Notas Breves

ON FUNCTIONS THAT CANNOT BE MV-TRUTH VALUES IN ALGEBRAIC STRUCTURES

ENRIC TRILLAS

ABSTRACT

It is shown, in a general frame and playing with idempotency, that in order to have on a given lattice a Multiple Valued Logic preserving the lattice structure, the only t-norms and t-conorms allowing to modelize the truth values of $a \lor b$,... $a \land b$ and $a \to b$ are Min and Max, respectively, apart from ordinal sums.

Let (L,*) be an algebraic structure, that is a non-empty set L with a binary operation $L \times L \to L, *(a,b) = a*b$, and let V be a function $L \to [0,1]$ "evaluating" the elements of L in some predetermined sense (a <u>certainty factor</u> in the language of Expert Systems) such that, for all $(a,b) \in L \times L$,

$$V(a*b) = T(V(a), V(b))$$
(1)

being T a t-norm [1].

Theorem 1. Any function $V: L \to [0,1]$, verifying (1), preserves the relation $a \leq b$ given in L by a * b = a.

Proof. If $a \leq b$, as $T \leq \min[1]$, we have $V(a) = V(a * b) \leq \min(V(a), V(b)) \leq V(b)$.

Theorem 2. If there exists $z \in L$ such that z = z * z and $V(z) \in (0,1)$, then the only t-norms T for which (1) is possible are Min and the ordinal sums.

224 E. Trillas

Proof. As V(z) = V(z * z) = T(V(z), V(z)), we see that V(z) is an idempotent for T, so that T has to be [1] either Min or an ordinal sum.

Theorems 1 and 2 can be used when L is an lower-semilattice [2] with $*= \land$, the meet operation. In that case, functions $V: L \to [0,1]$ verifying $V(a \land b) = T(V(a), V(b))$ and effectively ranging in (0,1) are candidates to be Multiple-Valued Truth Values, but with the strong limitation of T being only Min or an ordinal Sum. The same happens if L is a set of propositions equipped with a sort of conjunction and with a <u>certainty factor</u> V [3], when there exists just one proposition p such that $p \land p = p$ and 0 < V(p) < 1.

Similar proofs are valid for the next theorems.

Theorem 3. If there exists $z \in L$ such that z * z = z and $V(z) \in (0,1)$, then the only t-conorms S for which it holds

$$V(a*b) = S(V(a), V(b))$$
(2)

for all $(a, b) \in L \times L$ are the Max and the ordinal sums.

Theorem 4. Any function $V: L \to [0,1]$, verifying (2) preserves the relation $a \le b$ given in L by a * b = b.

Theorems 3 and 4 can be used when L is an upper-semilattice [2] with $*=\vee$ the join operation. In such case, functions V verifying $V(a\vee b)=S(V(a),V(b))$ and effectively ranging in (0,1) are also candidates to be MV-Truth Values, but with the limitation of S being either Max or an ordinal sum. The same happens if L is a set of propositions equipped with some disjunction \vee and a certainty factor V [3], when there exists just one proposition p such that $p\vee p=p$ and 0< V(p)<1.

Consequently, for lattices (L, \vee, \wedge) , the only possibilities for representing actual MV-Truth Values using t-norms or t-conorms by means of (1) or (2) respectively, are T = Minor S = Max and, in both cases, ordinal sums. Other t-norms or t-conorms will give only $V(a) \in \{0,1\}$ for each $a \in L$, and no actual Multiple-Valued Logic will be available with such functions V. This result completes what is proven in [4], [5] and [6].

In the last case, and provided that $\neg \neg a = a$ for each $a \in L$, it should be pointed out that it is excluded the possibility of giving the truth value of $a \to b = \neg a \lor b$ by means of $V(a \to b) = 1 - T(1 - V(\neg a), 1 - V(b))$, where $V(\neg a) = 1 - V(a)$, by virtue of $V(\neg a \to a) = V(a \lor a) = V(a) = 1 - T(V(\neg a), 1 - V(a)) = 1 - T(1 - V(a), 1 - V(a))$, or 1 - V(a) = T(1 - V(a), 1 - V(a)); and, if $V(a) \in (0, 1)$, T should be either Min or an ordinal sum.

