A NOTE ON STABILITY OF MULTIVARIATE DISTRIBUTION

Wei-Bin Zeng

ABSTRACT

In this note, we give an elementary proof of a characterization for stability of multivariate distributions by considering a functional equation.

AMS 1980 Subject Classification: Primary 62E10, 60E7; Secondary 39B20.

<u>Key Words</u>: Characteristic function, stable law, characteristic exponent, functional equation.

1. Introduction.

A probability measure μ on \mathbb{R}^d is said to be stable if there are sequences $\{X_n\}$, $\{a_n\}$, and $\{b_n\}$ such that $\{X_n\}$ are independent and identically distributed \mathbb{R}^d -valued random vectors, $a_n \in \mathbb{R}^d$, $b_n > 0$, and the distribution of $b_n^{-1} \sum_{j=1}^n X_j - a_n$ converges to μ . As is well known, μ is stable if and only if, for each $c_1 > 0$ and $c_2 > 0$, there exist c > 0 and $a \in \mathbb{R}^d$ such that the characteristic function $\hat{\mu}$ of μ satisfies

(1)
$$\hat{\mu}(c_1t)\hat{\mu}(c_2t) = \hat{\mu}(ct)e^{ia't}, \quad \forall t \in \mathbb{R}^d.$$

In this case, c is uniquely determined by $c = (c_1^{\alpha} + c_2^{\alpha})^{\frac{1}{\alpha}}$, with the characteristic exponent $0 < \alpha \le 2$, independent of c_1 and c_2 .

It is natural to ask what if we only assume (1) is satisfied by a single collection of c_1 , c_2 , c and a. The purpose of this note is to present an elementary proof of the answer: in most of the cases, this much weaker condition characterizes the stability of μ . Our

approach is to reduce the characterization problem to solving a functional equation. The main theorem in this note is applied in Zeng (1989) to characterize multivariate stable distributions via random linear statatistics.

2. The Main Theorem

The main result of this note is

Theorem 1. A probability measure μ on \mathbb{R}^d is stable if and only if there exist positive numbers c_1, c_2, c and $a \in \mathbb{R}^d$ such that $\frac{c_1}{c}$ and $\frac{c_2}{c}$ are non-commensurable (i.e., there are no integers m and n such that $\left(\frac{c_1}{c}\right)^m = \left(\frac{c_2}{c}\right)^n$), and the equation (1) holds.

We first prove a lemma.

Lemma 1. Let $f:(0,\infty)\to \mathbb{R}$ be a monotone function, and let $a,b\in(0,1)$ be non-commensurable. If

(2)
$$f(ax) + f(bx) = f(x), \qquad \forall x > 0,$$

then $f(x) = cx^{\alpha}$, where $a^{\alpha} + b^{\alpha} = 1$, and c is a constant.

Proof. Without loss of generality, we can assume that f is nondecreasing, not identically zero, a < b, and a + b = 1 (i.e., $\alpha = 1$).

Let $c = \inf_{x>0} \left(\frac{f(x)}{x}\right)$, then $c \neq 0$. For any $\delta > 0$, it is clear that if $kx \leq f(x) \leq Kx$ on $(a\delta, \delta)$ for some k and K, then the same inequalities hold on $(a\delta, \infty)$. this implies that

(3)
$$c = \inf_{0 < x \le \delta} \left(\frac{f(x)}{x} \right),$$

where δ is any positive number. We will show that for any $\epsilon > 0$, $\frac{f(x)}{x} < c + \epsilon$ for all x > 0, so that the lemma follows.

Since a and b are non-commensurable, the set $\{a^mb^n: m, n \in \mathbb{N}\}$ can be indexed as a decreasing sequence $1 = a_0 > a_1 > a_2 > \cdots$, and $\lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}}\right) = 1$. Let $\epsilon_1 = \frac{\epsilon}{2|c|}$ (since $c \neq 0$), then there exists n_0 such that

(4)
$$\frac{a_n}{a_{n+1}} < 1 + \epsilon_1, \quad \text{for all } n \ge n_0.$$

In light of (3), we can also find $x_0 < \delta$ with

$$\frac{f(x_0)}{x_0} < c + \epsilon_2,$$

where $\epsilon_2 = aa_{n_o} \frac{\epsilon}{2}$. By applying the equation (2) repeatedly, we have

$$f(x_0) = f(a_n x_0) + \sum_{j \in I} f(a_j x_0),$$

where $I \subset \mathbb{N}$ is a finite set, $a_n + \sum_{j \in I} a_j = 1$, and $n \geq n_0$. It follows that

