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AN EXAMPLE OF SEMILINEAR TOPOLOGIES

MAREK KuczMa

In this paper by a linear space always is meant a linear space over the field IR of

real numbers and of a positive dimension. (Thus the singleton {0} is not a linear space).

If X, Y are linear spaces, then the product X xY also is considered to be a linear space
" with the algebraic operations defined (”coordinatewise”) with the aid of those existing in X
andin Y. The spaces X and Y may be identified with X x{y} and {z}xY (z € X,y €Y),

respectively, so sometimes X and Y will be treated as subsets (subspaces) of X x Y.

Let E be a linear space and assume that E is endowed with a topology 7. The
topology 7T is called linear (and E is then called a linear topological space) iff the
function ¢ : R x E x E — E defined by

(1) p(Aa,b) =Aa+b

is continuous (IR is understood to be endowed with the natural topology of the real line). If
function (1) is separately continuous with respect to each variable, then the topology 7T is
called semilinear (cf. [3] and also [1]). Of course, every linear topology is also semilinear.
Another example of a semilinear topology is furnished by the core topology (cf. {1]- [4]),

which exists in every linear space and is generated by the linear structure of the space.

Let E be a linear space and let A C E be an arbitrary subset of E. A point a € 4 is
called algebraically interior to A iff for every h € E there exists an € = ¢(a, b) > 0 such

that

(2) a+dbeA for Xe(—¢e)
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’i‘he set of points that are algebraically interior to A is denoted core A:
3) core A := {a € Aa is algebraically interior to A},
and A is called algebraically open whenever A = core A. The family
(4) | T(E):={ACE|A= core A™}

of all algebraically open subsets of E is a topology in E and is called the core topology
in E (cf. [1]-[4]). We have (cf. [2] and also [1]).

Lemma 1. Let E be a linear space. If dim F = 1, then the core topology 7(E) is
linear (coincides with the natural topology of the real line). If dim E > 2, then T(E) is

semilinear, but not linear.

The question about the existence of other semilinear topologies remained unanswered
for some time. Recently Z. Kominek [1] has proved -assuming the axiom of choice and the
continuum hypothesis- that if Z is a linear topology Baire and Hausdorff space of dimension
greater than one and satisfying the second axiom of countability, then there exists in Z a

semilinear topology which is neither linear nor identical with the core topology T(Z).

The purpose of the present note is to give another example of semilinear topologies
with similar properties. In our construction we also use the axiom of choice, but not the

continuum hipothesis.

Before stating our main result we introduce some notations. If E endowed with a
topology 7T is a topological space and Ey C E is a subset of E, then the topology in Ej
inherited from (F,7) will be denoted T |Ey. If X and Y with the topologies Tx and Ty,
respectively, are topological spaces, then the product topology in X x Y generated by Tx
and Ty will be denoted Tx x7Ty. Because of the identification mentioned at the beginning

of this paper, the symbols (Tx x7y)|X and (Tx x7Ty)|Y make sense.
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Some relations between various topologies are listed in the following lemmas.
Lemma 2. Let X, Y (with the topologies Tx and Ty, respectively) be topological spaces,
let Xy C X and Yy C Y be respective subsets, let E be a linear space and let Ey C E be
a linear subspace of E. Then (cf. [4]); |

1)) (TxxTy)| X =Tx, (TxxTy)|Y =Ty.
i) T(E)|Eo = T(Eo).
ill) Tx|Xo)x(Ty|Yo) = (Tx xTy)|(Xo x Yp).
Proof. Relations (i)-(iii) are a more or less immediate consequence of the definitions of the

notions occurring there. As an example we prove here (ii).
Let A € T(E)|E,. This means that there exists a set A € T(E) such that
(5) A = A n E().

Take arbitrary a € A and b € E,. By (5) we have a € A, and clearly b € E. Thus there

exists an € > 0 such that

(6) a+XbeA for Xe(—¢e),
since A € T(E). We have b € Ey and by (5) also a € Eo, whence
) a+XbeEy, for MeR

since Ey is a linear space. Relations (5)-(7) imply (2), which means according to (3) that
a € core A and (due to the arbitrariness of a € A) core A = A. Thus A € T(Ep) and

consequently
®) T(E)|Eo C T(Ey).

Now take an arbitary A € T(Ey). There exists a linear subspace E; of E such that
9) E=Eox E,.

Put A = A x E;. Then we have (5) and it is easy to check that A € T(E). Consequently
A € T(E)|Ey, which implies that T(Eg) C T(E)|Ey. Together with (8) this yields {ii).
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Remark. Claiming the existence of a linear space E, fulfilling (9) we have appealed, in
fact, to the axiom of choice. The axiom of choice is assumed to be valid throughout this

paper and will not be mentioned in the sequel.

Lemma 3. Let E, X and Y be linear spaces endowed with topologies Tg, Tx and Ty,
respectively, and let Ey C E be a linear subspace of E. Then:
i) If the topology 7T is linear [semilineaar], then also the topology Tg|FEj is linear [semi-
linear].
ii) If the topologies Tx and 7y are linear [semilinear], then also the topology Tx X7y is

linear [semilinear].

Proof. Again we prove only (ii) for semilinear topologies. Put T := Tx xTy, Ty := T(R)

(cf. Lemma 1) and
(10) Z=XxY,

andlet ¢ : R x Z x Z — Z be given by (1). By $: Z — Z and ¢ : R — Z we denote

function (1) with the variables A, b resp. a, b fixed.