Thus, it is clear that for compatibility with a lattice structure on L only T =Min or T = an ordinal sum, are admissible t-norms. Of course, it is possible to use other t-norms to modelize $V(a \to b)$ only, as is the case of Luckasiewicz's Logic [7] in which $V(a \lor b) = Max(V(a), V(b))$, $V(a \land b) = Min(V(a), V(b))$ and $V(a \to b) = Min(1, 1 - V(a) + V(b)) = 1 - L(V(a), 1 - V(b))$, where L(x,y) = Max(0,x+y-1) is the so-called Luckasiewicz t-norm [1]. This is also the case of Zadeh's Fuzzy Logic [8] with $L = [0,1]^{[0,1]}$ the set of all fuzzy sets over [0,1], and where $(\mu_A \cap \mu_B)(x) = Min(\mu_A(x), \mu_B(x))$, $(\mu_A \cup \mu_B)(x) = Max(\mu_A(x), \mu_B(x))$ and $(\mu_A \to \mu_B)(x) = Min(1, 1 - \mu_A(x) + \mu_B(x))$, for each $x \in [0,1]$, μ_A and μ_B being fuzzy sets over [0,1]. In those cases no idempotency "pathology" arises.

Remark.

(I) If $a \to b = \neg a \lor (a \land b)$ and $\neg a \lor a = 1$, for each $a \in L$ (Excluded Middle Principle) then, setting $V(a \to b) = V(\neg a \lor (a \land b)) = 1 - T(V(a), 1 - V(b))$, we have $V(\neg a \lor a) = 1 = V(a \to a) = 1 - T(V(a), 1 - V(a))$ and T(V(a), 1 - V(a)) = 0 for all $a \in L$. This excludes tnorms "like" T=Min or T=Prod if we want to preserve both the Excluded Middle Principle and the actual MV-Truth Value. For t-norms "like L" (see [9]), $T = \phi^{-1} \circ L \circ (\phi \times \phi)$ where ϕ is an automorphism of [0, 1], we will have $\phi^{-1}(L(\phi(V(a)), \phi(1 - V(a))) = 0$, that

226 E. Trillas

is $L(\phi(V(a)), \phi(1-V(a))) = 0$, or $Max(0, \phi(V(a)) + \phi(1-V(a)) - 1) = 0$. Thus, ϕ must verify $\phi(V(a)) + \phi(1-V(a)) \le 1$ for each $a \in L$ (as is actually in the Luckasiewicz case for $\phi = j$, the identity function, so that both the Excluded Middle Principle and the MV-Truth Value [4] hold.

(II) Of course, it is always possible to redefine $V(a \vee b)$ in lattices with least element 0, and for "measure" purposes, by setting $V(a \vee b) = S(V(a), V(b))$ if $a \wedge b = 0$. In the case of orthomodular lattices [2] in which $a \to b = a' \vee (a \wedge b)$, a' being the orthocomplement of a (for Boolean algebras we have $a \to b = a' \vee b$) it is possible to write $V(a \to b) = S(V(a'), V(a \wedge b))$ because $a' \wedge (a \wedge b) = 0$. Nevertheless, in all those cases we do not obtain what is usually known as a truth-value function or truth-table for logical connectives.

References.

- [1] Schweizer, B. and Sklar, A. (1983) Probabilistic Metric Spaces. North-Holland.
- [2] Birkhoff, G. (1979) Lattice Theory. AMS Colloquium Pubs. Third. Ed.
- [3] Smets, Ph., Mamdani, E.H., Dubois, D. and Prade, H. Ed. (1988) Non-Standard Logics for Automated Reasoning. Academic Press.
- [4] Trillas, E. (1988) "Tercer exclòs, funcionalitat i bivaluació", in Actes del VIIè Congrés Català de Lògica. 81-83.
- [5] Trillas, E., Alsina, C. and Valverde, L. (1982) "Do we need Max, Min and 1-j in Fuzzy Set Theory?" in Fuzzy Set and Possibility Theory, R.R. Yager, Ed., Pergamon Press, pp. 275-297.
- [6] Alsina, C., Trillas, E. and Valverde, L. (1983) "On some logical connectives for Fuzzy Sets Theory", in *Jour. Math. Ann. and its Appl.* pp. 15-26.
- [7] Ackerman, R.
- [8] Zadeh, L.A. (1984) "A Theory of Commonsense Knowledge", in Aspects of Vagueness.
 H.H. Skala, S. Termini and E. Trillas (ed.), Reidel, pp. 257-295.

[9] Ovchinnikov, S. and Roubens, M. (1988) "On Strict Preference Relations" (preprint).

Facultad de Informática

Universidad Politécnica de Madrid.

. .

•