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ON THE SPECTRAL REPRESENTATION OF THE SAMPLING CARDINAL
SERIES EXPANSION OF WEAKLY STATIONARY STOCHASTIC PROCESSES

T. POGANY & P. PERUNICIC

ABSTRACT

The spectral representation of the sampling cardinal series ezpansion (SCSE)
of non-band-limited weakly stationary scalar and vector stochastic processes and
their correlation functions are derived. The upper bound of the mean-square alias-
ing error is given for vector processes.

AMS classification number: 60 G 10

L. Introduction.

A weakly stationary (WS) mean-square continuous process {X(t) | t € R} with vari-
ance DX (t) = E|X(t)]> = o? is said to be band- limited to frequency w if its spectral
measure & satisfies the condition (] — 00, —w]) = ®([w,0[) = 0. The spectral distribu-
tion function is F(A) = ®(] — oo, \]); so X(t) is band-limited there if F(A) = 0 for all
A< —wand F(\) = ¢ for all A > w.

The autocovariance function X () = EX(t)X*(0) of a zero mean process X (t) has an

integral representation in the form

K(t) = /w e dF(N). (1.1)

We note that the endpoints +w are required to be continuity points of F.
Such a process possesses an integral representation in the form X () = [*_ e'* dZ(X).

Here is Z(\) (the spectral process of X(t)) a process with orthogonal increments.
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The stochastic sampling theorem is under foregoing conditions
X(t) =lim. Z X (k7 /&)sinc(wt — k) (1.2)
k=—n
for arbitrary & > w > 0, sinc(z) £, sin(z). [1], [2].
For the non-band-limited WS stochastic processes holds a similar result. Namely if
wm/n — 0 as n,m — oo, then (1.3) holds:

X(t)= nl'im'E}éo Zn: Xm(km/wm )sine(wpnt — k) (1.3)

k=—n
where Xn(t) = [ge™1_w wn((A) dz(X), {wm}$° is a positive increasing real sequence
divergent to oo, 14(A) denotes the characteristic function of the set A, [8].

In the non-band-limited case, we denote the sampling cardinal series expansion for a
given choice of bandwidth w > 0 by X,(t). So
Xo(t) = i X (nr/w)sinc(wt — nm).

—o0

When only the randomness of the process is considered, then X (t) — X,(t) is not WS in

general, because the so-called aliasing errorr (in the mean- square sense)
ax(t) = E|X(t) — Xo(t)|*

depends on t; practically ax(nm/w) = 0, since X,(¢t) interpolates X(¢) at the sampling
points, [4].

Brown has shown, [4], based on Weiss’s theorem, [9], that
ax(t) € 4(o? — F(w) + F(-w)). (1.4)

In the current paper we prove the explicit formulae of the spectral representation of

Xa(1), its autocovariance function I,(t) = EX,(t 4+ s)X2(s), and generalize this results
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to the multidimeﬁsional WS non- band-limited processes. Based on the spectral repre-
sentation of the sampling cardinal series expansion (SCSE) we give a rigorous stochastic
terminological proof of the Brown’s upper bound (1.4) and derive related vector aliasing
error analysis results. The Lloyd’s result on the spectral statement representation of the
determination of a WS process £(t) by its samples can be formualted as follows, [7].

Let A be the support of the spectral distribution function G(X) of a process {£(t) |t €
R}. If A =] — w,w[ and all translates of A (i.e. {A —2kw | k € Z}) are mutually disjoint

then
£(t) = /R (e )awd(A). (1.5)
Then easily follows that

Ke(t) = /A (6*)5,dG(N), (1.6)

where (e'**),,, is defined at the beginning of section II (see [2]).

Thus Lloyd eliminated the continuity problem at the “critical” endpoints (2k + 1)w
(such that the spectral distribution function may possesses jumps at (2k + 1)w) with the
open support technique, or supposing that the sampling theorem there holds.

Let A é] — w,w]. We shall prove that (1.5) and (1.6) hold iff the spectral distribution
function of the observed non-band-limited full-spectrum process is continuous at the points
(2k 4+ 1)w, k € Z. In the section III we introduce the spectral representation of the cross-
covariance function of stationarily correlated SCSE’s. This results are generalized to the
multidimensional weakly stationary processes and its SCSE’s in the section IV. Obviously
the spectral representation of a band-limited WS stochastic process is also given with the

aid of our results because (e'**)z,, = €' on | —w,w].