$$f(a_n x_0) = f(x_0) - \sum_{j \in I} f(a_j x_0),$$

and hence

(5)
$$f(a_n x_0) < cx_0 + \epsilon_2 x_0 - \sum_{j \in I} ca_j x_0 = c(a_n x_0) + \epsilon_2 x_0,$$

for all $n \ge n_0$. Let $t \in (aa_{n_0}x_0, a_{n_0}x_0]$, then $t \in (a_{n+1}x_0, a_nx_0]$ for some $n \ge n_0$. The monotonicity of f along with (4) and (5) yield that

$$f(t) \le f(a_n x_0) < c(a_n x_0) + \epsilon_2 x_0 < ct + \epsilon t,$$

i.e.,

$$\frac{f(t)}{t} < c + \epsilon, \qquad \forall t \in (aa_{n_0}x_0, a_{n_0}x_0],$$

and the inequality is valid for all x > 0.

Remark. If we assume f is nonnegative, Lemma 1 becomes a special case of the Lau-Rao's theorem (1982) on the integrated Cauchy functional equation. We give here a direct simple proof, inspired by Shanbhag (1977), without the nonnegativeness assumption. Following the same lines with slight modification, we can show that the some conclusion holds for a more general functional equation

$$f(x) = \sum_{j=1}^{n} d_j f(a_j x),$$

where the a_j 's are not commensurable, and $\sum_{j=1}^n d_j a_j^{\alpha} = 1$.

Proof of Theorem 1. Let μ be a probability measure of \mathbb{R}^d , $\hat{\mu}$ its characteristic function. If μ is stable with characteristic exponent α , then for any $c_1 > 0$ and $c_2 > 0$, there exist c > 0 and $a \in \mathbb{R}^d$ such that the characteristic function $\hat{\mu}$ of μ satisfies the equation (1) and $c^{\alpha} = c_1^{\alpha} + c_2^{\alpha}$. This equation on c's can be written as $\left(\frac{c_1}{c}\right)^{\alpha} + \left(\frac{c_2}{c}\right)^{\alpha} = 1$. To show the existence of non-commensurable $\frac{c_1}{c}$ and $\frac{c_2}{c}$, we observe the function $\phi(x) = \frac{\log(1-x^{\alpha})}{\alpha \log x}$ defined on (0,1). The continuity of ϕ on the interval (0,1) implies that for almost all of the pairs $\frac{c_1}{c}$ and $\frac{c_2}{c}$, $\log\left(\frac{c_1}{c}\right)/\log\left(\frac{c_2}{c}\right)$ is irrational, and hence the neccessity follows.

Conversely, let c_1, c_2, c and a be such that

$$\hat{\mu}(c_1 t)\hat{\mu}(c_2 t) = \hat{\mu}(c t)e^{ia't}, \quad \forall t \in \mathbb{R}^d,$$

and $\beta_1 = \frac{c_1}{c}$ and $\beta_2 = \frac{c_2}{c}$ are non-commensurable. Then $c \geq c_j$, j = 1, 2, with the equality only in trivial case, and hence equation (1) can be rewritten as

(6)
$$\hat{\mu}(\beta_1 t)\hat{\mu}(\beta_2 t) = \hat{\mu}(t)e^{i\gamma' t}, \quad \forall t \in \mathbb{R}^d.$$

where $0 < \beta_1$, $\beta_2 < 1$, excluding the trivial case, and $\gamma \in \mathbb{R}^d$. Notice that the equation (6) also implies that μ is infinitely divisible, the Lévy canonical representation gives

$$\hat{\mu}(t) = \exp\left\{iP_1(t) + P_2(t) + \int_{\mathbf{R}^d} \left(e^{iw't} - 1 - \frac{iw't}{1 + |w|^2}\right) dV(w)\right\},\,$$

where P_1 and P_2 are homogeneous polynomials of degree one and two, respectively, V is a measure on \mathbb{R}^d such that $V(\{0\}) = 0$ and

(7)
$$\int_{\mathbf{R}^d} \left(\frac{|w|^2}{1 + |w|^2} \right) dV(w) < \infty.$$

Let α be the unique positive number determined by $\beta_1^{\alpha} + \beta_2^{\alpha} = 1$. Then the spectral measure V satisfies

(8)
$$dV\left(\frac{w}{\beta_1}\right) + dV\left(\frac{w}{\beta_1}\right) = dV(w).$$

Given $B \subseteq \mathbb{R}_+$ and $B \subseteq S^d-1$ (the unit sphere in \mathbb{R}^d), let EB denote the set of w such that w = su, $s \in E$, $u \in B$. The equation (8) implies that

$$\int_{EB} dV \left(\frac{w}{\beta_1}\right) + \int_{EB} dV \left(\frac{w}{\beta_2}\right) = \int_{EB} dV(w).$$

