either
K* or K* (its closure) generate the same quasi-Bayesian preorder. Note that in the Bayesian case,
K* reduces to a point which is closed. Convexity could also be dispensed with as it can be shown
that K* and con (K*) (convex hull) generates the same quasi-Bayesian preorder.
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Def. 2.1. A decision model with partial information is a quadruplet
(Q, D; L; k*) where k* is a nonempty closed convex set of Q*, which will be
called the uncertainty set or the prior distribution set.

As particular cases we have: 1) the case of complete ignorance, when
K* = Q*; 2) the case of perfect knowledge of the prior distribution when
K* ={P}, that is, k* reduces to a point, or Bayesian case.

As most of the ideas we are to set forth have simple geometrical
interpretations, it will be convenient to transform the decision problem into
an equivalent S-game* as follows:

Define the risk set S of decision problem (2, k; L) by

S = {x = (xl,...,x,.); 1de D; L(O,’, d) = x,‘}

Let us consider the simplest case of two states of Nature, that is, @ = {f,,
6,}. Then the partial information about P = (p;, p,) is given in its more
general form, by inequalities

’
g Spl S(Xl,

with oy, of constants such that 0 < o; = oy = 1.

The set k* can be geometrically represented by the angle determined by
the extreme vectors (aq, 1- o), (o, 1-a7). Let x* = (x¥, x3) be a fixed point of
the risk set. Then the Bayes risk for x* against prior distribution P= (p,, p,) €
K* is

r(x*; P) = pyxt + pyxi.

If we take as priors the extreme point of k*, say P; = (a4, 1-a;) and P{ =
(a5, 1-ay), the corresponding Bayes risks are

r (x*;Py) = axt + (I-apxj
r(x*; PY) = ayx{ + (1-ay) x%,
If we now consider the set of (possible) points that have smaller Bayes

risk against both P, and Pj, we see that these points lie in the intersection of
the closed half-planes given by the following inequalities

4 For a definition of S-games sec Blackwell and Girshick (1954), that suffices for the finite case.
For a more general definition see Giron (1975).
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al.X1+ (l'al)XZ < I'(X*, Pl)

ayxy + (1-a)) x, < r(x*, P)) 2.1

that define an angle with vertex at x* (see figure). The most

important point to notice is that every point belonging to the angle, that is,
satisfying inequalities (2.1), has smaller Bayes risk than x* against any prior
distribution Pek*.

A further point to notice is that the angle does not depend on the chosen
x*, that is, if y* # x* then the angle corresponding to y* is simply a
translation of the one with vertex at x*. We shall denote this angle with vertex
at origin by k. So k depends only on k*.

This itself suggests the idea of defining a partial preorder on S (which is
extended to R in an obvious way) by means of angle x and then, regard as
solutions of the decision problem the maximal points (decisions) in S (in D).
Thus maximal points in this weak order will coincide® with Bayes solutions
against all probability measures belonging to x*.

In the above figure this set is represented by the arch MN.,
Note that in the case of total ignorance, that is, «y = 0, oy = 1, the angle
defined by (2.1) is precisely the set of points x = (x,x,) such that

5 This is not true as stated because the relation between maximal and Bayes solutions in this case
is analogous to the existing relation in the well-known case of natural ordering. For details see
Rios (1976).
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that is, the natural ordering of risk points in R".

The last and most important point to notice is the relation existing
between K and k*. In the simple case considered X is but the polar cone of set
K*. Thus partial knowledge represented by k* induces in the space of possible
decision functions a ‘‘domination structure’’ which is characterized by the
polar cone of set k*. ‘

Recall (see definition of polar cone below) that the polar cone X is closed
and that polar cones of k* and k* are the same. Further in the example
considered the polar cone of k* and of the set of its extremal points {P;, P,}is
the same.

These mathematical properties justify the hypotheses put on the set k* of
convexity and closedness. In next section these properties will be justified,
through an axiomatic approach, from simple coherence principles.

Let us now return to the case of a finite number of states of nature
{01,...,0,}. We are to define what we understand by quasi-Bayesian preference
relations associated to a decision problem with partial ignorance.

