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SHUFFLES OF MIN

P. MiKUSINSKI, H. SHERWoOOD & M.D. TAYLOR

ABSTRACT

Copulas are functions which join the margins to produce a joint distribution
function. A special class of copulas called shuffles of Min is shown to be dense
wn the collection of all copulas. Each shuffle of Min is interpreted probabilisti-
cally. Using the above-mentioned results, it is proved that the joint distribution of
any two continuously distributed random variables X and Y can be approzimated
uniformly, arbitrarily closely by the joint distribution of another pair X* and Y*
each of which is almost surely an invertible function of the other such that X and
X* are identically distributed as are Y and Y*. The preceding results shed light
on A. Rényi’s azioms for a measure of dependence and a modification of those
azioms as given by B Schweizer and E.F. Wolff.
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1. Introduction.

Throughout this paper X and Y denote continuously distributed random variables;
F, G and H denote the distribution functions of X, ¥ and (X, Y"), respectively. If X and
Y bear affixes, then F, G and H bear these same affixes. Also, I, R and R denote the

closed unit interal [0,1], the reals and the extended reals, respectively.
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In 1959 A. Sklar [8] introduced the notion of a copula which is a function from I? into

I satisfying

(11) C(s,0)=0=C(0,s) and C(s,1)=s=C(1,s)
whenever 0 < s <1, and

(1.2) Clsmta) — Clonits) + Clonst) — Clsr ta) > 0

whenever 0 <s; <sp <land 0<t; <t; <1.

Some copulas of particular importance are m, M and W where for any (s,t) in I?,
we have w(s,t) = st, M(s,t) =Min(s,t) and W(s,t) =Max(s + ¢t — 1,0). An extensive
treatment of copulas is given by B. Schweizer and Sklar in [6] where they show in their

Lemma 6.1.9 that for any s, s',t,t' in I and any copula C,
(1.3) |C(s,t) — C(s', )| < [s—s'| + |t — 1)

Corresponding to X and Y there is a unique copula C, called the connecting copula
for (X,Y), such that

(1.4) H(z,y)=C(F(z),G(y)) forall z,yinR.

(If F or G fails to be continuous, the word “unique” must be deleted in the preceding
statement).

Sklar’s paper was preceded by a paper of M. Fréchet [2] in which Fréchet presents
the following result which we reformulate using Sklar’s terminology: (X,Y) has M, (re-
spectively, W) as its connecting copula if and only if each of X and Y is almost surely an
increasing (respectively, decreasing) Borel-measurable function of X. Of course (X, Y') has
m as its connecting copula if and only if X and Y are stochastically independent. These

three examples illustrate what we mean by a probabilistic interpretation of a copula C.
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A copula is a bivariate distribution on I? having uniform margins. In particular =
has its mass spread uniformly across the entire square while M has all its mass spread
uniformly along the diagonal from (0,0) to (1,1) and W has all its mass spread uniformly
along the other diagonal.

Of special interest in this paper are the copulas we call shuffles of Min. The mass
distribution for a shuffle of Min can be obtained by (1) placing the mass distribution for
M(=Min) on I?, (2) cutting I? vertically into a finite number of strips, (3) shuffling the
strips with perhaps some of them flipped around their vertical axes of symmetry, and
then (4) reassembling them to form the square again. The resulting mass distribution will
correspond to a copula called a shuffle of Min. In section two we probabilistically interpret
these shuffles of Min.

A doubly stochastic measure (briefly, a dsm) is a measure p defined at least on the
Borel subsets of I having the property that p(A x I) = u(I x A) = m(A) where A is any
Borel subset of I and m denotes Lebesgue measure. Given any dsm p on I, the function

C defined on I? via

(1.5) C(x,y) = p([0, 2] x [0,y])

is a copula. Or, given a copula C, one may use (1.5) to define p on sets of the form [0, z] x
[0,y] and extend the definition of g to the Borel subsets of I? by well-known techniques.
The resultant ¢ will be a dsm which, in this paper, we denote by pc. We denote by COP
(DSM) the set of all copulas (doubly stochastic measures). With reasonable topologies on
COP and DSM, the one-one correspondence provided by (1.5) is a homeomorphism [3].
J.R. Brown (1] proves that DSM and the set of all Markovlopera,tors on Lo (I) are
homeomorphic. Moreover with each invertible Lebesgue- measure preserving map ¢ on I
he associates a Markov operator Ty and shows that the set of all these Ty’s is dense in the

set of all Markov operators on Lo (I). Consequently the set of copulas corresponding to
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the Ty’s properly contains the shuffles of Min. As shown in section three, however, the set

consisting only of shuffles of Min is also dense in COP.

