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CONTRACTIONS ON PROBABILISTIC METRIC SPACES:
EXAMPLES AND COUNTEREXAMPLES

B. SCHWEIZER*, H. SHERWOOD AND R.M. TARDIFF

ABSTRACT

The notion of a contraction mapping for a probabilistic meiric space recently
introduced by T.L. Hicks is compared with the notion previously introduced by
V.L. Sehgal and A.T. Bharucha-Reid. By means of appropriate ezamples, it is
shown that these two notions are independent. It is further shown that every
Hicks’contraction on a PM space (S,F,Tw) i3 an ordinary metric contraction
with respect to a naturally defined metric on that space; and it is again pointed
out that, in Menger spaces under Min and similar t-norms, the contractions of

Sehgal and Bharucha-Reid are also ordinary contractions on related metric spaces.

1. Introduction.
In 1972, V.H. Sehgal and A.T. Bharucha-Reid [5] initiated the study of contraction
mappings on probabilistic metric (briefly, PM) spaces. Their notion of a contraction, which

we shall refer to as a B- contraction, is defined as follows:

Definition 1.1. A mapping f of a probabilistic semimetric (briefly, PSM) space (S, F) into
itself is a B-contraction if there is a v in (0,1) such that for all points p, ¢ in S and all

z >0,

(11) Ff’,,fq(’)’.’l.‘) Z qu(a:).
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In their paper Sehgal and Bharucha-Reid showed that any B-contraction on a complete
Menger space (S, F,Tp) has a unique fixed point. Subsequently, the second author of the
present paper showed that this result is the exception rather than the rule: specifically,
for any Archimedean t- norm T, there exists a complete Menger space (S, F, 7r) and a B-
contraction f on (S, F) which has no fixed point [7].

Recently, T.L. Hicks [1] considered another notion of contraction mapping, which we

shall refer to as an H-contraction, and which is obtained by replacing (1.1) by
(1.2) Ffp gq(y2) > 1 — vz whenever Fpo(z) > 1 —z.

Hicks showed that any H-contraction on a complete Menger space (S, F, Tp) has a unique
fixed point. He conjectured that H-contractions and B- contractions are distinct notions
and asked whether the t-norm M in his fixed- point theorem could be replaced by a weaker
one. This last question was answered by V. Radu who showed that any H-contraction on
a complete Menger space (S, F, 7r) for which sup, ., T((a,a) = 1 has a unique fixed point

(3]-

The principal aim of this paper is to compare the notions of B-contraction and H-
contraction with each other and with ordinary metric contractions. In particular, we con-
struct examples which show that Hicks’conjecture is correct, i.e., that in general the two
notions are independent. We also give two conditions which, together but not individually,
are sufficient to guarantee that a B-contraction is an H-contraction. Then, by consider-
ing B-contractions and H-contractions on a-simple spaces and pseudometrically generated
PM spaces, we show that both notions have their deficiencies. We conclude with several
comments. In the course of our studies, we also identify a metric first defined for Menger
spaces under Min by Hicks [1] and subsequently for Menger spaces under t-norms stronger
than W, by Radu [3]. Throughout, we assume that the reader is familiar with the basic

concepts and terminology of the theory of PM spaces as given, e.g., in [4].
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2. H-contractions and metric contractions.

In this section we show that, subject to a rather mild restriction, every H-contraction
on a PM space is an ordinary contraction with respect to a naturally defined metric on
that space. Most of the results, in a somewhat different and less general formulation, are
due to Radu [3]. To begin, we need the following result, which is Lemma 4.3.3 of [4].
Lemma 2.1. For any distribution function F in A% and any ¢ > 0,

(2.1) F(t) > 1—tif and only if d.(F,€) < t.

The function dy, in (2.1) is the modified Lévy metric, but since
(2.2) dr(F,€) = inf{h|F(h+) > 1 — h}

(see (4.3.3) of [4]), it is clear that (2.1) remains valid if d, is replaced by the usual Lévy
metric.

Now let (S,F) be a PSM space and, for any p, ¢ in S, let

(23) B(p,q) = di(Fpq, €0).