Def. 2.2. Let (2, S; k*) be a decision problem with partial uncertainty.
We shall call k*-Bayesian preference or quasi-Bayesian preference in S to the
relation = . * defined for every x, y S by

x =z,*y ifand only if x.P < y.P for every Pek*,

where x.P denotes dot-product.

It can be shown that = .* is a weak partial order satisfying axioms Al to
A5 of section 3. Moreover, = .* is complete (or linear if and only if k* reduces
to a point {P}: In this last case =, is called a Bayesian preference relation.

Let k* be the uncertainty set; denote by K the polar cone of set k*, that is

K ={x= (X,...,X.) e R"; x.P < 0 every Pek*}.

K is a closed convex cone of IR" with vertex at origin. This defines a preference
relation in IR” (and consequently in S) as follows

Def. 2.3. Let x, y ¢ S. x K- dominates y and will be denoted x =, y if
and only if x-yek.

The relation between the two definitions, which is but a consequence of
duality, is the content of next result.

Theorem 2.1.
xz,*y ifandonlyif x=, y.
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It is worth mentioning that if K reduces to a point P, then K is the closed
half-space defined by {xelR" ; x+P=<0}. In case of total ignorance X is the
negative orthant D, = {xe R", x;, < 0,i = 1,2,,...,nl.

Def. 2.4. Let = and =* be two weak order relations. Then, relation =
isincluded in =* ifandonlyifx =* y implies x= y.

Theorem 2.2. Let k%, and &3 be subsets of 0%, then k*, DO k¥ implies
=z ¥ is included in =,§. Moreover, if k¥, and &% are closed convex sets, the
conversely statement is also true.

As a consequence of duality and theorem 2.1., we have the following

Corollary 2.1, =z isincludedin =, ifand only if x;, C k.

These partial weak orderings give rise to definitions of admissibility,
complete classes and quasi-Bayesian (or K-Bayesian) decisions.

Bef. 2.5. A risk point xS is K*-Bayes (or guasi-Bayesian) for the
problem (§2, §; k%) if there exists at least a P ¢ k* such that x is Bayes against
P. Accordingly de D is K*-Bayes if its corresponding risk point is K*- Bayes.

The set of all K¥*-Bayes strategics will be denoted B{(x*; S) or B(x*; D).

Relations among K-admissibility (defined in an obvious way), X-
Bayesness and completeness can be found in Rios (1976), in which the name
‘‘guasi-Bayes’’ was coined.

In this paper we do not discuss the computational aspects of quasi-
Bayesian strategies. In the finite case, here considered, methods for finding
non-dominated strategies are to be found in Leitmann (1976) and references
therein. These procedures, devised for general convex domination structurcs,
can be applied mutatis mutandis to the problem of finding quasi-Bayesian
strategies in case K* be a convex polyhedron by means of lincar and non-lincar
programming technics. The general case of £* being an arbitrary convex set
may be treated by approximative methods (see reference above).

By far the most important feature of quasi-Bayesian methods is that they
aliow incorporation of the information provided by an experiment by use of
Bayes theorem.

Let (X, A.; P, (x)) be an experiment, where @ = {6,,...,0,}. Let P(6:]x)
denote the posterior probability of #; when x has been observed and prior is
P (0). We define the posterior uncertainty set (or posterior partial
information set) as the set of all posterior distributions of x* when x is
observed. This set will be represented by k*,. Sometimes we shall refer to this
set K*as the transform of K* through sampling when x is observed. Properties



25

of posterior uncertainty sets are summarized in the following.

Theorem 2.3. If K* is a closed convex set of Q*, then &x*, is also a closed
convex set for every x ¢X. Furthermore, extremal prior distributions of K* are
transformed through sampling into extremal distributions of &*, for any
xeX.

The second part of theorem usually simplifies the problem of finding the
posterior uncertainty set if only we know the extremal prior distributions.

Finally, we mention the fact that the whole set of probability
distributions Q* is invariant through sampling, that is 0*, = Q* forany x ¢ X.
This is but a statement that total ignorance cannot be changed into partial
ignorance through sampling.