II. Spectral representation of SCSE’s.

Let {X(t) | t € R} be a non-band-limited stochastic process on the probability space



92 T. Poginy & P. Peruniéié

(Q,F,P). Fo£ each real fixed t define (e'*}),,, as the periodic extension (with period 2w)
of the function e** from the interval | — w,w] to the entire real axis.
The complex Fourier-series of (e!*),,, is
oo
(e™)g, = Zexp(in/\w/w)sinc(wt —nm). (2.1)

—o0
The convergence in (2.1) is everywhere with respect to A, for all ¢ € R. Because (e*)s,,
is continuous on | — w, w] it satisfies the well-known Dirichlet-condition. Hence, the con-
vergence in (2.1) is also pointwise except at the points A = (2k + 1)w, k integer. From the
Fourier-series theory, the sequence of partial sums on the right-hand-side of (2.1) converges
to cos(wt) at the points A = (2k + 1)w.

The spectral representations of the process X(t) and of its correlation function are

X(t) = /R e dz(\);, K@) = /R e dF())

respectively. The masses of the spectral distribution function F()) at the points (2k + 1)w
are denoted by Fy, i.e. Fy = F((2k + 1)w+) — F ((2k + 1)w).

Lemma 1. Let 7 be an arbitrary positive integer an N > 2. Then,
a) for A €] —w, w]|

N
Z exp(inm A(w)sinc (wt — n7) + (N ""InN) = ¢**
-N

b) for A € {w,w}

N
Eexp(inn'/\(w)sinc (wt —n7) 4+ (N~1) = cos(wt).
-N

Setting a = 1 if A €] —w,w[ and @ = 0 if A € {—w, w}this lemma can be stated as

N
Zexp(imr)\/w)sinc (wt —nm) + (N ~=D=1n* N) = ae'®* 4 (1 — a) cos(wt) (2.2)
-N
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Proof. Consider a 2w-periodic, r-fold derivable function f()) such that |f("(\)| < M.
Then the residual Ry(f), of the symmetric complex Fourier expansion of f(A) on (—w,w)

is upper-bounded, namely:
|Rn(f)] € AM (w/m)"N~""InN. (2.3)

Here, A is an absolute constant. This Bernstein’s result is detaily treated in [5], where
A=2+(1+In7)/In2 is suggested.
itA

The residual of the Fourier expansion of e on [~w,w] is Ry(e'*) =

> exp(inTA/w)sinc(wt — nw). From (2.3) it follows:
|Ir|>N

|Rn(e'™)] < A(wlt|/7)' N "InN (2.4)

for all A €] — w,wl.
N N
Because Y exp(inmA/w)sinc(wt —n7) = 3 (wt —nm)~!sin(wt) at the points A = +w
N =

for sufficiently large N we obtain

N N
| cos(wt) — Z(wt —nm) " tsin(wt)]| < 2wt Z |wt — n|™?
—-N -N

(o]

< 2wt ? Z n~? < 2wlt|r"/N
N+1
and, consequently, the assertion follows from (2.3) and (2.4). ®
It is sufficient to use r = 1 in the evaluation (2.2). Then
N .
Zexp(in/\w/w)sinc(wt —nm)+ O(N'1In® N) = ae'™ + (1 — @) cos(wt). (2.5)
—-N

Proposition 2.1. The SCSE X,(¢) of a non-band-limited WS stochastic process X(t)

possesses a spectral representation

Xo(f) = /R (¢M)a0 dZ(N), (2.6)
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iff F()) is continuous at the points A = (2k + 1)w, k € Z.

N
Proof. Let us take Xn(t) = Y X(nr/w)sinc(wt — n7). Then
N

2

B,=E ’/R(e“*)w dZ(\) — Xn(2)

N 2

/R< (e'")zu — Zexp(in/\ﬂ/w)sinc(wt — nw)) dZ(\)

-N

=F

-
(2k+1)w—
B ;/(2k—1)w+

N
2
k

el — Zexp (in(2k + 1)) sinc(wt — n)
By the lemma 2.1 and (2.5) we have

2
dF()) =

N

()3, — E exp(inAm/w)sinc(wt — nm)
iy

N 2

eltA—2kw) _ Z exp(inAr /w)sinc(wt — nx)
-N

dF(\)+

2
Fy. (2.7

—N

By = sinzthFk + O(N~%In* N).
K

On the other hand, By is uniformly upper-bounded above by 40% and by the Lebesgue

dominated convergence theorem we get

2

E = lim By = sin? wt;Fk. (2.8)

