ON EXACT CONDITIONALS

ENRIC TRILLAS

1. Introduction.

1.1. Let it be E a Boolean Algebra of propositions a, b, c, ... of which those belonging to a previous given subset $T \subset E$ are <u>true</u> and the others in F = E - T are <u>false</u>.

When, in Commonsense Reasoning, it is affirmed a conditional relation

"If
$$a$$
, then b "

(for short $a\Rightarrow b$) it is also affirmed that a' $(b+b')+ab=a'+b\in T$, provided that boolean operations + of join, of meet and ' of negation verify the properties: $a\in T$ iff $a'\in F$; $a.b\in T$ iff $a\in T$ and $b\in T$, and $a+b\in T$ iff $a\in T$ or $b\in T$. Then, it is supposed that the relation of Material Conditional associated with T:

$$a \to_T b$$
 iff $a' + b \in T$,

contains $\Rightarrow :\Rightarrow \subset \to_T [4]$.

The frequently made hypothesis $\Rightarrow \triangleq \to_T$ conveys the undesired consequence of $a \Rightarrow b$, if $a \in F$. That fact, important in Formal Reasoning, is not usual in Commonsense Reasoning [1]. It is rare to affirm as a piece of Commonsense Reasoning, something like

"If Madrid is the capital of France, then this is a paper on Logic".

no matter if "this is a paper on Logic" is true or false.

What is actualy supposed satisfies a conditional relation is only the so-called <u>Modus</u>

<u>Ponens Rules:</u>

If
$$a \in T$$
 and $a \Rightarrow b$, then $b \in F$,

138 E. Trillas

that implies the Modus Tollens Rule:

If $b \in F$ and $a \Rightarrow b$, then $a \in F$,

<u>Definition 1.1.1.</u> Given a set E and a non-empty subset $T \subset E$, a binary relation on E, $\Rightarrow \subset E \times E$, is a T- conditional on E if:

 $a \in T$ and $a \Rightarrow b$ implies $b \in T$.

It is clear that if \Rightarrow is a T-conditional on E and \approx > is another relation on E such that \approx > \subset \Rightarrow , then \approx > is a T-conditional on E. Sometimes, when 1.1.1. holds, it is said that T is a t-set (t for true) or a Logic State for the relational structure (E, \Rightarrow) .

If $T = \{ 1 \}$, as a $\rightarrow_1 b$ iff a' + b = 1 iff $a \leq b$, it is clear that the $\{1\}$ -Material Conditional in a Boolean Algebra is its partial order. 1 is the largest element of the Boolean Algebra E.

In what follows we will study such kind of exact relations, T- conditionals (of which T-Material Conditional is the best known) without using any algebraic structure on the ground proposition's set E. We speak of exact as more restrictive than inexact, in the sense of [2] and [4].

1.2 To chain pieces of reasoning it is convenient that a relation \Rightarrow on E, modelizing a conditional, be transitive. But if it is not the case we can extend \Rightarrow to its <u>transitive clausure</u> $\Rightarrow_t: a \Rightarrow_t b$ means that $a \Rightarrow a_1, a_1 \Rightarrow a_2, ..., a_n \Rightarrow b$, for some propositions $a_1, ..., a_n$ in E. It should be realized that $\Rightarrow \subset \Rightarrow_t$.

Theorem 1.2.1. A relation \Rightarrow verifies the Rule of Modus Ponens if and only if \Rightarrow_t does.

Proof. If \Rightarrow_t is a T-conditional, \Rightarrow is a T-conditional. Reciprocally, if $a \in T$ and $a \Rightarrow_t b$, is $a \in T$ and $(a \Rightarrow a_1, a_1 \Rightarrow a_2, \dots, a_n \Rightarrow b)$ or $a \in T$, and $a_1 \in T$, and $a_2 \in T, \dots$, and $a_n \in T$ and $b \in T$.

It is frequently supposed that a T-conditional satisfies the weak condition of reflexivity: $a \Rightarrow a$, for each $a \in E$, translating the usual affirmation "If a, then a". If relation \Rightarrow is not reflexive, it can be extended to its <u>reflexive clausure</u>

$$\Rightarrow_r \Rightarrow \cup \{(a,a); a \in E\}.$$

Of course $\Rightarrow \subset \Rightarrow_r$.