In the final section we use the results of sections two and three to show that for any two
continuously distributed random variables X and Y (including stochastically independent
ones), there exist two random variables X* and Y™, each almost surely an invertible
function of the other, such that ' = F*, G = G* while H and H* are uniformly, arbitrarily
close. Lastly, we use the preceding result to show that certain of the Rényi axioms [5] for
a measure of dependence for random variables are inconsistent with a continuity- type
condition on the measure of dependence which B. Schweizer and E.F. Wolff [7] showed was

satisfied by several natural nonparametric measures of dependence.

2. Probabilistic interpretations.

We begin with

Definition 2.1. A copula C is a shuffle of Min if and only if there is a positive integer
n, two partitions 0 = s < 81 < ... < sy, =land 0 =t < t; < ... < t, =1
of I, and a permutation o on {1,2,...,n} such that each [si—1,si] X [to(i)—1,ta(i)] Is
square in which C deposits a mass of size s; — s;_; spread uniformly along one of the
diagonals. For each? = 1,2,...,n we let m(7) denote the slope of the diagonal of [s;_y, s;] x
[to(i)—1+to(i)] along which the mass in that square is spread. If m = 1 we say C is a
straight shuflle of Min. If m = —1 we say that C is a flipped shuffle of Min. Also, we say

that C is the shuffle of Min generated by (n, {s;}, {t:},o,m).

Before we give our probabilistic interpretation of shuffles of Min we need some ter-

minology. For subsets A and B of ﬁz, we say A is below (strictly below) B if and

only if 7 € y2 (y1 < y2) whenever (a1,y1) € A and (z2,y2) € B. We say 4 is

to the left of (strictly to the left of) B if and only if 21 < z2 (z1 < z2) whenever
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(z1,y1) € A and (z2,y2) € B.
The following lemma provides machinery which enables us to see geometrically what
happens with the probabilistic interpretation of a shuffle of Min. The proof of each part

of the Lemma is straighforward so we omit it.

Lemma 2.1. Suppose C is the connecting copula for (X,Y). Define ¢ : R = I? via
#(z,y) = (F(z), G(y)). Then,
a) ¢:ﬁ2 onte I2.4
b) If A, B C R, then ¢(A x B) = F(A) x G(B).
¢) If A, B C I, then ¢~1(A x B) = F~'(4) x G~(B).
d) If A,B C R® and 4 is below (to the left of) B, then ¢(A4) is below (to the left of)
#(B).
e) If A,B C I? and A is strictly below (strictly to the left of) B, then ¢ ~1(A) is strictly
below (strictly to the left of) ¢~1(B).
£) I S = [a1,22) % [u1,va] C R, then P[(X,Y) € §] = uc(#(S)).
g) If S = [s1,82] X [t1,2] C T, then P[(X,Y) € $~1(5)] = pc(S).

Definition 2.2. A function f: R — R is strongly piecewise monotone if and only if there

is a positive integer n, two partitions
—o =g < T <...<Tp =400 and —co =y <Y; <...< Yp = +00 of R,

and a permutation ¢ on {1,2,...,n} such that, for each i = 1,2,...,n, the function

fl(z.--1,zs] is monotone with f(z;) # f(z;—1+) and Ran(fl(,i_hzi]) C Wo(i)—1+Yo(iy)- For
each?=1,2,...,n we let

1_,_‘(1.) _ { 1) lf f(‘rl) > f(:l:,‘—l+)1
T =1, f(20) < flaimrt)s

In this case we say f has components (n, {2}, {y:},0,m). If m = 1 we say f is strongly

piecewise nondecreasing. If m = —1 we say that f is strongly piecewise non increasing,.
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We are now ready to give our probabilistic interpretation of shuffles of Min. In one

direction we have

Theorem 2.1. Let C be a shuffle of Min generated by (n, {s:}, {i},o,m). Suppose C is
the connecting copula for (X,Y). Then Y = foX almost surely for some strongly piecewise
monotone function f having components (n, {z;},{y:},o,m) where, for 1 =1,2,...,n—-1,

z; =sup{z: F(z)=s;} and y; =sup{y: G(y) =t;}.

