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THE INTERNAL RATE OF RETURN OF FUZZY CASH FLOWS

L. BiaciNOo & M.R. SIMONELLI

ABSTRACT

An internal rate of return (IRR) of an investment or financing project with

cash flow (ao,a1,az,...,a,) @8 usually defined as a rate of interest r such that
ap +ar(l+ 7‘)_1 +...+a,(1+r)""=0.

If the cash flow has one sign change then the previous equation has a unigue
solution r > —1.

Generally the IRR‘téc‘.hniqu"e does not extend to fuzzy cash flows, as it can be seen
with ezamples (see [2]). ‘In‘;this paper we show that under suitable hypothesis a
unique fuzzy IRR exists fo; a fuzzy cash flow.

Keywords: Mathematics of finance, Fuzzy numbers.

Introduction.

In [2] Buckley has proposed the fuzzy extension of the mathematics of finance. His
paper develops fuzzy analogues of the elementary compound interest problems, as the
future value, the present value and the internal rate of return (IRR) of a cash flow.

With respect to the last problem he has proved the possibility of non existence of the
IRR of a fuzzy cash flow where the fuzzy numbers involved, Aq, 4;, ..., A,, have one sign
change (in the crisp case this is the most important cash flow situation and it is well-known

that a unique IRR is guaranteed).
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This situation is not an exception when passing from classical equation to the fuzzy
analogues, but the rule, as one can see with very simple equations (see Examples 1 and 3
of [1)).

In this note we indicate some quite natural hipotheses on the fuzzy numbers,
Ap,Ay,..., Ay, in order to a unique fuzzy IRR exists, at least in the previous simplest,
situation (one only sign change).

Observe that the class of fuzzy numbers we consider is more general than the one
considered by Buckley: for example the fuzzy numbers we consider can be not continuous.

The technique we use is related to the procedure of [1]. Indeed, in spite of its very
specific character, this note supports a rather broader point: the fuzzy arithmetic is sem-
plified if the membership function is inverted and represented as a pair of functions, the

functions being the boundaries of the fuzzy number’s cut set.

1. Definitions and some basic result.

A fuzzy number (f.n.) A is defined by means of its membership function p4 : R — [0,1].

The y-cut of A is defined by: C% = {z € R / pa(z) > y}.

The support of A is the set suppA = {x € R: pa(z) > 0}.

We say that A is convez if the y-cuts of A are convex for 0 <y < 1.

A is called bounded if suppA is bounded, positive if suppA C|0, +oo[, negative if
suppA C] — 00, 0[, normal if there exists o such that ua(zo) = 1.

Moreover we say that A is upper semicontinuous (u.s.c.) if its membership function
is upper semicontinuous.

If A is an u.s.c. normal, convex and bounded f.n. then for every y €]0,1] the y-cut of
A is a closed, bounded interval [fi(y/A), f2(y/A)] # 0; we shall suppose all fuzzy numbers
considered are normal, and we set: (suppA)” = [fi (VO/A)7 f2(0/4)].
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We call fi(y/A) and fo(y/A) the cut-functions of A. Of course fi(y/A)(f2(y/A)) is

an (not necessarily strictly) increasing (decreasing resp.) function of y € [0, 1].

Remark. Observe that in [2] Buckley defines the fuzzy number A by means of two
continuous and invertible functions f1(y/A) and f2(y/A) defined in the interval [0,1]. Since
we consider convex, bounded and u.s.c. f.n. A, the cut-functions fi(y/A) and f5(y/A) only

need to be left-continuous. Indeed we have

C% = [filwo/A), falwo /D] = () Ch = () [Aw/A), f2(y/ )] =

y<yo y<yo

= [sup fi(y/A), Jnf fa(y/A)]

y<¥o
hence
fi(yo/A) = sup fi(y/A) = lim fi(y/A), fa(yo/A) = inf fo(y/A) = lim fo(y/A).
¥<vo y—y; ¥<yo =9,

A flat fuzzy number A is a f.n. whose membership function is given by:

0 if z<a
(z —a)/u if a<z<a+u
palz(={1 if atu<z<b-vw
(b—=z)/v if b—v<a<b
0 if z>b.

where a < a+u < b—v < b. In particular if a + v = b — v we have triangular f.n;
obviously the y-cut of 4 is the set {z € R / pa(z) >y} =[a+yu,b—yv]for0 <y < 1.
Observe that if A : R®™ — R is a function and if 4,,..., A, are f.n., then by means of