<u>Theorem 1.2.2.</u> A relation \Rightarrow is a T-conditional if and only if \Rightarrow_r is a T-conditional.

Proof. If \Rightarrow_r is a T-conditional is obvious that \Rightarrow does. Reciprocally, if $a \in T$ and $a \Rightarrow_r b$, it is a = b (and $b \in T$) or $a \neq b$ and then $a \Rightarrow b$ and $b \in T$.

If \Rightarrow is not transitive and reflexive, we can proceed from \Rightarrow to \Rightarrow_{rt} :

$$\Rightarrow \subset \Rightarrow_r \subset \Rightarrow_{rt}$$

and \Rightarrow is a T-conditional iff \Rightarrow_{rt} is a T-conditional.

2. T-conditionals.

Next result shows an intrinsec representation of the Material Conditional.

Theorem 2.1. Given (E,T), the relation $\to_T = (F \times E) \cup (T \times T)$ is the greatest T-conditional.

Proof. Let's consider the set $\mathcal{C}_T = \{ \Rightarrow \subset E \times E; \Rightarrow \text{ is a T-conditional} \}$; that set is non-empty, for example $T \times T$ belongs to \mathcal{C}_T . Consider

$$\longrightarrow_T = \bigcup_{\Rightarrow \in \mathcal{C}_T} \Rightarrow$$

140 E. Trillas

Such relation is a T-conditional: if $a \to_T b$, it should be also $a \Rightarrow b$ for some $\Rightarrow \in \mathcal{C}_T$, and then if $a \in T$ it is $b \in T$. Obviously \longrightarrow_T is the greatest T-conditional.

If $a \in T$, for having $a \longrightarrow_T b$ for some $b \in E$, it should be $b \in T$. But if $a \in F$, it is always $a \longrightarrow_T b$ for any $b \in E$, because $\Rightarrow_* = T \times T \cup \{(a,b)\}$ is a T-conditional such that $a \Rightarrow_* b$. Then $\longrightarrow_T = (F \times E) \cup (T \times T)$.

<u>Corollary</u>. A relation $\Rightarrow \subset E \times E$ is a T- conditional if and only if $\Rightarrow \subset \to_T$.

Proof. By theorem 2.1 if \Rightarrow is a T-conditional, then $\Rightarrow \subset \to_T$. Reciprocally, if $a \in T$ and $a \Rightarrow b$ it is $a \in T$ and $a \to_T b$ and, being $\longrightarrow_T a$ T-conditional, $b \in T$.

Theorem 2.3. The T-Material Conditional is a Preorder.

Proof. For $a \in E$, it is $a \in T$ and $a \to_T a$, or it is $a \in F$ and, as $a \in E$, it is also $a \to_T a$. Suppose $a \to_T b$ and $b \to_T c$. If $a \in F$, as $c \in E$, it is $a \to_T c$; if $a \in T$, then $b \in T$ and $c \in T$, and $a \to_T c$.

<u>Corollary</u>. Given a set $A \subset E$, the relation $\rightarrow_A = (E - A) \times E \cup A \times A$ is a preorder, the preorder by A.

If \Rightarrow is a T-conditional such that when $a \in F$ it is $a \Rightarrow b$ for any $b \in E$, then $F \times E \subset \Rightarrow \subset \to_T$.

If $\{1\} \subset T$ it is $\to_{\{1\}} \subset \to_T$ and, in that restricted sense of monotonicity, the classical material conditional $\to_{\{1\}} = \le$ is the more conservative: every conditional $a \le b$ implies the conditional $a \to_T b$, for any set T containing 1.

3. On consequences and conditionals.

Let's consider for any relation $\Rightarrow \subset E \times E$ the mapping $\mathbb{C}_{\Rightarrow} : \mathsf{P}(E) - \{\emptyset\} \to \mathsf{P}(E) - \{\emptyset\}$,

given by [3]:

$$\mathbb{C}_{\Rightarrow}(T) = \{ x \in E; \ \exists a \in T : a \Rightarrow x \},\$$

for each $T \subset E, T \neq \emptyset$. It is obvious that \mathbb{C}_{\Rightarrow} is monotone: if $A \subset B$ then $\mathbb{C}_{\Rightarrow}(A) \subset \mathbb{C}_{\Rightarrow}(B)$. It is also obvious that $\Rightarrow_1 \subset \Rightarrow_2$ implies $\mathbb{C}_{\Rightarrow 1}(A) \subset \mathbb{C}_{\Rightarrow 2}(A)$.