Proof: Using part (b) of Lemma 2.1, we obtain that ¢([z;—q, ;] X [yj—1,y;]) = [si=1,si] X

[tj—1,t;]. Now, from Definition 2.1 and part (f) of Lemma 2.1 we obtain

0, if j # o(2),

PV € o] x sl = {0 1T

Now fix an ¢ € {1,2,...,n}. let D; denote the diagonal in (si—1,:] X (ta(i)—1,te(i)]
with slope m(i). We want to learn what ¢~1(D;) looks like. There are two cases to be

considered: either m(i) =1 or m(7) = —1.
Case 1. Suppose m(i) = 1. Then

D= {(sic1 + 7 toiy—1+7):0<r <8 —si1}

- U ({si-1 + 7} x {toi)-1+7}) .

0<r<s;—3i_1

Thus, according to Lemma 2.1(c), ¢~*(D;) is a union of sets of the form
F—l ({Si—l + T}) X G_l ({ta(i)-l +T}) = [arvbr) X [Cradr]

where for all but countably many r in (0, s; — s;—1], a, = b, and ¢, = d.. Wheneverr; <r;
we conclude, using Lemma 2.1(e), that [a,,, b, ] X [¢r,, dr,] is strictly below and strictly to

the left of [ar,, br,] X [cr,,dr,]. See Figure 2.1 for a picture of what ¢~1(D;) may look like.
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Figure 2.1.

It follows from Lemma 2.1(f), using standard arguments, that P[(X,Y) € ¢~1(D;)] =
pc(D;) = s; — si—1. By deleting from ¢~!(D;) at most a countable family of sets in which
(X,Y) lies ‘with probability zero, we obtain

U lanbd x {e,
0<r<si—sio1
the graph of a nondecreasing function v&{hich we call g;. It is easy to verify that the domain
of g; is (zi—1, ;] and the range of g; is a subset of [yy(;)-1,¥Yo(i)]- Since P[Y = g; 0 X]| =

$;i — 8i—1 > 0 and G is continuous, it follows that gi(z;) > gi(zi—1+).

Case 2. Suppose m(i) = —1. Following a procedure similar to that used in the preceding
case we construct a nonincreasing function g; : (zi—1, %i] = [Yo(s)—1,Yo(i)] sSuch that P[Y =
gioX] =58 —8i—.

Finally, we define f : R — R as follows: for any ¢ € R with —co < z there is

exactly one i € {1,2,...,n} such that 2,7 < z < z;; we let f(z) = gi(z). We de-
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fine f(—o0) = lim f(z). Clearly f is a strongly piecewise monotone function having
r——00

components (n, {z;}, {y:},0,m). To see that ¥ = f o X almost surely observe that

n

PlY =foX]=) P[Y =gioX]=) (si—si-1)=1.

i=1 =1

This completes the proof.

Theorem 2.2. Suppose f : R »> Ris a stroﬁgly ‘piecewise monotone function having
components (n, {z;}, {y:},o,m). Suppose ¥ = f o X almost surely. Suppose further that
for each i = 1,2,...,n,VF(z,') > F(z;—1). Then the connecting copula, C, for (X,Y) is
the shuffle of Min generated by (n, {F(z:)}, {G(y:)},o,m).

Proof: From Lemma 2.1(b) it follows that ¢ carries the lines z = z; and y = y; in R? into
the lines s = F(z;) and t = G(y;) in I?, respectively. Moreover, the order of the lines
from left to right and from bottom to top is preserved. Parts (b) and (f) of Lemma 2.1

guarantee that
pe([F(zim1), F(zi)] X [G(¥o(iy-1), GWo))]) = PU(X,Y) € [zio1, Zi] X [Ya(i)=1> Yo(i))]
' = F(2;) = F(ziz1) = CWo(s) — C¥a(iy-1)-
Now, suppose m(z) = 1. Let (z,y) be any point such that z,_; < ¢ < z; and y = f(z).

Further, let F(z) - F(x;_1) = r. Observe that G(y) — G(¥s(i)~1) = 7. Then,

¢(z,y) = (F(z), G(y)) = (F(xi-1) +1,G(Yo(i)-1) + 7).

