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ON EXACT CONDITIONALS

ENRIC TRILLAS

1. Introduction.
1.1. Let it be E a Boolean Algebra of propositions a, b, ¢, ... of which those belonging

to a previous given subset T C E are true and the others in F' = E — T are false.

When, in Commonsense Reasoning, it is affirmed a conditional relation
”If a, then b”
(for short a => b) it is also affirmed that a’ (b+b')+ab = o’ +b € T, provided that boolean
operations + of join, of meet and ’ of negation verify the properties: a € T iff @’ € F;
abeTiffaeTandbeT,anda+be T iff a€ T or b € T. Then, it is supposed that

the relation of Material Conditional associated with T
a—-rb iff a+beT,

contains =:=>C— [4].

The frequently made hypothesis =2 —7 conveys the undesired consequence of a =
b, if a € F. That fact, important in Formal Reasoning, is not usual in Commonsense
Reasoning [1]. It is rare to affirm as a piece of Commonsense Reasoning, something like

"If Madrid is the capital of France, then this is a paper on Logic”.

no matter if "this is a paper on Logic” is true or false.

What is actualy supposed satisfies a conditional relation is only the so-called Modus
Ponens Rules:

If «a€T and a=0b thenbeF,
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that implies the Modus Tollens Rule:

If bcF and a=b, thenack,

Definition 1.1.1. Given a set E and a non-empty subset 7' C FE, a binary relation on E,

=C E x E, is a T- conditional on E if:
a€T and a=b implies beT.

It is clear that if = is a T-conditional on E and &> is another relation on E such
that ~>C=>, then ~> is a T-conditional on E. Sometimes, when 1.1.1. holds, it is said
that T is a t-set (t for true) or a Logic State for the relational structure (E,=).

ET={1},asa —1 biff a' +b,=1if a <, it is clear that the {1}-Material
Conditional in a Boolean Algebra is its partial order. 1 is the largest element of the
Boolean Algebra E.

In what follows we will study such kind of exact relations, T- conditionals (of which
T-Material Conditional is the best known) without using any algebraic structure on the

ground proposition’s set E. We speak of exact as more restrictive than inexact, in the

sense of [2] and [4].

1.2 To chain pieces of reasoning it is convenient that a relation => on E, modelizing a

conditional, be transitive. But if it is not the case we can extend = to its transitive clausure

=4 a = b means that a = a;, a1 = as,...,a, = b, for some propositions ay,...,a, in E.

It should be realized that =C=;.

Theorem 1.2.1. A relation = verifies the Rule of Modus Ponens if and only if =; does.

Proof. If =, is a T-conditional, = is a T-conditional. Reciprocally, if a € T and a = b,
isa€Tand(a = a1, a1 = az,...,a, > b)ora€T,and a; € T, and a; € T,..., and

a, €T and be T.
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It is frequently supposed that a T-conditional satisfies the weak condition of reflexivity:
a = a, for each a € E, translating the usual affirmation ”If a, then a”. If relation = is

not reflexive, it can be extended to its reflexive clausure
=,== U{(a,a);a € E}.
Of course =C=,.
Theorem 1.2.2. A relation => is a T-conditional if and only if =, is a T-conditional.

Proof. If =, is a T-conditional is obvious that = does. Reciprocally, if a € T and a =, b,

itisa=b(andb€T)oraz#bandthena=bandbeT.

If = is not transitive and reflexive, we can proceed from => to =>4
=>C=,C=rt,

and = is a T-conditional iff =,; is a T-conditional.

2. T-conditionals.

Next result shows an intrinsec representation of the Material Conditional.

Theorem 2.1. Given (E,T), the relation —p= (F x E) U (T x T) is the gredtest T-

conditional.

Proof. Let’s consider the set Cr = {=C E x E;= is a T-conditional}; that set is non-

empty, for example T' x T belongs to Cr. Consider

—rr= U =
=€Cr
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Such relation is a T-conditional: if a — b, it should be also a = b for some =€ Cr,
and then if a € T it is b € T. Obviously — 7 is the greatest T-conditional.

If a € T, for having a — 7 b for some b € E, it should be b € T. But if a € F, it is
always a — 7 b for any b € E, because =,= T x T U {(a, b)} is a T-conditional such that
a =>4 b. Then —r=(Fx E)U(T xT).

Corollary. A relation =C E x E is a T- conditional if and only if =C— 1.

Proof. By theorem 2.1 if = is a T-conditional, then =C— 7. Reciprocally, if a € T and

a=>bitisa €T and a —7 b and, being — 1 a T-conditional, b € T'.

Theorem 2.3. The T-Material Conditional is a Preorder.