Let A C Z be an arbitrary set belonging to 7. In order to prove that 7 is semilinear

it is enough to show that for A € R and b € Z arbitrarily fixed we have
(11) G A eT

and for a,b € Z arbitrarily fixed we have

(12) $(A)eT

(The continuity of ¢ with respect to b is a consequence of the continuity of ¢ with respect
to a and of the commutativity of addition). Moreover, we may restrict ourselves to sets
A from the neighbourhood base of T, that is, to sets A of the form A = G x H, where

GeTx,HecTy.
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According to (10) the points a,b € Z can be written as a = (az,ay) and b= (bz, by),
where a;,b, € X, a,,b, € Y. We define functions p; : IR X X xX — X and
¢y  RxY xY —Y by

(13) 0z(A, az,bz) = Aaz + b, py(A, ay,by) = Aay + by,

and tildes and double tildes applied to ¢, and ¢, have analogous meaning as in the case

of . By (1) and (13)

©(X,a,b) = Aa + b= Aaz,ay) + (bz, by) = (Mag + bz, Aay + by)

= (‘P:(/\; Qg, bz)v (?y(’\a ay, by))

so that with A € R and b = (b;,by) € Z fixed we have for A =G x H
(14) ¢7H(4) = ¢71(G) x ¢, (H),

while with a = (az,ay), b = (bz,by) € Z fixed we have for A=G x H

(15) | F7(4)= 3. (G)x , (H),

Now, tilded and double tilded functions (13) are continuous, since the topologies Tx and:

Ty are semilinear. Thus (11) and (12) are a consequence of (14) and (15).
Now we prove our main result.
Theorem 1. Let X and Y be linear spaces such that

(16) max(dim X,dimY) > 2,

and let Z be defined by (10). The topology 7 := T(X)x7(Y') in Z is semilinear, but is

not linear and is different from the core topology T(Z).
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Proof. T is semilinear by virtue of Lemmas 1 and 3 (ii). If 7 were linear, then, by (10)
and Lemmas 2 (i) and 3 (i), also 7(X) and 7(Y’) would be linear, which however, in view

of Lemma 1 is incompatible with (16).
Now suppose that T = T(Z), that is
T(X xY)=T(X)xT(Y).
Fix arbitrary u € X\{0} and v € Y\{0} and write
L,={zeX|z=X, €R}, L,:={yeY|y=Iv,AeR}
Thus L, and L, are one dimensional linear subspaces of X and Y, respectively. By Lemma
2 (ii)
(18)  T(X)Ly =T(Ly), T(Y)|Ly =T(Ly), T(X xY)|(Lu x Ly) =T (Lu x Ly),
whe;lce by Lemma 2 (iii)
(19) (TX)XT(Y)(Lu x Ly) = T(Lu)XT (L)
Relations (17), (18) and (19) imply that
(20) T(Ly X L,) =T(Ly)xT(Ly).

Since dim L, = dim L, = 1, the topologies T(L,) and 7(L,) are linear and hence also
T(Ly)XT(Ly)is linear (Lemmas 1 and 3 (ii)). On the other hand, we have dim(L, x L,) =
2 and thus, according to Lemma 1, the topology 7 (L, X L, ) is not linear. This contradiction

shows that (20), and hence also (17), is impossible and completes the proof of the theorem.

Corollary 1. Let X, Y be linear spaces. For arbitrary topologies 7x in X and Ty in YV

we always have
(21) T(X X Y) 75 Tx XTy.

In other words, the core topology never is a product topology.
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Proof. Supposing the contrary we have

(22) T(X xY) = TxxTy,

whence we obtain by virtue of Lemma 2 (i) and (ii)

(23) Tx = (IxxTy)IX = T(X xY)|X =T(X)
and similarly

(24) Ty =(IxxT)[Y =T(X x Y)Y =T(Y).

Thus (22) becomes identical with (17).

Now, if X and Y fulfil (16), then (21) results from Theorem 1 in view of (23) and
(24), and if dim X = dimY = 1, then we argue as in the proof of Theorem 1 to show that

relations (20) is impossible.

Corollary 2. Every linear space Z such that
(25) dimZ >3

admits a semilinear topology which is neither linear nor identical with the core topology

T(2).

Proof. There exist linear spaces X and Y fulfilling (10), and condition (25) implies (16).
Thus it follows from Theorem 1 that the topology T(X)x7(Y) in Z ¢ has all the required

properties.

If dimZ = 2, then Z is isomorphic (may be identified) with R2. Endowed with
the natural topology of the plane, IR? is a linear topological Baire and Hausdorff space
satisfying the second axiom of countability. Thus we obtain from Corollary 2 and from the

result of Z. Kominek [1] mentioned earlier in this paper the following
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Corollary 3. Under the assumption of the continuum hypothesis every linear space Z
of dimension at least 2 admits a semilinear topology which is neither linear nor identical

with the core topology T(Z).

In spaces Z of high dimension we can presumably obtain several semilinear topologies
applying Theorem 1 with different representations (10). We note also that having at
our disposal some semilinear topologies we can generate further ones with the aid of the

following generalization of Theorem 1.

Theorem 2. Let X and Y be linear spaces and let Tx and 7y be semilinear topologies
in X and in Y, respectively, at least one of which is not linear. Define Z by (10). Then
T := Tx xTy is a semilinear topology in Z, which is neither linear nor identical with the

core topology T(Z).

Proof. The topology T is semilinear by virtue of Lemma 3 (ii). If the topology 7 were
linear, then, according to Lemmas 2 (i) and 3 (i), also both topologies Tx = T|X and
Ty = T|Y would be linear, which is not the case. Relation (21) results from Corollary 1.

Observe that if Tx and Tx are (semilinear) topologies in a (linear) space X, Ty and
Ty are (semilinear) topologies in a (linear) space Y, and Tx # Tx and or Ty # Ty, then
TxxTy # TxxTy are different (semilinear) topologies in the (linear) space Z = X x Y.

This is consequence of Lemma 2 (1).
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