It now follows that the mass which C deposits in the square [F(z;—1), F(z;)] x
[G(¥o(iy=1)> G(Yo(s))] is spread uniformly along the diagonal from (F(zi—1), G(Yo(i)—1)
to (F(zi), G(¥s(i))). If m(i) = —1, the proof is similar that the mass which C' deposits in
the square [F(zi_1), F(2;)] X [G(Yo(i)-1)s G(Yo(s))] is spread uniformly along the diagonal
from (F(zi-1), G(¥s(s))) to (F(x:), G(Ys(i)-1)). This proves that C is the shuffle of Min
generated by (n, {F(z;)}, {G(yi)},o,m).
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Remark: The proofs of Theorem 2.1 and 2.2 given here are modifications of the proof of

Fréchet’s probabilistic interpretation of M given by E.F. Wolff in [10].
Theorems 2.1 and 2.2 yield at once the following corollaries:

Corollary 2.1. The random vector (X,Y) has a shuffle of Min as its connecting copula
if and only if each of X and Y is almost surely a strongly piecewise monotone function of

the other.

Corollary 2.2. The random vector (X,Y") has a straight shuffle of Min as its connecting
copula if and only if each of X and Y is almost surely a strongly piecewise nonincreasing

function of the other.

Corollary 2.3. The random vector (X,Y") has a flipped shuffle of Min as its connecting
copula if and only if each of X and ¥ is almost surely a strongly piecewise non increasing

function of the other.

Remark. If Y = foX almost surely then (because G is continuous) X lies with probability
zero in any interval on which f is constant and there are at most countably many such
intervals. Thus, if one is willing to relax the condition that the domain of f is R, the

function f which relates X and Y in each of the preceding theorems and corollaries may

be chosen to be invertible.

3. Dense families in COP.
G. Kimeldorf and A.R. Sampson [4] prove essentially that the copula for independence,
m, can be approximated by certain shuffles of Min. The next theorem shows that any copula

can be so approximated.

Theorem 3.1. Straight (flipped) shuffles of Min are dense in COP endowed with the sup
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norm.

Proof. Let C be an arbitrary copula and let € > 0 be given. Since the proofs for straight
and flipped shuffles of Min are so similar, we give only the first by constructing C*, a
straight shuffle of Min, such ||C'— C*|| < € where || - || is the sup norm. Using (1.3), choose

a positive integer K such that for any copula C’,
(3.1) |C'(z1,y1) — C'(z0,%0)] < €/2 whenever

|z1 — 20| <1/K and |y1 —yo| < 1/K.

Next subdivide I? into I vertical columns and K horizontal rows as follows:
Vi=[(i-1)/K,i/K]xI and H;=1x[(j—1)/K,j/K]
for¢,j =1,2,..., K. Set S;; = Vi N H; and let m;; = uc(Si;). Since pc is a dsm,
pe(Vi)=ma +mp+...+mixg =1/K

and

pc(Hj)=myj+maj+...+mgj=1/K.

Subdivide each V; into K vertical subcolumns, labeled from left to right
Vi1, Viz, ..., Vi, so that the width of Vi is my;. Similarly subdivide each H; into K
horizontal subrows, labeled from bottom to top Hji, Hja,...,Hjk, so that the height of
Hji is my;. Then V; Hj; is a square with sides of length m;; located in S;;. For each
4,7 =1,2,..., K, spread a mass of size m;; uniformly along the diagonal of V;; H;; which
has %ositive slope. This is clearly a mass distribution for a straight shuffle of Min which
we denote by C*. Since pc+(Si;) = mij = pc(Sij) we have C(i/K,j/K) = C*(i/K,j/K)

for i, = 0,1,..., K. Finally, let (z,y) € I% There is some 1,7 =0,1,..., K such that
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|z —i/K|<1/K and |y — j/K| < 1/K. Thus, by (3.1) we have
IC(z,y) — C*(z,y)| < |C(x,y) = C(i/k,j/E)| +|C/K,j/K) — C*(i/ K, j/ K)

+[C*(i/ K, j/K) — C*(z,y)|
€

<
2

€
+0+§=6a

and the proof is complete.

4. Approximation.

The usual understanding of two random variables being stochastically independent
is that knowledge of one variable’s value gives no helpful information regarding the value
of the other. On the other hand, if one random variable is a function of the other, then
knowing the value of one variable gives complete information regarding the value of the
other. Nevertheless we have the following theorem which is interesting even in the case of

stochastic dependence.