It is easy to see that B(p,q) = 0 if and only if p = ¢ and that B(p,q) = B(q,p). Thus B is
a semimetric on S. As regards the triangle inequality, we have
Theorem 2.1. If (S, F,7) is a PM space with 7 > rw, then § is a metric on S.
Proof. Suppose B(p,q) = h1 and B(g,7) = ha. Let 11,72 > 0 be given. Then f(p,q) <
hy +m and B(g,7) < hy + n2. Therefore we have
T(Fpg, For )Ry + 11 + ha + 12)

> Tw(Fpq, For)(h1 +m + ha +12)

T S Max(Fpq(z) + For(y) — 1,0)

2 Fpg(h1 +m) + For(h2 +m2) — 1

>l—hi—-m+1—hy—n -1

=1—(hy +m + ha + n2).
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Since Fpr > 7(Fpq, Fyr) and di.(G, €0) < di(F, o) whenever F < G, we have
Bp,r) = di(Fpr,€0) < di(7(Fpq, Fyr), €0)
<hi+m+hy+n2
=B(p, @) + B(g,) + M + 72
Letting 11,72 — 0 completes the proof.

A slightly less general version of Theorem 2.1 is due to Radu [3]. We also note that
Hicks 1] called a metric d compatible with F if d(p,q) < t if and only if Fpe(t) > 1 —t.
~ Thus B is compatible with F.

It is apparent from the definition of 8, (1.2) and (2.1) that f is an H-contraction if

and only if, for all £ > 0 and all p, ¢ in S,

(2.4) B(fp, fq) < vz whenever (p,q) < z;

and this observation leads at once to the following result, which is (essentially) due to

Radu [3)):

Theorem 2.2. The mapping f : § — S is an H-contraction on the PM space (S, F,)
with 7 > 7a if and only if f is a metric contraction on the metric space (5, 8), i.e., if and

only if there is a v € (0,1) such that

(2.5) B(fp, fa) < vB(p,q) for all p,q € S.

It is natural to ask whether the condition 7 > 7w in Theorem 2.1 is necessary. The
general question is open but, as the following example shows, in the class of Menger spaces,

the condition is necessary.

Example 2.1. Let T be a (continuous) t-norm and suppose it is not true that 7o > .
Then it is not true that T > W. Consequently, there exist a, b with 0 < a < b < 1 such

that 0 < T'(a,b) < W(a,b), whence W(a,b) =a+b—1.
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Now let S = {p,¢,7} and define F: § x § — A* via

0, <0,
Fp(z)=<a, 0<z<2,
1, 2<uz,
0, L0,
Fy(z)=¢b 0<z<2,
1, 2<u«,
and
0, z<0,
Fy(e) = 7e(Bp ) = £ DT
1, <z,

It is tedious but easy to verify that (S,F,rr) is a PM space. But,

:H(p’ q) + IB(Qar) = dL(qu, 60) + dL(qu, 60)
=l-a+1-b=1—W(a,b)
<1-T(a,b) = di,(Fpr, €0)

= ﬂ(pa 7‘).

Thus S is not a metric on S.

3. B-contractions and H-contraction compared.
It follows at once from Theorem 2.2 and the fact that (.S, 3) is complete if and only if

(S,F,7m) is complete, that every H- contraction on a complete PM space (S, F, ) with
T > Tw has a unique fixed point (see also [3]). But as pointed out in Section 1, this is not
true for B-contractions [7]. Thus a B-contraction need not be an H-contraction. Similarly,

as the following example shows, an H-contraction need not be a B-contraction.

Example 3.1. Let S = {0,1,2,---} and, for p # q, 'deﬁne F:85x8— At via
0, z < 2—Min(p,q)’
Fpy(z) = Fpp(z) = { 1~ 27Min(pa) - 2-Min(p.0) < 7 < 1,
1, 1<z
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It is straightforward but tedious to verify that (S, F,7a) is a PM space. Define f: § — S
via f(r) = r + 1. Since 7y > Tw and B(fp, fq) = %ﬂ(p, q), we have that f is an H-

contraction.
Next, let v be any number in (0,1) and choose = € (1,1/v). Then vz < 1 so that

Fy0)5)(7(2)) = Fi2(yz) £1/2 < 1= Foi (),
whence f is not a B-contraction on (.S, F).
It is to be noted that M is the strongest t-norm and that even in this extreme case it
is not true that every H-contraction is a B-contraction.

Next, we show that the notion of a B-contraction is sometimes stronger than that of

an H-contraction. To this end we need the following:

Lemma 3.1. If f is a B-contraction on the PSM space (S,F) and if the distribution

function Fyp,y, is strictly increasing on [0,1], then 8(fp, fq) < B(p, 9).