Def. 2.6. Let (Q, D; L; K*) be a decision problem with partial
information, (X, A,; P(x)) an experiment. We sayv §: (X, A, — (D, Ap)is K*-
Bayes (or quasi-Bayes) if for every x ¢ X, 6(x) is K*-Bayes for the problem (Q,
D; k5.

Most definitions and results given in this sections are easily gencralizable
to the casc of an infinite number of states with slight modifications except in
one instance. This refers to the duality between &% and its polar cone & that
poscs delicate analytical problems due, in part, to the lack of reflexivity (in the
sense of functional analysis) of some of the spaces of measures under
consideration, and secondly to the problem that appears in some statistical
applications that D and O* cannot be embeded in topological vector spaces for
which one is the dual of the other one.

3. AXIOMATIC CHARACTERIZATION OF PARTIAL UNCERTAINTY

As we slated in the introduction, partial uncertainty is usually
represented by a convex set of probability measures and may be considered
midway between total ignorance (no knowledge of the ““true” [if any] prior
distribution} and, on the other hand, whole knowledge of the prior
distribution (Bayesian view point).

Most axiomatic characterizations of subjective probability and,
consequently, of Bayesian behaviour in the case of decisions under
uncertainty are based in the ability of the decision-maker at ordering any pair
of acts or events he is confronted with; which, as it is well known, is one of the
basic principles of the so calied ‘‘Bayesian coherence principles”’.

Here we preser: a variant of the above mentioned principles that still
preserve the Bayesian ‘‘flavour’ but have into account this possibility and, in
fact, they fully characterize ‘‘partial ignorance’. Basically, we follow the
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axioms given by Girdn (1974, 1977)¢ that characterize subjective probability
and the principle of maximization of expected utility.

The basic idea is the suppression of the completeness of the preference
relation in the set of all possible decisions, along the lines of Aumann’s
contribution to utility theory [see, Aumann (1962, 1964)], which could justify
the name of ‘‘subjective probability without the completeness axiom’’ instead
of “‘partial ignorance’’.

One of the main results of this section is the characterization of all partial
ignorance relations (this includes the Bayesian case) in terms of a class of
closed convex cones in the space of decisions. This first characterization is
inspired in the papers of S. Rios (1975a, 1975b, 1976) on quasi-Bayes orders,
and, on the other hand, in the work of Yu, Zeleny et a/.” on domination
structures.

The second characterization is the basic result we are seeking for; stated
in imprecise terms it asserts that partial ignorance is characterized in terms of
closed convex subsets of a space of probability measures.

In the following it will be convenient to distinguish two cases; namely: a)
partial ignorance is represented in terms of ¢-additive probability measures
(abbreviated p.m.); b) these probabilities are only assumed to be finitely
additive.

In case a) (See, e.g. Giron (1977), p. 33) a restriction on the set of states
of Nature needs be imposed; namely, it is supposed to be a compact
Hausdorff topological space; a further restriction is that decisions can be
identified with a subset of continuous functions on such a space. However, in
case b), the parametric space can be quite arbitrary and decisions or acts are
only supposed to be bounded.

Case a), in spite of its apparent restrictiveness, it is not so, for many
decision problems are such that the parameter space may be endowed with a
metric (e.g., the intrinsic metric) which makes all acts continuous so that the
only restriction would now be compactness respect to that topology.

Let © denote the space of states of Nature or parameter space, D a set of
decisions on terminal acts, and u: Q xD — IR a utility function.

Def. 3.1. A decision problem under uncertainty (which, in the sequel, will be
abbreviated as d.p.u.u.) is a triplet (Q,D;u).

In case a) D can be identified with a subset S of C (Q)- space of all real
continuous functions defined on Q -namely

6 These axioms were put forward in a later paper (see Giron (1978)), in a stronger form that the
one given in this article.

7 Most of their work appears in Leitmann. (1976).
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S = {f () C(V); 3deD; f (0) = u (0,d)}.

In case b) D is identified with a subset S of B () -space of all real
bounded functions defined on Q -defined by

S = {f 0)eB (2); 3deD; f () = u(9,d)}.

Further, if the decision maker or statistician allows for randomization in
D, S may be regarded as a convex subset of the linear spaces, C(Q) and B(Q),
respectively.

This suggests a new definition of a d.p.u.u.