<u>Theorem 3.1.</u> Relation \Rightarrow is a T-conditional, for $\emptyset \neq T \subset E$, if and only if $\mathbb{C}_{\Rightarrow}(T) \subset T$.

Proof. If $C_{\Rightarrow}(T) \subset T$, then if $a \in T$ and $a \Rightarrow b$, as $b \in C_{\Rightarrow}(T)$, it is $b \in T$, and \Rightarrow is T-conditional. Reciprocally, if \Rightarrow is a T-conditional and $x \in C_{\Rightarrow}(T)$, as $a \Rightarrow x$ for some $a \in T$, it is $x \in T$.

It should be pointed out that, if T is finite, $C_{\Rightarrow}(T)$ should not be also finite. Just consider $E = \mathbb{N}, \Rightarrow = \mathbb{N} \times \mathbb{N}$ and $T = \{1\}$: it is $C_{\Rightarrow}(T) = \mathbb{N}$. Nevertheless, being E finite or \Rightarrow finite, if T is finite so it is $C_{\Rightarrow}(T)$.

<u>Theorem 3.2.</u> A relation \Rightarrow is reflexive if and only if $T \subset \mathbb{C}_{\Rightarrow}(T)$ for any $\emptyset \neq T \subset E$.

Proof. If \Rightarrow is reflexive, as $a \Rightarrow a$ for each $a \in T$, it is $a \in \mathbb{C}_{\Rightarrow}(T)$ and $T \subset \mathbb{C}_{\Rightarrow}(T)$. Reciprocally, for any $a \in E$ it is $\{a\} \subset \mathbb{C}_{\Rightarrow}(\{a\})$, and $a \Rightarrow a$.

<u>Corollary</u>. A reflexive relation \Rightarrow is a T-conditional <u>iff</u> $T = \mathbb{C}_{\Rightarrow}(T)$.

Theorem 3.3. A relation \Rightarrow is transitive if and only if $\mathbb{C}_{\Rightarrow}(\mathbb{C}_{\Rightarrow}(T)) \subset \mathbb{C}_{\Rightarrow}(T)$, for any non-empty subset T of E.

Proof. If $a \Rightarrow b$ and $b \Rightarrow c$, from $b \in \mathbb{C}_{\Rightarrow}(\{a\})$ and $c \in \mathbb{C}_{\Rightarrow}(\{b\})$ it follows $c \in \mathbb{C}_{\Rightarrow}(\{b\}) \subset \mathbb{C}_{\Rightarrow}(\mathbb{C}_{\Rightarrow}(\{a\}))$, and $a \Rightarrow c$. Reciprocally, being \Rightarrow transitive, if $x \in \mathbb{C}_{\Rightarrow}(\mathbb{C}_{\Rightarrow}(T))$ it exists some $b \in \mathbb{C}_{\Rightarrow}(T)$ such that $b \Rightarrow x$; but it also exists some $c \in T$ such that $c \Rightarrow b$: then $c \Rightarrow x$, or $x \in \mathbb{C}_{\Rightarrow}(T)$.

142 E. Trillas

<u>Corollary</u>. If \Rightarrow is transitive, it is a $\mathbb{C}_{\Rightarrow}(T)$ -conditional for any $\emptyset \neq T \subset E$.

<u>Corollary</u>. If \Rightarrow is a preorder, it is a $\mathbb{C}_{\Rightarrow}(T)$ -conditional and $T \subset \mathbb{C}_{\Rightarrow}(T)$ for any $\emptyset \neq T \subset E$.

<u>Corollary</u>. A reflexive relation \Rightarrow is transitive <u>iff</u> $\mathbb{C}_{\Rightarrow}(\mathbb{C}_{\Rightarrow}(T)) = \mathbb{C}_{\Rightarrow}(T)$ for each $T \subset E$, $T \neq \emptyset$.

Theorem 3.4. Mapping \mathbb{C}_{\Rightarrow} is a Tarski's Consequences Operator [3] iff \Rightarrow is a preorder.

Proof. Is an inmediate consequence of theorem 3.2 and 3.3. Then, being \Rightarrow a preorder, it has complete sense to say that b is a consequence of a, each time that $a \Rightarrow b$.