1-
Proof. Choose n such that 0 < n < T7ﬂ(p, g). Then B(p,q) > v[B(p,q) + n]. Since

Fypyq is strictly increasing on [0,1], 0 < 8(p,¢) < 1, and f is a B-contraction, we have
Frpra(B(Pr0) > Frppa(7[B(Pr @) + 7)) 2 Fpo(B(p, q) + 1)
2 Fpo(B(p, 9)+) > 1 - B(p,a),
where the last inequalit& follows from (2.2). Thus, again by (2.2), 8(fp, fq) < B(p, 9).
Theorem 3.1. Let (S5, F) be a PSM space. Suppose that Ran(F) is finite and that each

element of Ran(F)\{eo} is strictly increasing on [0,1]. Then every B-contraction on (S, F)

is an H-contraction.

Proof. Suppose f is a B-contraction on (S,F). Then Lemma 3.1 implies that, for any
pair of points p, ¢ in S, there exists a v,, € (0,1) such that B(fp, fq) < vp.8(p,¢)
Since Ran(F) is finite, there is a y € (0,1) such that Max{~ype|p,q € S} < v < 1. Thus

B(fp, fa) £ v3(p, q) for all p, g in S, whence by Theorem 2.2, f is an H- contraction.



Contractions on Probabilistic Metric Spaces... 11

Note that neither the definition of an H-contraction nor the definition of dy, involves
values of the distribution functions outside of the interval {0,1] (see (1.2) and (2.2)). Thus,
in Lemma 3.1 and Theorem 3.1, it is only necessary to assume that the distribution func-

tions in question are strictly increasing on [0,1].

In general, it is not true that every B-contraction is an H-contraction. To show this,
we give two examples. The first shows that in Theorem 3.1 we cannot get rid of that
condition that each Fj,q # € is strictly increasing on (0,1}, while the second shows that we

cannot get rid of the condition that Ran(F) is finite.

Example 3.2. Let S = {p,q,7} and let F : § x § — At be defined via

0, if z <0,
For(z) = Frp(z) = Fry(z) = Fyr(2) = 1/2, if 0<z <2,
1, if ¢ > 2,
and
0, if 2 <0,

Fpy(z) = Fp(z) = { 1/2, if 0 <z < 3/2,
1, if ¢ >3/2

It is again tedious but straightforward to show that (S, F, 7as) is a PM space. Define f as
follows: f(p) = f(q) = p and f(r) = ¢. Since Fpy(3z/4) = Fpr(2) for all z, it follows at

once that f is a B- contraction on (S, F). Theorem 2.2 shows, however, that f is not an

1

H-contraction because 8(fp, fr) = B(p,q) = 3= B(p,r).

Example 3.3. For each integer n, let p, : (0,1) — R* be given by p,(¢) =27 "(1 —#)t™1.
Let S = {pn : n is an integer }. Let P be Lebesgue measure on (0,1), and for z > 0 let
Fpopm(z) = P{t € (0,1) : |pa(t) — pm(t)] < z}

S
Tz |2n—2-m)

The PSM (S, F) is an E-space [5], which automatically yields that (S, F,rw) is a PM

space. Mores is true, however, since it can readily be shown that (S, F, Tar) is a PM space.
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Let f: S — S be defined by f(pn) = pnt1. Since
1 1
Frpfpm 5‘” = FPn+le+l 5‘73 = Fppm(2),
f is a B-contraction.
Now suppose f is an H-contraction. Then there is some v in (0,1) such that

B(fpns Fom) < 18(Pn> Pm)

for all integers n and m. It is easy to calculate that

B(pnspm) = (VT =2+ 427 =27 - 27" = 27™) /2

and that

B(fpn, fom) = (VTP T =2 T 4 a1 —2=moT] — 271 — g7l ) o,

Hence, we must have
\/I2—n—1 _ 2-—m—1|2 +4!2—-n—1 — 2—-m—1|'_ I2—n—l _ 2—m—1|
vz VI2Tr —2-m[2 4 4[2-n —2-m[ — |2-n — 2-m| ’
Taking the limit as m — oo, we obtain
VBT o _gmnml T4
\/|2—2n F2-nt2 _9-n = VIiFoeti 41

Finally, taking the limit as n — —oo yields v > 1 which is a contradiction. Thus f is not

>

an H-contraction.