Theorem 4.1. Given any € > 0 and any pair of continuously distributed random variables
X, Y, there exist X* and ¥™* and an invertible piecewise increasing function f such that

Y*=foX* F=F*G=G* and |H —H*| <e

Proof. Let C be the connecting copula for (X,Y). Let C’ be the straight shuffle of Min

which uniformly approximates C' within e, i.e.,
(4.1) |C(s,t) — C'(s,t)] < e whenever s,t arein I.
The function H' defined on R? via
(42) H'(x,y) = C'(F(2), G(y))
is a two-dimensional distribution function, see [6]. Let X' and Y be the orthogonal projec-

tions of R? onto the t— and y—axes, respectively where R? is endowed with the Lebesgue-

Stieltjes measure induced by H'. Clearly H' is the distribution function of (X', Y"), F' = F
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and G' = G. Moreover, by Corollary 2.2 and the Remark following Corollary 2.3, there
is an invertible piecewise increasing function f such that ¥/ = f o X' almost surely. It

follows from (4.1) and (4.2) that for any z, y in R,
|H(z,y) — H'(z,y)| = |C(F(x), G(y)) — C'(F(2), G(y))] <e.

Finally let X* = X'and Y* = fo X* to compiete the proof.

As this manuscript was being prepared for publication, we learned via a private com-
munication from R.A. Vitale that he also discovered the preceding result form a different
perspective. The reader is encouraged to look at Vitale’s paper [9]; his formulation of the
result will be especially useful for simulation.

In 1959, A. Rényi [5] proposed the following set of axioms for a measure of depen-
dence R(X,Y) for pairs of random variables (X,Y") which were not restricted to being
continuously distributed:

(A) R(X,Y) is defined for any X and Y.

(B) R(X,Y) = R(Y,X).

(C) 0< R(X,Y) < 1.

(D) R(X,Y) =0 if and only if X and Y are independent.

(E) R(X,Y)=1ifeither X = f(}¥) or Y = g(X) for some Borel- measurable functions f

and g.

(F) If f and g are Borel-measurable one-one mappings of the real line into itsel%, then

R(f(X),9(Y)) = R(X,Y),

(G) If the joint distribution of X and ¥ is bivariate narmal, with correlation coefficient r,
then R(X,Y) = |r|,. |

In 1981 Schweizer and Wolff {7 used_,copullé,é to define several natural nonparametric
measures of dependence of pa.ir; of cqnfiil_uo‘usly distributed random variables and then

showed that these measures satisfy (A)-(D) and (E’)- (H’) where
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(E) R(X,Y) =1 if and only if each of X and Y is almost surely a strictly monotone

function of the other.

(F’) If f and g are strictly monotone almost surely on Range X and Range Y, respectively,
then R(f(X),¢(Y)) = R(X,Y).

(G”) If the joint distribution of X and Y is bivariate nérrnal, with correlation coefficient r,
then R(X,Y) is a strictly increasing functions ¢ of |r|.

(W) If (X,Y) and (X,,Y,.), n =1,2,..., are pa,iré of random variables with joint distri-
bution functions H and H,, respectively, and if the sequence {H,} converges weakly
to H, then nli_l}go R(X,,Y,)=RX.Y).

In light of Theorem 4.1 and in the presence of (A) and (D), one must choose between
axioms (E) and (H"); they cannot both be true. To see this, let X and Y be independent
normally distributed random variables. We may by Theorem 4.1 construct a sequence
(Xn,Y,) such that ¥, = f(X,) and {H,} converges weakly to H. If the measure of
dependence satisfies both (D) and (E), then R(_Y, Y) = 0 while, for each n, R(X,,Y;) = 1.
This contradicts (H').

If a measure of dependence satisfies (A), (D) and (E’), then at most one of the axioms
(F) and (H’) can be true. To see this, let X, Y, X, ¥, and f, be as in the preceding
paragraph. A close look at the proof of Theorem 2.1 shows that f, can be chosen to have
domain R and still be a one-one function in this case because F;1({s}) x G;*({t}) is a
singleton for each s,t in I. By (E’), for each n, we have R(X,,X,) = 1. If (F) is true,
tilen R(X,,Y,) = R(X,, fa(Xy)) = R(X,,X,) = 1. But since R(X,Y) =0, tl-lis again

contradicts (H").
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