Def. 3.2. Ad.p.u.u. is a pair (2,S) where S is a nonempty convex subset
of C (2) (case a) or B () (case b).

Def. 3.3. 1f (Q,S)isad.p.u.u. a decision criterion is a binary relation on
S, which will be denoted by =,

Relation =, is read ‘‘...at least as preferred as...”’. Taking =, as the
basic relation we may define the following.

Sz, giff f=.gandnot g=.f
Nvgiff f=zogand g=.f
JAgiff not f=, g andnot g= . f

bR ) €

which are read *‘...(strictly) preferred to...””, ““...indifferent to...”” and *‘...is
not comparable to...””, respectively. In the sequei g =, f willmean f=, g.

The list of proposed axioms is the following, that only differs of Giron’s
{1977) in the first one.

Al (Partial preorder).- For every d.p.u.u. (2,5), =, is refiexive and
transitive. ,

A2 {(Strong dominance).- If f, geS are such that f(0) > g (0) for every
0¢Q,then f>,g.

A3 (Addition of new strategies}.- If S C R, thenf = ,gimpliesf =, g.

Ad (Linearity).- I{ ke (0,1), f,g,/1 ¢ S, then f =, gif and only if

N+HN iz Ag+(1-MhA
A5 (Continuity).- It £, &, AcSTorn=1,2,..., aresuch that {f,] — f ¢S,

Jo=zog h=/,
foreveryn=1,2,...,thenf =, gand h =, /.
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Convergence in this axiom is understood with respect to the usual
supremum norm topology given, for both a) and b) cases,

Il fIl=sup |f@®)].
0

Next is a completeness axiom that will only be necessary in the
characterization of Bayesian behaviour.

C (Completeness). For every f, ge Seitherf =, g org =.f

Axiom 3 allows us to consider the = relation as being defined on C (Q)
[B (2)]; then relation =, is, simply, the restriction of = to S. Further, as C ()
[B (2)] are complete normed spaces, if {f,} converges to f, then fe C (Q)
[B (M].

In case b), as B () contains the class of indicator functions of subsets of
Q, the relation = on B (2) restricted to this class allows us to define a new
relation, = *, on the class of all subsets of Q, which we shall denote by P (Q),
and will be called events.

Def. 3.4. Event A is at least as probable as event B, and will be denoted
by A=*Bif A\ >u implies f = g, where fand g are defined by

A if GeA

0) =
SO % U if 9¢A
A if 0cB

0 =
g0 3 M if 6B

It can be easily seen that if = satisfies axioms Al, A2, A3, A4, AS,
definition 3.4. does not depend on \ and g, as far as A >pu. This is the content
of the following lemma, which could have been taken as definition.

Lema 3.1.- A =*B if and only if I, = I,, where I, and I, denote the
indicator functions of sets A and B, respectively.

Furthermore, relation =* as defined above satisfies all axioms of
comparative probability (e.g., see Fine (1973) p. 17) except the comparability
of every pair of acts®. In particular = * satisfies

8 Recently Fishburn (1975) and Goodman (1977) have also considered a weakening of the
comparability axiom in which indifference is not assumed to be transitive.
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@) = * is reflexive and transitive.

(ii) A =* ¢ for every event A P (Q).

(iii) Q=*¢

(iv) Let A,B,C be events such that ANC=BNC= ¢, then

A =z*Bifand onlyif AU C =*BUC.

As was mentioned in section 2, the natural ordering in C(Q) [B (Q)] is the
weakest partial preorder every other ‘‘reasonable’’ partial, or complete,
preorder should be consistent with. This consistency is taken up in the
formulation of axioms A2 and AS.

Def. 3.5. f dominates g, and will be represented by f =, gif f (0) = g (6)
for every 0eQ.

Relation =, is a partial preordering satisfying axioms Al, A2, A3, A4,
AS. Morover, relation = *¥induced in P (Q) by = ,is subset inclusion, e.i.,

A=, Bifand onlyif A ) B.