Xa(t) - /R (¢)20dZ(N)

The last evaluation completes the proof of the theorem. |
In his paper [3] Brown has shown that for deterministic functions holds a similar
result. But he supposed that if A()) is a measurable and absolutely integrable function

on the entire real axis and AY(t) the Fourier transform of A()), then yields
b .
At) = ZA,,A(n.W/w)sinc(wt —nr) = /(e’t’\)zuA(/\)d/\, (2.9)
R
— 00

for each real t and w > 0, given (Lemma 2 in [3]).
N
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It is also interesting to remark that Brown does not apply (2.9) in his investigations

in aliasing error analysis of WS non-band-limited stochastic processes, [4].

Proposition 2.2. The autocovariance function I,(t) of the SCSE X,(¢) is given by
K, (t) = EX,(t + )X X(s) = / (e™)udF(N).
R

if F' is continuous at the points (2k + 1)w, k € Z.

Proof. As Z()) is a process with orthogonal increments and E dZ()) dZ*(p) = 6x,2(d)),
from R = U](2k — 1)w, (2k + 1)w] it follows that

EX,(t+5)X2(s) = E /R (X+IN),., dZ(N) /R (7520, dZ* (1)

— Z/ / eit(/\—-‘zkw)eis[(/\-—u)—-2(k—j)w]E dZ(/\) dZ*(,Lt)
kg he T

J

ZZ/I eil()\—2kw)q)(d/\)
3 k

- / (e)0, dF(N),
R

where is I 2)(2k — 1)w, (2k + 1)w]. The proof is complete. n

As X,o(t) = [q(€'*)2udZ (1) it is easy to prove the relationship (1.4). Let H(X) be
the Hilbert-space of the process X (t) (the Lo-closed linear subspace generated by the set
{X(t) | t € R}) and Ly(R, dF) 2 {¢ | Jglel?dF < oo}. Thus, the explicit proof of the
Brown’s upper bound of the mean-square aliasing error exploating the well-known isometry

between H(X) and Ly(R, dF) is as follows
2

ax(t) = EIX(t) = Xu(t)] = E ‘ e = @iz -

_ / e — (¢})5,|" dF(V) < 4(0? — F(w) + F(~w)).
JR
As X (t) is Lo-process (DX (t) = K(0) = K,(0) = DX,(t) = o?) it is not necessary to
suppose that the spectral distribution function F()) is absolutely continuous. Therefore

we can weaken the condition in [4] on the existence of the spectral density of X (t).
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IT1. Stationarily correlated SCSE’s.

Let {X(t) |t € R}, {Y(¢) | t € R} be WS non-band-limited stochastic processes on the
same probability space (2, F, P). In studying such processes we have to consider not only
ordinary covariance functions, but also the so-called cross-covariance function of the zero
mean processes X (t) and Y (¢). So the cross-correlation function K;y(t) = EX(t)Y*(0)

has a spectral representation

Koy(t) = /R e dF,,(\) (3.1)

where F,,()) is the so-called cross-spectral distribution function of the processes X(t),

Y(t), ie. dFy, = EdZ,dZ; and

X(t):/ﬂe""*dzx(x), Y(t):/ne'“dzy(A).

Let X, (), Yy(¢) be the SCSE’s of processes X(t) and Y (¢) associated with given
bandwidths w;, w, respectively. Processes are stationarily correlated if there exists their
cross-correlation function (3.1). Suppose in the sequel that at least one of the spectral
distribution functions F%, Fy is continuous at its sampling points (2k +1)w,; and (2k +1)w,
respectively. The main result of cross-covariance function of the SCSE’s X,(t) and Y,(¢)

is given by

Proposition 3.1. Consider stationarily correlated processes X(t), Y (t). Then X,(t) and

Y3(t) are stationarily correlated iff w, = w,.

Proof. Suppose X,(t) and Y(t) are stationarily correlated. Let us take w, = cw,. Since

(€30, = ("1}, we get

EX.(t+8)Y(s) = /R/R(e"““)*)m(e—“*)zw EdZ,(\)dZ;())

_ /R (HHE=DON), - dp (), (3.2)
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Now it is clear that (3.2) depends only on ¢ if ¢ = 1.
Because at least one of the functions F;, F} is continuous at its sampling points, from
|dF,,(M)[* < dF,(\)dF,()) and (2.8) clearly follows (3.2).