Proof. Fora€ E,itisa€ T and a =T a,oritisa € F and, as a € E, it is also a —7 a.
Suppose a =7 band b —»pc. fa€ F,asc€ E,itisa -7 ¢;ifa € T, then b € T and

ceT,and a —rc.

Corollary. Given a set A C E, the relation — 4= (E — A) Xx EU A x A is a preorder, the
preorder by A.

If = is a T-conditional such that when a € F it is @ = b for any b € E, then
FxEC=>C—r.

If {1} C T'it is = 1j)C—r and, in that restricted sense of monotonicity, the classical

the conditional a — b, for any set T containing 1.

3. On consequences and conditionals.

Let’s consider for any relation =>C E X E the mapping C=, : P(E)— {0} — P(E)—{0},



On ezact conditionals 141
given by [3]:

Co(T)={z€E; Ja€T:a= z},

for each T C E, T # 0. It is obvious that C is monotone: if A C B then C4(A) C

C~(B). It is also obvious that =;C=>, implies C;(A4) C C2(A).

Theorem 3.1. Relation => is a T-conditional, for § # T C E, if and only if C5(T) C T.

Proof.  Co(T) C T, thenifa € Tanda = b, asb € Co(T),itisb € T, and = is
T-conditional. Reciprocally, if => is a T- conditional and z € C5(T'), as a = z for some
aeT,itisxzeT.

It should be pointed out that, if T is finite, C(T') should not be also finite. Just
consider E = N, == N x N and T = {1}: it is Co(T) = N. Nevertheless, being E finite

or = finite, if T is finite so it is C=(T).

Theorem 3.2. A relation = is reflexive if and only if T C C=(T) for any § # T C E.

Proof. If = is reflexive, as @ = a for each a € T, it is @ € Co(T) and T C Co(T).

Reciprocally, for any a € E it is {a} C Cx({a}), and a = a.

Corollary. A reflexive relation = is a T-conditional iff T = C,(T).

Theorem 3.3. A relation = is transitive if and only if Co(Cs(T)) C Cs(T), for any

non-empty subset T' of E.

Proof. If a = b and b = ¢, from b € C_,({a}) and c € C.({b}) it follows c € C({b}) C
C=(C=({a}), and a = c. Reciprocally, being => transitive, if z € C5(C=(T)) it exists
some b € C(T) such that b = z; but it also exists some ¢ € T such that ¢ = b: then

c=>z,orz € Co(T).
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Corollary. If = is transitive, it is a C=(T)-conditional for any § # T C E.
Corollary. If = is a preorder, it is a C(T)-conditional and T C C(T)forany § # T C E.

Corollary. A reflexive relation => is transitive iff Co(C=(T)) = Co(T) for each T C E,
T #0.

Theorem 3.4. Mapping C., is a Tarski’s Consequences Operator [3] iff = is a preorder.

Proof. Is an inmediate consequence of theorem 3.2 and 3.3. Then, being = a preorder, it

has complete sense to say that b is a consequence of a, each time that a = b.

Theorem 3.5. If = is a preorder, for any § # T C E, it is C.(T') the smallest subset of E

that contains T and for which = is a conditional.

Proof. The set C = {X C E;T C X and = is and X-conditional} is not-empty because

E € C. Let it be

It is T C T; then Co(T) C C(T). Itis T C Co(T); if z € Co(T) it exists some a € T
such that @ = z and, as = is and T-conditional, z € T and C:(—T) CT;but as = is a

C—.(T)-conditional it is T C C=(T') and, finally, T = C(T).

Corollary. Given a preorder => on F and a subset T C E, T # 0, it suffices to extend T
to Co(T) for having that = is a C(T)-conditional, provided that => does not to be a
T-conditional.

Then, each time that a = b for both a and b in T, we can say that b is a consequence
of a. It should be remarked that, if = is not a preorder it can be extended to the preorder

=, for which follows the last assertion. In any case, if = is not a preorder, but it is a
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T-conditional, as = C— 7, it follows
Co(T) C C_u(T),

and the each z € C(T") can be considered as a consequence of T'.

Theorem 3.6. Given (E,=) and a function g : E — [0,1] such that "If a = b, then

p(a) < p(b)”, then, for each € € (0,1], is = ap™! ([¢, 1])- conditional.

Proof. I a € p~([e,1]) and a = b, it is € < p(a) < 1 and p(a) < p(b) < 1, then
e<p(b) <1andbe pu([e1]).
For example, if E is a Boolean Algebra and p is a probability on F, as a < b implies

p(a) < p(b), the partial order < is a P,-conditional, being
P.={z€E:e<p(z) <1},

for each € in (0,1].

The last theorem opens the door to exactify some parts of Approximate Reasoning

(5]
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