Those decisions dominated by the function 7, = o will be denoted by D,,
that is,

D, = {f; f(0)=<0 for every 0eQ}
Some of the results that now follow were advanced in Girén (1978)°.
Theorem 3.1. If relation = in C(Q) [B (Q)] satisfies A1, A2, A3, A4, AS
then there exists a unique closed convex cone K, K not being the entire space,
containing D, and with vertex at the origin, such that

f = gifand only if g-fex 3.1

Conversely, every non empty closed convex K, containing D, and with vertex
at the origin, defines a partial preordering = in C (Q) [B ()] by (3.1)

Furthermore, = is a complete preordering if and only if K is a closed half-
space containing D, and passing through the origin.

9 In this paper we give new results and some refinements and amendments of results that

appeared in Giron (1978). Proofs will appear in a subsequent paper.
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This theorem is interesting in order to examine the structure of partial
preorderings in relation to complete preorders.

Let =, be a collection of linear preorders satisfying axioms Al, A2, A3,
A4, AS, and C, where iel, a certain index set. If we define relation = by

f = g ifandonlyif f =g foreveryiel,

then = is a partial preordering satisfying Al, A2, A3, A4, AS. This relation
could be named the intersection of the class of preorderings { =, }ie/

Now, by theorem 3.1, every partial preorder is characterized by a closed
convex cone K and every complete preorder by a closed half-space, so that we
have as a corollary of the theorem the following.

Coroliary 3.1. Every partial preorder satistying Al, A2, A3, A4, A5 is the
intersection of an arbitrary collection of linear preorderings satisfying Al,
A2, A3, A4, AS and C, and conversely.

It can also be shown that the intersection of an arbitrary collection of
partial preorders satisfying Al to AS is a partial order satisfying Al to AS.

If we call ‘‘quasi-Bayesian preorder’’ then corollary 3.1 simply states that
every ‘‘quasi-Bayesian preorder’’ is the intersection of Bayesian preorders,
thus giving a precise meaning to the second interpretation of partial ignorance
mentioned in the introduction.

Next theorem, and its counterpart for case b) (see theorem 3.4),
characterizes a partial ignorance in terms of a set of probability measures.

Theorem 3.2. If relation = in C (Q) satisfies Al to A5 then there exists a
unique non empty closed convex set k* of o-additive probability measures on
the Borel field of the topological space (Q2,B;) such that

f =g ifandonlyif (fdu = {gdu for every pek*

If = further satisfies axiom C, then k* reduces to a single probability
measure.
The second part of this theorem characterizes Bayes behaviour.

Technical note. In this theorem as well as in theorem 3.4 below, k* is
closed in the weak * topology.

Next theorem characterizes the natural ordering relation = in case a),
the necessary part of the theorem being as well known result in integration
theory. In fact, it is a particular case of theorem 3.2 that characterizes total
ignorance.
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Theorem 3.3. Forevery f, ge C (Q)
f =z gifandonlyif [fdu= [gdu

for every ueQ*, where Q* is the set of all probability measures (s-additive) on
the space (2,Bg).
The corresponding theorems for case b) are:

Theorem 3.4. If relation = on B (Q) satisfies Al to A5, then there exists a
unique nonempty closed convex set k* of finitely additive probability
measures on P () such that

f =g ifandonlyif [fdP = | gdP for every Pe k*

If = further satisfies axiom C, then k* reduces to a unique probability
measure.

Theorem 3.5. For every f, ge B (1)
f =z.gifandonlyif [fdP = | gdP
for every ‘PeQ*, where Q* is the set of all finitely additive probability measures
on the space (2,P (2)).

Next two theorems refer to the comparative probability relation = * of
definition 3.4 or lemma 4.1.

Theorem 3.6. A =* B if and only if P (4) = P (B) for every P ek*,
where K* is the set of theorem 3.4.

Theorem 3.7. For every pair of events A,B eP ()
A 2 Bifandonlyif P(A4) = P (B)
for every P ek*, where k* is the set defined in theorem 3.5.

Theorem 3.6 could be used to define a system of lower and upper
probabilities associated to the CP partial relation =, in the following manner

P« (A) = Inf P (A),
P eKk*

P« (A) =Sup P(A4).
P eKk*
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Yet the properties of Px, P* will not be further explored in this paper, as
our intention was to fully characterize partial ignorance.

