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COMPARING NOTIONS OF APPROXIMATION!

M. FURNARI AND A. MASSAROTTI

ABSTRACT

In this note we discuss some drawbacks of some approaches to the classi-
fication of NP-complete optimization problems. Then we analyse the Theory of
Analytical Computational Complezity to gain some insight about the notions of
approzimation and approzimate algorithms. We stress the different roles played
by these notions within the theories of Analytical and Algeb'raic Complezity. We
finally outline a possible strategy to capture a more useful notion of approzimation

which i3 inspired by some results on Linear Programming problems.

Introduction.

Optimization problems seem to fall naturally into two categories: those with continu-
ous variables, and those with discrete variables, which are called combinatorial optimization
problems.

In the continuous problems, we are generally looking for a set of real numbers or
even functions; in the combinatorial problems, we are looking for an object taken from a
countable set; tipically: an integer, a set, a permutation set, or a graph.

Generally, to investigate the complexity of combinatorial optimization problems they
are reduced to decision problems, then analyzed by means of the notions of the Theory of

Algebraic Computational Complexity.

1This work was partly supported by Progetto Finalizzato Trasporti, C.N.R.
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Unfortunately, many interesting combinatorial optimization problems belong to the
class of NP-complete problems; hence it is of some interest to develop a theofy capturing
efficiently the intuitive notions of approximation.

To this end, many approaches have been proposed, see Johnson, Sahni, Paz and
Moran, and Ausiello [1,2,3,4] which, however, all present some significant drawbacks, see
Aiello [5].

We propose to analyse the Analytical Theory of Complexity to gain some insight
about the notion of approximation, and its use.

In this note we first sketch both approaches (The Analytical and the Algebraic), next
we analyse an interesting optimization problem, Linear Programming, that plays a unique
role in optimization theory. It can be considered as a continuous optimization problem,
and combinatorial in character. Its study is basic for many strict combinatorial problems.

Comparing the results obtained from the classification of Linear Programming, from
the point of view of the Analytical and Algebraic theories of complexity, we stress out
the different meaning which can be assigned to the notion of approximation in the two
approaches. Taking this as a starting point we sketch a new interesting approach for an

Algebraic Theory of approximate algorithms.

Basic concepts and terminology.
To provide a formal ground to study the properties of an optimization problem, we

give first an abstract notion of optimization problem, next we specialize it in both theories.

An instance of an optimization problem is a pair (X,c), where X is any set, called
domain of feasible points; c is the cost function, i.e. a mappingc: X — R.

The problem is to find an £ € X for which

c(z) <c(y) forally € X for a minimization problem
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or

c(z) > c(y) forally € X for a maximization problem

Such point z is called a globally optimal solution to the given instance or simply an optimal

solution.
An optimization problem is a set P of instances of an optimization problem.

It is important to distinguish between a problem and and instance of a problem.
Informally, an instance is described by the input data I and sufficient information to
obtain a solution (i.e., the set of properties to verify, denoted by p). A problem is a

collection of instances, usually generated in a similar way.

The Algebraic Theory of Complexity.
A prototype of computational problem studied by the Algebraic theory of complexity
has the following form and is called a decision problem:
1) a set of instances Irr,,, each of which is given by an input I, and a set of properties P
to verify.

2) a question about the existence of an object that verifies the properties P.

For example:
Minimum Cover:
Instance: A collection of subsets {S;} of finite set S, a positive integer k < i;
Question: Does {S;} contain a cover S of size m < k?
Hamiltonian Circuit:
Instance: a graph G = (V, E);
Question: Does G contain a Hamiltonian circuit?
Clique:

Instance: a graph G = (V, E), a positive integer K;
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Question: Does G contain a clique of size K or more; i.e. a subset V 2 V' with
V'] > K such that every two vertices in V' are joined by an edge in E?7
Node Cover:
Instance: a graph G = (V, E), a positive integer K < |V;
Question: Is there a node cover of size K or less for Gj i.e., a subset V 2 V' with