Zadeh’s extension principle, we can obtain a f.n. A whose membership function is

/,LA(Z) = V{,LLA(:E]) A.LA IJ'A(mn) / h($1a1727~-75’:n) = Z}

In particular if  is a binary operation in R the previous procedure gives its extension

to the set of the fuzzy numbers.
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Propositién 1. If Ay,...,A, are normal then A is normal; if A is continuous and

Ai,..., A, are convex then A is convex (see [1], Proposition 2.2).
Proposition 2. If * is continuous and A and B are bounded u.s.c. f.n. then
CY,+C% =CY. 5

CY * C% being the set {z1 xz2 / 1 € CY, x5 E.C%}. (See [1]), Proposition 2.4). In

particular A * B is u.s.c.

2. Fuzzy cash flows and the internal rate of return.

Consider an investment or financing project with cash flow (ag,as,...,a,). An inter-

nal rate of return (IRR) is usually defined as a rate of interest r such that:
ag+a(1+7) 4. +a,(1+7r) =0

If ag < 0 and if the cash flow has one sign change, then the previous equation has a
unique solution r > —1.

The simplest and most important cash flow situation is when ax > 0 for 1 < k < n,
i.e., the case of a pure investment project.

In this Section we consider a fuzzy cash flow of a pure investment project
(—Ao,4y,...,A,) with Ap positive us.c. convex and bounded fn. for every

ke {0,1,2,...,n}.

Definition. A fuzzy internal rate of return (£.IRR) is an u.s.c., convex and bounded fuzzy
number R > —1 (that is fi(y/Ax) > —1 for every y € [0, 1]) satisfying the fuzzy equation:

1) Ao =§n:Ak®(1eaR)-k.

k=1

where ®, @ denote the multiplication and the addition extended to fuzzy numbers by

means of the Zadeh’s extension principle.
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If Ax and R are given f.n. convex, bounded and u.s.c., then, by Proposition 1 and 2

of Section 1, Aqg is a convex u.s.c. f.n. whose cut-functions are:

(2) fy/4e) =Y Ay/AD1 + foly/R)7F
k=1

(3) F(y/40) =Y foly/AWL + fi(y/R)] ™
k=1 .

In order to solve Equation (1) we have the following;:

Proposition 1. If, for every k € {1,2,...,n} we have that

(4) { fa(y/Ax)/ f2(y/Ag)  is increasing

fi(y/Ax)/ fi(y/Ao) is decreasing

in the interval [0,1] and

(5) F2(1/AR)/ f1(1/Ak) < fo(1/A0)/ f1(1/Ao)
then there exists a unique f.n. R > —1 convex and u.s.c. satisfying Equation (1).

Proof. Consider the equation (2) and (3) in the unknowns fi(y/R), f2(y/R). It is well-

known that they admit one solution greater than —1, respectively, f2(y/R) > —1 and
fi(y/R) > -1.

We shall prove that

i) i(1/R) < fo(1/R)

i) fi(y/R) is increasing function of y, f2(y/R) is decreasing.

Proof of 1). If f1(1/R) > f2(1/R), then we have,

Vk € {1,2,...,n} L+ AR <1+ f(y/R]*
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and hence, by (5), (2), (3):

£2(1/40) = > f2(1/AD1 + fi(1/R) 7 <

=
< B4 A (/A0 S AQ/AL + £/ B =
— £2(1/40), .
an absurdity. Thus f,(1/R) < f2(1/R).
Proof of ii). We have to prove that
(6) 0<y1 <y2<1= fi(y1/R) < fi(y2/R).

If there exist y;,y2 such that 0 < y; <y2 <1 and fi(y1/R) > fi(y2/R), then, by (2), (3),

(5) and the first assertion in (4), we obtain:
1= 11+ fily1/R) ™ faly1/Ar)/ f2(y1/Ao) <
k=1

< Y 1+ fily2/ R falya/ Ak) Fa(y2/ Ao) = 1,

k=1
an absurdity. Thus implication (6) holds for every y;, y,.
Analogously one proves that fa(y/R) is decreasing.
Consider the intervals [f1(y/R), f2(y/R)], y € [0,1]. As is well known, they constitute

the family of the cuts of a fuzzy number if: for every y, €]0, 1],

[f1(yo/R), f2(yo/R)] = ﬂ [fi(y/R), f2(y/R)]

y<yo
and this is true if

lim fi(y/R) = :25 fi(y/R) = fi(yo/R),

Y=Y

lim f2(y/R)= yiggo f2(y/R) = fa(yo/R).

y—¥,
Now, these equalities are an immediate consequence of Equations (2) and (3) and the

left-continuity of cut-functions of Ag, A1,..., An.
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Thus we can consider the fuzzy number R whose membership function is defined by:
R(2) = SUPY  X(fi(s/R), fa(u/ RO (T)

and R is convex, bounded, normal and u.s.c. since

{z:pr(z) 2y} = [fl(y/R),fz(y/)]-

It is now obvious that R is solution of Equation (1).