Given $B \subseteq S^{d-1}$, if we let $N(x, B) = \int_{(x, \infty)B} dV(w)$, then N(x, B) is a monotone decreasing function on $(0, \infty)$, satisfying

$$\left(9\right) \qquad \qquad N\left(\frac{x}{\beta_{1}},B\right)+N\left(\frac{x}{\beta_{2}},B\right)=N\left(x,B\right), \qquad \forall x>0,$$

Since β_1 and β_2 are non-commensurable, it follows from Lemma 1 that $N(x, B) = c(B)x^{-\alpha}$, for any Borel set $B \subseteq S^{d-1}$, and the spectral measure V should be of the form

(10)
$$V(EB) = \int_{EB} \frac{ds d\Phi(u)}{s^{\alpha+1}}, \quad \text{for } E \subseteq \mathbb{R}_+, \quad B \subseteq S^{d-1},$$

where Φ is a positive finite measure on the unit sphere S^{d-1} . Hence, the equation (1) together with (7) and (10) yield that $0 < \alpha \le 2$, unless μ is degenerate, and the spectral measure V is zero if $\alpha = 2$, in which case μ is a normal law, or otherwise, V is given by (10), and the quadratic form $P_2 = 0$, so that μ is a stable law with characteristic exponent $0 < \alpha < 2$.

3. Further characterizations of stable laws.

The following characterizations of multivariate stable distributions through identically distributed linear statistics (e.g., see Gupta et al) can be easily derived from Theorem 1.

Theorem 2. Let X_1 , X_2 and X_3 be independent and identically distributed random vectors in \mathbb{R}^d . Then X_1 has a multivariate stable distribution if and only if there exists α , $0 < \alpha \le 2$, and $a_1, a_2 \in \mathbb{R}^d$, such that $2^{1/\alpha}X_1 + a_1$ and $X_1 + X_2$, $3^{1/\alpha}X_1 + a_2$ and $X_1 + X_2 + X_3$ are identically distributed, respectively.

Proof. Let $\hat{\mu}$ denote the characteristic function of X_1 . The given conditions imply that $X_1+a,\ a\in\mathbb{R}^d$, is identically distributed with $\left(\frac{2}{3}\right)^{\frac{1}{\alpha}}X_1+\left(\frac{1}{3}\right)^{\frac{1}{\alpha}}X_2$, and we have

$$\hat{\mu}\Bigg(\left(\frac{2}{3}\right)^{\frac{1}{\alpha}}t\Bigg)\,\hat{\mu}\Bigg(\left(\frac{1}{3}\right)^{\frac{1}{\alpha}}t\Bigg)=\hat{\mu}(t)e^{ia't},\qquad\forall t\in\mathbb{R}^d.$$

Since $\left(\frac{2}{3}\right)^{\frac{1}{\alpha}} + \left(\frac{1}{3}\right)^{\frac{1}{\alpha}}$ are not commensurable, Theorem 1 implies that $\hat{\mu}$ is stable with characteristic exponent α .

We conclude with two special cases when $\alpha = 1$ and $\alpha = 2$.

Corollary. Let X_1, X_2 and X_3 be independent and identically distributed random vectors in \mathbb{R}^d . Then

- (1). X_1 has a multivariate stable distribution with Cauchy marginals if $2X_1$ and $X_1 + X_2$, $3X_1$ and $X_1 + X_2 + X_3$ are identically distributed, respectively.
- (2). X_1 has a multivariate normal distribution (possibly degenerate) with zero location vector if and only if $\sqrt{2}X_1$ and $X_1+X_2,\sqrt{3}X_1$ and $X_1+X_2+X_3$ are identically distributed, respectively.

References

Gupta, A.K., T.T. Nguyen and W.B. Zeng (1988), "On a conditiona Cauchy functional equation of several variables and a characterization of multivariate stable distributions", (submitted).

Lau, K.S. and C.R. Rao (1982), "Integrated Cauchy functional equation and characterization of exponential law", Sankhya A. 44, 72-90.

Lévy, P. (1937), Théorie de l'Addition de Variables Aléatoires, Gauthier-Villars, Paris.

Shanbhag, D.N. (1977), "An extension of Rao-Rubin characterization of the Possion distributions", J. Appl. Prob., 14, 640-646.

Zeng, W.B. (1989), "On a characterization of multivariate stable distributions", (submitted).

Department of Mathematics University of Louisville Louisville, KY 40292