The second part of the proof if obvious. ]

Remark. If w, are not equal to wy, we can choose a common bandwidth w > max{w,,wy},
such that both considered processes have continuous spectral distribution functions at the
poitns (2k+1)w, k € Z. In this case we do not lose any information on the nature of SCSE

and with new common bandwidth w the stationary correlation is possible.

Consequence 3.1. The cross-covariance function Kop(t) = EX,(t+5)Y;*(s) of the SCSE’s
X, (1), Yy(t) possesses also a spectral representation. With the aid of the Proposition 3.1

we assuime
Ka(t) = / (e')2udFry(N).
R

Here is w = w; = wy.
Because K,3(t) is a correlation function therefore the following properties hold:
(1) Kap(t) = K, (—t)
(i) [Kab(t)]* < K,(0) Iy(0) = o202

Here is DX (t) = 02, DY (t) = ol.

IV. Multivariate SCSE’s.

Analogously to the vector stochastic processes we consider now vector SCSE’s. Ob-
serve a zero mean qg-dimensional WS non-band-limited stochastic = process
{X(#) = (X1(t),...,X,(t) | t € R} with stationarily correlated coordinates. The
coordinate-processes of X(t) define on the common probability space (2, F ,P). De-

notes XJ(t) the SCSE of the j" coordinate-process of X(t) to given bandwidth wj,
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7 = 1,...,9. The role of the correlation function is playing by the correlation matrix

Kx(t) = (Kji(t)lgxq- Hereis
Kin(t) = BX,0X30) = [ PP,
R

where dFjp(X) = EdZi(\)dZ:()). Now we define the multivariate SCSE
Xa(t) £ (X2(),-.., X2(0).

Proposition 4.1. The correlation matrix K,(t) = EXT(t)X Py(0) = (KZ5(t))gxq of the

SCSE X,(t) possesses the spectral representation

Kalt) = [()audF ) (4.1)

iff w; = ... = w; = w and all spectral distribution functions F}; are continuous at the
points (2k + 1)w. Here, K7¥(t) £ EXit)(Xk0)* = fR(eit'\)deij(/\) and F is the

spectral distribution matrix of X (¢).

Proof. From the Schwarz inequality,
|dF;:(M)[? < dF}(A\)dFei(N).

Hence, the continuity of the F};, Fii at arbitrary A gives the continuity of the cross-spectral
distribution function Fjj.

Therefore, from the propositions 2.1 and 3.1 it follows (4.1). |

Similarly, we can introduce the aliasing error matrix (as the multidimensional gen-
eralization of the aliasing error in scalar process case). Namely the aliasing error matrix
Ux(t) = (a;jx(t))gxq consists from the so-called cross-aliasing errors a;x(t) £ E(X;(t) —
XI()(Xr(t) — XE(t))*. Naturally, the Schwarz inequality gives

lajr (D < aj(t)ax(t)

< 16(a? — Fjj(w) + Fjj(—w))(o} — Fux(w) + Fie(—w)).
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Here o2 denotes the variance of the process X;(t).

V. Summary.

The SCSE X,(t) of a weakly stationary non-band-limited stochastic process X(t)
possesses a spectral representation given by X,(t) = Jr(€™)2wdZ(\) iff the spectral dis-
tribution function F()) of the process X(t) is continuous at the points 2k + 1w, ke Z,
(Proposition 2.1). The autocovariance function K,(t) of such a SCSE X,(t) has also the
spectral representation [g(e'*);,dF(}). (Proposition 2.2).

Let X(t), Y (t) be non-band-limited stationarily correlated processes with the continu-
ity property and X,(t), Y,(t) are its SCSE’s to the given bandwidths w,, w, respectively.
Then X,(t) and Y,(t) are stationarily correlated iff w; = wy. The cross-correlation function
K,(t) of the considered SCSE’s is then spectrally represented in the form [g(e**)2o,dFyy())
where w is the common bandwidth, (Proposition 3.1; Consequence 3.1).

In the section IV the generalization of foregoing results to the g-variate non-band-
limited Weakly stationary stochastic processes are given. The aliasing error matrix is
introduced (as the multivariate extension of the aliasing error) with the aid of the cross-

aliasing error.
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