This section ends with a few results referring to conditional preference.
They essentially show that the intuitive ideas set forth in section 2 about the
incorporation of information given by an experiment to partial prior
ignorance, given in the form of a convex set of probability measures, through
the use of Bayes theorem are sound and have an axiomatic foundation. It is
also proven that the posterior set of probability measures is also a closed
convex set, which generalizes last theorem of section 2.

Definition of conditional preference appears in a different form that the
one given in Savage (1954) and Gir6on (1977) for the sake of mathematical
tractability.

Def. 3.6. Let fand g be two given acts. fis at least as preferred as g when
A obtains, and will denoted f = ggiven 4, ifandonlyif I, f = I, g.

Def. 3.7. Event A is null, if and only if f (8) > g (9) for every 6 ¢ Q does
notimply f = g given A.

Properties of null events derived from axioms A1l to A5 are similar to the
ones given by Savage (1954). In particular we have

(i) ¢ is a null event.

(ii) If Aisnulland B € A, then Bis null.

(iii) The union of any finite number of null events is null.
@iv) Q is not null.

In terms of the set k* null events are characterized by the following:

Theorem 3.8. A is null if and only if there exists at least a P ¢ k* such that
P (A) = o.

Next lemma is a trivial consequence of definition 3.7., but conveys an
important result in conjunction with theorem 3.4.

Lemma 3.2. If 4 is not null, relation < given A, satisfies axiom Al to
AS.

Next theorem characterizes conditional preference.

Theorem 3.9. If axioms Al to A5 hold and event A is not null, then there
exists a unique closed convex set k¥ C Q* such that

f =g given A, ifand only if, {fd P= (gd P
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for every P ¢ K.

The relation between sets k* and k% of theorems 3.4 and 3.9 is given by
the following theorem that shows that k% is precisely the set of all conditional
probability measures of K*.

Theorem 3.10. If A4 is not null, then
P (ANB)
K% = {P.eQ* ;3 P ek*; Ps(B) = ————— forevery BeP ()}
P(A)

This has a clear behavioural interpretation in terms of intersection of
orders: We know from theorems 3.4, 3.6 and corollary 3.1, that every quasi-
Bayesian preorder is the intersection of quasi-Bayesian preorders. Now,
suppose we are given the piece of information that ‘‘event A has obtained”’
and A is not null. It can be easily shown that if the partial preorder = is the
intersection of =,, for iel, then A is not null for =, for every iel. If =, is
characterized by subjective probability P, and event 4 obtains, then P; is
changed into P,, to which corresponds =, given A, so that = given 4 is
precisely the intersection of the {=, given A Jiel. This is in the spirit of
Bayesian behaviour: «Change your prior partial information through use of
Bayes theorem into the posterior partial information and act accordingly to
the principle given in theorems 3.2 and 3.4 which could be named the principle
of maximalization of expected utility».

As was pointed out at the end of section 2 partial ignorance can be
characterized by the extreme point of set k*, for as if we denote it by k*,, then
K* = con (kK¥), so that any possible distribution is a general mixture of
extreme distributions. It can be easily shown that extremal prior distributions
change into extremal posterior distributions by use of Bayes theorem.

4. ILLUSTRATIVE EXAMPLES

In the last section we give a few simple examples in order to illustrate the
form of quasi-Bayesian solutions.

In case quasi-Bayesian procedures are intended only for inferential
purposes the answer lies on the structure of the posterior set of probability
measures, or to reduce it to a minimum, all relevant information is given by
the set of extremal distribution of this set.

In the case of decision problems, a loss or utility structure is imposed
upon the inferential problem, thus reducing the decision problem to the
calculation of a few parameters of the posterior extremal distributions, those
parameters depending on the form of the loss function.

3
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a) Quasi-Bayesian confidence intervals in the normal case

Suppose Xj,...,X, is a random sample of a normal distribution N~ (w,r)
where the precision r is known and the mean w is unknown. The partial
information on w is given by the subset of normal distributions N (x,7) where 7
is known and pe[pq, p,]. (Observe that this reduces to the well-known Bayesian
case when py = uj).