V'| < K such that for every edge [u,v] € E at least one of u or v belongs to V'?
g

The foundations of the Algebraic Complexity Theory were laid in the Stephen Cook
paper [6]. In it many important facts are proved. First, Cook emphasized the significance
of polinomial time reductibility; secondly, he focussed attention on the class NP problems,
i.e. the class of decision problems that can be solved in polynomial time by a nondeter-
ministic machine; thirdly, he proved that one particular problem in NP, called satisfiability
problem, has the property that every other problem in NP can be reduced to it. Hence,
if the satisfiability problem can be solved with a polynomial time algorithm, then so can
every problem in NP. Karp in [7] proved that the decision version of many well known
combinatorial problems share the same property.

Since a wide variety of other problems have been proved equivalent in difficulty to
these problems (see Garey [8]). This equivalence class has been called class of NP-complete
problems, it consists of the hardest problem in NP. Every problem belonging to this class
shows the following interesting properties:

1. No NP-complete problem has been solved by an known polynomial algorithm.

2. If there is a polynomial algorithm for any NP-complete problem, then there are poly-

nomial algorithms for all NP-complete problems.

To study the optimization problem from the point of view of the Algebraic Theory of
Complexity, we shall assume that X (the set of feasible solutions) and ¢ (the cost function)

are given implicitly in terms of two algorithms Ax and A.. The algorithm Ax, given a
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combinatorial object z and a set S of parameters, will decide whether « is an element of
X, the set of feasible solutions specified by the given parameters. On the other hand A,

given a feasible solution z and another set of parameter Q, returns the value of ¢(z).

Then the combinatorial optimization problem can be defined in the following way:
1. a set of instances P, each given by an input Z, and a set of properties P to verify.
2. for each I € Py there exists a finite set S(Z), called the set of feasible solutions;

3. a function mp(w) which computes the value of the cost function for every w € Sy.

The optimal solution will be the w* € Su(Z) such that mp(w*) < mpo(w)Vw € Sp(T)
if P is a minimization problem (respectively; mp(w*) > mp(w)Vw € SK(T) if P is a

maximization problem).

Within this framework any wy € Sp(Z) such that wz # w} denotes an approxiinate
solution for P, and an algorithm Ay which computes wz € S (T) for every T is called an

approximate algorithm for P.

It must be pointed out that, although it is possible to give a decision version of any
optimization problem, it is not so simple and straightforward to give an optimization
version for any decision problem. That is, there exist some decision problems that must
be considered intrinsic decision problems. For example, consider the Hamiltonian circuit
problem. In this case, to transform this decision problem into an equivalent optimization
problem it is necessary to modify the set of properties to be verified, for example, relaxing
the constraint that requires to visit each node of the graph. Hence a possible choice is

given by:
find the maximum subgraph of G = (V, E) which has an Hamiltonian circuit.

To capture the intuitive notion of closeness between solutions, one has to introduce

the concept of performances measure of an approximate algorithm. Johnson and Sahni
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[1,2] defined the following measure of performance in the worst case analysis:

max mu(wz+)/mn(w?™) for a maximization problem
Ray = !
An max mp (wAm)/my(wz~) for a minimization problem
jos .

Concerning this notion of measure of performance we may notice that:

. it may be considered natural, i.e. captures the intuitive notion of closeness. However,

there is no formal relation between its definition and the problem input data. Hence
the choice is totally arbitrary.

it is not invariant under linear transformations of the measure of the feasible solutions.
As immediate consequence we have that equivalent problems do not share the same
properties with respect to the approximation class (for example Clique-Node cover)
(5);

it is not continuous with respect to simple modifications of the problem input data.
Generally, this behaviour is attributed to the specific heuristics used by the approx-
imate algorithm. For example, it is well known that the problem of the chromatic
number of a non planar graph belongs to the NP-(';omplete class; however many ap-
proximate algorithms have been proposed: the most famous was proposed by Welsh
& Powell. This algorithm utilizes the priority to the bigger set heuristics. If we give
as inputs to this algorithm the bipartite graphs showed in fig. 1, we obtain that the
Welsh & Powell algorithm gives a chromatic number N/2 for G, and 2 for Gy. For

both graphs the chromatic number is 2.