Remark 1. Notice that by (5) we have in particular, that if fo(1/4¢) = fi1(1/Ao),
that is the peak of Ay is constitued by a unique point, also fo(1/Ax) = f1(1/A), Vk €
{1,2,...,n}, that is the peaks of 4;, A,,..., A, are constitued by a unique point.

In particular we have

Proposition 2. Let Ao, Aj,..., A, be positive flat fuzzy numbers, that is fi(y/Ak) =
ar + yug,

F2(y/Ak) = b — yog, ar < ap +up < by — v < by, for every k € {0,1,2,...n}. If

(7 ug/ar < uo/ag, v /br < vo/bo

(8) (bx = vi)/(ar + ur) < (bo — vo)/(a0 + wo)
then there exists a unique convex, u.s.c. f.n. R > —1 satisfying Equation (1).
Proof. Indeed (7) entails that

(bk = yoi)/(bo — yvo) = f2(y/Ax)/ f2(y/Ao)

is increasing and

(ar + yug)/(ao + yuo) = fr(y/Ar)/ fi(y/Ao)

is decreasing.
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(8) is nothing but (5).

Remark 2. If (by — vo)/(ao + uo) = 1, that is Ag is triangular, then (8) entails th:
Ay, Ag, ..., A, are all triangular numbers. And if ug = vy = 0, that is A, is crisp, then
follows from (7) that also uy = vy = 0, Vk € {1,2,...,n}, that is A;, A, ..., A, are cris

too.
Example 1. Let Ay, A;, A3 be triangular numbers with parameters
ug = vg = 10, v = vk = 9, apg + ug = bg — vo = 110, ar +up = b — v =17

(7) and (8) are verified. Equation (2) and (3) become:
> (65 + y5)[1 + fa(y/R)|™* =100 + 10y.

k=1
> (75— y5)[1 + fay/R)F =120 — 10y,
k=1

Hence

fily/R) =1/(48 — 4y)[—-33 + 3y + ,/(9y® — 246y + 1665)]

9) fa(y/R) = 1/(40 — 4y)[—27 + 3y + ,/(9y® — 210y + 1209)]

and fi1(1/R) = f2(1/R) = 0,1770 that is the IRR in the crisp case.
Notice that f1(0/R) = 0,1625 andf2(0/R) = 0.1942 hence the IRR is not less that

0,1625 and not greatest that 0,1942.

Example 2. Let Ag, Ay, A2 be flat numbers with parameteres
ayg = 100 Ug = Vg = 10 bg =140

ak=65 uk=vk=5 bk=85
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(7) and (8) are satisfied. Equations (2) and (3) become:

zn:(sts +y5)[1 + fo(y/R)]™F = 100 + 10y
k=1

n

3 (85 - yB)[1 + fi(y/R)7F =140 — 10y
k=1

Hence we obtain that f,(y/R) is given by (9) and

Fi(y/R) = 1/(56 — 4y)[—39 + 3y + /9y — 282y + 2193].

Observe that
£1(1/R) =0,1503 < f»(1/R) 20,1770

£1(1/R) 20,1398f,(1/R) = 0,1942.

Example 3. Let Ag, Ay,...,4n defined by

1, ifyel0,1/2]

fa =y G ey B =4 Vel

1/2, ifyel0,1/2]
1, ify €]1/2,1] ’
Fi(y/Az) = 3/2 faly/A2) =5/2, ¥y €[0,1].
(4) and (5) are satisfied.

fily/Ar) = { faly/A1) =2, Vye[0,1]

Equations (2) become
1=1/2(1+ fo(y/R) ™" +3/2(1 + faly/R) 7%, fory € [0,1/2]

and

2 =(1+ f2(y/R)™ +3/2(1 + fo(y/R))™*, for y €]1/2,0]
from which we obtain

0,5, if y €[0,1/2]

fa(y/R) = {0’ 1516, ify €]1/2,1].

21
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Equations (3) become:

=2(1+ fi(y/R))™ +5/2(1 + fi(y/R)) "2,

that gives
fi(y/R) =0,0734.
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