<u>Theorem 3.5.</u> If \Rightarrow is a preorder, for any $\emptyset \neq T \subset E$, it is $\mathbb{C}_{\Rightarrow}(T)$ the smallest subset of E that contains T and for which \Rightarrow is a conditional.

Proof. The set $C = \{X \subset E; T \subset X \text{ and } \Rightarrow \text{ is and X-conditional} \}$ is not-empty because $E \in C$. Let it be

$$\overline{T} = \bigcap_{C \in \mathcal{C}} X.$$

It is $T \subset \overline{T}$; then $\mathbb{C}_{\Rightarrow}(T) \subset \mathbb{C}_{\Rightarrow}(\overline{T})$. It is $\overline{T} \subset \mathbb{C}_{\Rightarrow}(\overline{T})$; if $x \in \mathbb{C}_{\Rightarrow}(\overline{T})$ it exists some $a \in \overline{T}$ such that $a \Rightarrow x$ and, as \Rightarrow is and \overline{T} -conditional, $x \in \overline{T}$ and $\mathbb{C}_{\Rightarrow}(\overline{T}) \subset \overline{T}$; but as \Rightarrow is a $\mathbb{C}_{\Rightarrow}(T)$ -conditional it is $\overline{T} \subset \mathbb{C}_{\Rightarrow}(T)$ and, finally, $\overline{T} = \mathbb{C}_{\Rightarrow}(T)$.

<u>Corollary.</u> Given a preorder \Rightarrow on E and a subset $T \subset E$, $T \neq \emptyset$, it suffices to extend T to $\mathbb{C}_{\Rightarrow}(T)$ for having that \Rightarrow is a $\mathbb{C}_{\Rightarrow}(T)$ -conditional, provided that \Rightarrow does not to be a T-conditional.

Then, each time that $a \Rightarrow b$ for both a and b in T, we can say that b is a consequence of a. It should be remarked that, if \Rightarrow is not a preorder it can be extended to the preorder \Rightarrow_{rt} for which follows the last assertion. In any case, if \Rightarrow is not a preorder, but it is a

T-conditional, as $\Rightarrow \subset \to_T$, it follows

$$\mathbb{C}_{\Rightarrow}(T) \subset \mathbb{C}_{\rightarrow A}(T),$$

and the each $x \in \mathbb{C}_{\Rightarrow}(T)$ can be considered as a consequence of T.

Theorem 3.6. Given (E,\Rightarrow) and a function $\mu: E \to [0,1]$ such that "If $a \Rightarrow b$, then $\mu(a) \leq \mu(b)$ ", then, for each $\epsilon \in (0,1]$, is $\Rightarrow a\mu^{-1}$ ($[\epsilon,1]$)- conditional.

Proof. If $a \in \mu^{-1}([\epsilon, 1])$ and $a \Rightarrow b$, it is $\epsilon \leq \mu(a) \leq 1$ and $\mu(a) \leq \mu(b) \leq 1$, then $\epsilon \leq \mu(b) \leq 1$ and $b \in \mu^{-1}([\epsilon, 1])$.

For example, if E is a Boolean Algebra and p is a probability on E, as $a \leq b$ implies $p(a) \leq p(b)$, the partial order \leq is a P_{ϵ} -conditional, being

$$P_{\epsilon} = \{ x \in E : \epsilon \le p(x) \le 1 \},$$

for each ϵ in (0,1].

The last theorem opens the door to exactify some parts of Approximate Reasoning [5].

References.

- [1] Hans Reichenbach, "Elements of Symbolic Logic", Dover, New York, (1980).
- [2] John P. Cleave, "The Notion of Logical Consequence in the Logic of Inexact Predicates". Zeitsch. f. math. Logic und Grundlagen d. Math. 20, 307-324 (1974).
- [3] J.L. Castro and E. Trillas, "Sobre preórdenes y operadores de consecuencia de Tarski", Theoria (1989), 11, 419-425.
- [4] S. Körner, "Experience and Theory", Routledge and Kegan Paul, London (1969).
- [5] E. Trillas, "Some reflections on Inexact Inference" (preprint, 1991).

Instituto Nacional de Técnica Aeroespacial Departamento de Inteligencia Artificial Universidad Politécnica de Madrid Madrid, Spain.