a) Go = (W1, E1) b) G = (V2, Es)
Fig. 1. Bipartite graphs. Where Vi = V3, and E; = E; U {e12}
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As a result of these remarks, it seems natural to pose the following questions:
Why does the same heuristics give results more satisfactory for a given problem than
for problems which exhibit similar structure?
Is the heuristics choice more strictly connected to problem structural characteristics

or is it strictly connected to the approximate algorithms measure performance?

In [5] it was shown that, if the measure of performance for an approximate algorithm
is invariant under linear transformations, then the heuristics of priority to the bigger set
is unable to give, in the worst case analysis, results which are better than worst solution

with respect to the optimal solution.

We can assert that the notions of approximation and approximate algorithms are
weakly connected to the Algebraic Theory of Complexity. The meanings assumed by these
notions are strictly related to the feasible solutions of a problem and show a deep connection
with the choice of performance measure. Therefore these concepts appear superimposed

on the framework of the Algebraic Theory of Complexity in an arbitrary manner.

The Analytical Theory of Complexity.
A prototype of problem considered into this theory has the following form:

minfo(z)  g={z€Gfi(z)<0,1<j<m}

where G is a closed subset of a Banach space E, f; € F 0 < j < m are continuous real
functions defined on G and called constraints, f, is.the objective functional for the problem

and G is its domain.

Characterizing G and f; it is possible to obtain an important class of problems, indeed
if we suppose G convex, E = R" and f; convex functions on G, then the family of
mathematical problems with fixed m, G and E represent the class of convex problems

with m constraints and domain R* D G.
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In this theory [10,12] a numerical method of solution for a mathematical programming
problem is represented as a set of rules to accrue the necessary information to solve the

problem. The information source is fixed in advance and is called oracle.

Formally, for a given class of problems P(F,G,m, E), an oracle O is given by an
observation function ¢(z, f) : G x F — I, where I is a set called information space. For
example, if the information space is I = R"*! and ¢(z, f) = f(z), then the oracle gives for
each point of the domain the values of all the functionals of the problem at given point. A

such type of oracle will be called a zeroth order oracle.

Applied to a given problem, a method of solutions gives a sequence of points
{z1,--,zr,2°}. The sequence {z,---,z,} represents the questions asked to the oracle
looking for the solution, and the points z° represents the result of the application of the
method. The sequence {z;,---,z,,2°} will be called the trajector of the method on the

given problem.

Generally, the problems approached with the Analytical theory are very hard, thus

the solution method will guarantee only approximate solutions, not exact solutions.

In order to analyse and compare these solution methods, it is necessary to have some
means to measure the error, i.e. the proximity level of the results given by a method. The
absolute error is defined as the difference between the values of the objective functional
computed, respectively, on the approximate and optimal solutions. The absolute error will
be denoted by €(z, f). To obtain a deeper insight, it is necessary define the relative error.
This notion is defined by:

&, f)

V(f,f)=m

where p(f) represents a normalizing map. The normalizing map for the class of convex

programming problems, universally chosen, is given by:

p(f) = sup — inf f(z)
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In this theory the notion of approximation must be interpreted as even closer bringing
to the optimal solution. In this approach the notion of approximation is strictly connected
to the increasing of information on the problem furnished by the oracle. Therefore the
notion of approximation represents an intrinsic feature of the problem rather than the
set of feasible solution for it, as in the Algebraic Theory of Complexity. The statement
z 18 an approzimate solution for f with a relative error v must be interpreted as z i3
an approzimate solution for f 1/v times better than the worst solution given by a trivial

search.

In Aiello & al. [5] a similar measure of the performances for approximate algorithms
of the combinatorial optimization problems has been proposed. This type of measure is

invariant under linear transformations of the measure of feasible solutions.