A trite calculation shows that the extremal posterior set of distributions is
the subset of normal distributions ¥ (u’,7’), where

, Ty + Nrx Thy + HIX
wel ' ]
7+ nr T+ nr
and
XX

7'=71+nr withx = —
n

Then the quasi-Bayesian confidence interval for w for a given confidence
coefficient p is

T, + nrx 1 \r2 T, + Nrx 1 172
& -x,,< ) RN ,
T + nr T + nr T + nr T + nr

where

q>()\p)'¢(')\p)=p'

Observe that any of the distributions of the posterior set (not only the
extremal ones which are normal) assigns to this interval a probability greater
than p.

Let us now see how this interval compares with a Bayesian confidence
interval for any prior distribution compatible with our partial information.

Suppose the prior distribution is N (u,7) with pe[u,, u,]. For a sample size
n’ the Bayesian p-confidence interval is

w+n'r'x’ 1 12 mtn'rx’ 1 12
>\< ) , o, ,
T+n'r T+nr’ T+n'r T+n'r

X
wherex’ = ——

nl

It is evident that for the same sample size the quasi-Bayesian interval is
wider than the corresponding Bayesian one. If we now equate the width of the
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two intervals for sample sizes n and n’ respectively we obtain

erp)2, 2,

T+nr T+n'r

It is interesting to note that the above relation does not depend on x, x’
and it obviously implies that n=n". The difference n-n’ could be interpreted
as the ‘‘additional sample size’’ for which partial prior information could be
considered as total prior information.

b) Quasi-Bayesian estimators for the mean of a normal distribution

Suppose the same situation of normal sampling as in example a) with the
same partial information. If the loss function for this decision problem is

L(W,d) = (w'd)z

the quasi-Bayesian estimator is seen to be

7+ nr 7+ nr
which reduces to a single point if either p,-u; — 0, 7—0, or n— o©

v nri s
6*(x1,...,x,.)=[ml nrx ’ T nrx] @.1)

It deserves mentioning that the quasi-Bayesian estimator in this case is the
union of Bayes estimators corresponding to the extremal posterior
distribution. Any Bayesian estimator corresponding to a non extremal
posterior distribution belongs to 6*.

Note that if partial information reduces to the following: ‘‘Prior
information is normal N (u, 7) with p = Apy+(1-N)p,, 0<A =< 17, the quasi-
Bayesian estimator is the same as the one given by (4.1)

¢) Quasi-Bayesian testing of hypotheses
In this section we consider the simplest example of testing a simple null
hypotheses versus a simple alternative hypotheses, so that the two states, two
actions, decision problem is,

B 6,

o a a,b>0
a, b o

ay
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where 6, stands for the null hypotheses and 6, for the alternative; a, accept 6,
and a, reject 0, (and accept 6,, accordingly)

Partial information in this example is given in the form of a closed
interval that represents the range of possible values of prior probability on the
null hypotheses, that is

P [0] € [&0, £4] O=f =& <1

If we represent the density (with respect to some dominating measure) of
a sample of size one, when 6; (i=0,1) is true by f;, then the quasi-Bayes
procedure for this decision problem when a random sample of size #n is taken,
which we could name ‘‘quasi-Bayesian test’’, is the following

aoif Ty X o b o

Jolx:) a 1§

5*()(1,...,)(,,) = al lf I—I:'1=1 fl(XI) = i El
Jo(x:) a 1-§

%o < 7., f1(x:) < i £

. b
{aOsalyl lf -
a 1-§ Tz folx:) a 1-&

This results needs some explanation: If the sample observed is such that
8*(x4,...,X,) €quals a, or a,, there is no problem, and the null hypotheses is
accepted or rejected, respectively. If, however, 6*(x,...,X,) = {ay, a;} then no
single course of action is possible.

This means that our partial (posterior) information is not enough as to
discriminate between the two actions so that new sample information is
needed and a computation of the new likelihood ratio may show that
8*(X1,...,Xns Xasy) €quals either ag or a; or if 6*(xy,...,XuXne) = {a@g, a1} @ new
sample is required, and so on. This brings out the strong analogy between the
quasi-bayesian test and Wald’s sequential probability ratio test with barriers

A= b & andB=£ b
a 1-& a 1-&

I

in the case the cost of new observations is not included within the structure of
the decision problem.
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