From this brief description of both theories, we can conclude that not only the mathe-
matical methods used in the theories but also the meanings of similar notions are different.
Furthermore, we can point out conflicting views in the search of methods to solve a given
problem. In the Algebraic Theory of Complexity, complete information about the problem
(its code) must be given as input for the method, and a limitation on the nature of the
method is determined only by the type of process which is applied to the code of the prob-
lem in order to obtain the code of the solution (the method must be algorithmic in the
sense of the computability theory). By contrast, in the Analytical Theory of Complexity,
the picture is reversed: the methods that can be applied are in no way limited, but on the
other hand the initial information about the problem is incomplete, and its acquisition has

to be paid for.

Linear Programming.

An interesting comparison between these theories can be obtained by applying them to

the problem of Linear Programming. This problem can be considered the easiest problem
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of convex organization, indeed the functions used are linear. Furthermore, its geometric

structure can be used to bring out its combinatorial nature.

Within the framework of the theory of the Algebraic Complexity the Linear Program-
ming problem has the folowing form:
Linear Programming:
Instance: An integer n X d matrix A, an integer n-vector b, an integer d-vector c;

Question: Find a rational d-vector x such that Az < b and ¢z is maximized.

The most popular algorithm that solves the Linear Programming problem, within
the framework of the Algebraic Theory of Complexity, is the Simplex algorithm. .This
algorithm solves a linear programming problem by finding an initial feasible solution and
then, if it does not maximize the objective function, a new feasible solution is found and
the check for maximizing the objective function is made again. Empirical evidence for
the complexity of the Simplex algorithm shows it to be quite efficient. However it can be

proved that its complexity is exponential, under the worst case analysis [9].

Khachian, using the algorithm of Modified Method of Centres of Gravity by Shor &
Yudin [11,12], showed that the Linear Programming problem belongs to the class of the
polynomial time solvable problems on a deterministic Turing machine. The Shor algorithm
can be viewed as an N-dimensional generalization of the well known search by bisection

on a line segment.

Khachian [13] provided a computing time analysis of the ellipsoid algorithm to test a

system of linear inequalities for satisfiability.

The ellipsoid algorithm for a solution to Az = b, # > 0, where the input consists of
m X n, m < n, integer matrix A with columns a;, 1 <7 < n, and an integer vector b, either

outputs a vector p such that Ap = b or returns "no solution”.
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The method choses the initial ellipsoid E, in n-space, centred at the origin, which
is guarantied theoretically to contain a feasible solution, if any exists. The method then
recursively generates a sequence of ellipsoids Eg, Ey,---, each one has a geometrically
decreasing volume and containes all the feasible solutions of its precedessors. In the limit,
a feasible solution will be approximated with arbitrary precision. Here the trajector of the

method is given by the centres of the ellipsoids.

Khachian proves that if there is no solution in the first polynomially bounded sequence

of elements of the trajector of the method, then no solution exists at all.

Wolfe [14] reported a long bibliography of results related to this algorithm, showing
its impact on current research efforts. Grotschel et al. [15] and Karp and Papadimitriou
[16] developed some interesting consequences of the ellipsoid algorithm in combinatorial

problems and provided additional reasons for its study.
Final Remarks.

We can observe that in the framework of the Algebraic Theory of the Complexity:

1. the notions of approximation and approximate algorithms are scarcely correlated to
the structural properties of the given problem, at least in the case of combinatorial
optimization problems.

2. a lot of results seem strictly related to the choice of a measure of performance rather

than to the effective goodness of the choosen method;

In the Analytical Theory of Complexity the same notions are more strictly related to
the intrinsic features of the problem. The notion of approximation can than be considered
arising naturally from the given problem and the solution methods are measured using

more objective criteria.

We suggest that these results must not be considered as a simple and occasional,

although very interesting, results, but they are intrinsically related to the approach of the
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Analytical Complexity Theory. We think, in particular, that they are specifically related
to the interpretation of the notions of approximation and approximate algorithm which

are used in this theory.
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