As is well-known, E-spaces are pseudometrically generated spaces, and conversely [6].

In Example 3.3, the generating pseudometrics are given by

—-n —-m 1-t¢
bulpnrpm) = Ipalt) ~ P (0] = 127" =2 S for € (0,1)

Now observe that

5(F(n), £(pm)) = Pass(8) ~ P (1)
= 2 1pa(t) =~ Pm(8)] = 6(Pusm).

Thus f is a contraction on each of the pseudometric spaces (S, §;). Nevertheless, f is not

an H-contraction!.
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Note that in both examples we have Menger spaces under M. Thus, even in the
presence of this strong version of the triangle inequality, B-contractions need not be H-

contractions.

4. Contractions on a-simple spaces.
Theorem 4.1. For a > 0, let (S, G, d, a) be the a- simple space generated by the strictly
increasing distribution function G in At and the metric space (S,d). Then f is a B-

contraction on (S, G,d, ) if and only if f is a contraction on (5, d).

Proof. Let v € (0,1) and > 0 be given. Then

6 (agae) = P 2 F@) = € (575 )

which is true if and only if

d(fp, fg) < +/*d(p,q)-
For H-contractions, the situation is different. Here we first have,

Theorem 4.2. Let G in A¥ be strictly increasing and let (S, G,d,a) be the a-simple

space generated by G and (S, d). Then every H-contraction on (5, G, d, @) is a contraction

on (S,d).

Proof. If Fpq is strictly increasing, then its quasi-inverse Fpq is continuous; and since
the graphs of j and F,; (1 — j) have a unique point of intersection, 8(p, ¢) is the unique
solution of the equation = = Fpy (1 — z), i.e., B(p,q) = Fpy (1 — B(p, q)). Moreover, if
Fpo(z) = G(z/d(p, 9)*), then Fp7'(z) = d(p, 9)*G (z) and B(p, ¢) = d(p,9)* G (1-B(p, 9))-
Thus, if f is an H-contraction, then

d(fp, fq) = plfpfa) . 1B(p, 9)

T G(1-B(fp fg)) ~ G(1-B(fp, f9))

B(p,q) _ «
S T -BUpfoy  Ap9O%
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since B(fp, fq) < 78(p,q) < B(p, q). Consequently,
d(fp, fg) < v*d(p, q).

The converse of Theorem 4.2 is fa.lse,>as the following example shows.

Example 4.1. Let G(z) = 0 for z < 0 and G(z) = z/(z + 1) if z > 0, and let (5,d) be
the Euclidean line. Then (S,G,d,1) is a simple space. Define f : S — S via f(p) = }p.
Clearly f is a contraction on (S, d). However, f is not an H-contraction on (S,G,d,1). To
see this, suppose tho the contrary that there is a v € (0,1) such that (1.2) holds. Then

elementary calculations yield that for all p, ¢ in S and z in (0,1),

2

Fp(z)>1—-zifand onlyif [p—¢] <

1—=z
and, consequently,
. . 2y2z?
Fpse(yz) > 1 — vz if and only if [p — ¢| < 1121
Since (1.2) holds, it follows that
.’1:2 . . 2,),2:[2
lp— gl < 7— implies [p—q| < 5 o

for all p, ¢ in S and z in (0,1). From (4.1) it follows that

or, equivalenty,

1 -~z < 29%(1 —z).

Letting z tend to 1 from below yields v > 1, a contradiction.
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5. Concluding remarks.
(1) Let (S, F) be a pseudometrically generated PM space, f a mapping from S into S, and

v a fixed number in (0,1). In [7] it was shown that if f is a strict contraction on (S, F),

i.e., if f is a contraction mapping with contraction constant v on each of the pseudometric
spaces that generate (S, F), then f is a B- contraction. However, as the discussion following

Example 3.2 shows, a strict contraction need not be an H-contraction.

(2) Let (S,F,7m) be a Menger space under Min and, for any p, ¢ in S and ¢ in (0,1),
defined.: S xS — Rt via

dc(pv Q) = FP;(C)v
where F,;" is the left-continuous quasi-inverse of Fp,. Then (see [4, Section 12.6]) each of
the functions d. is a pseudometric on S; and if f is a B-contraction on (S, F,7am), then f
is a contraction on each of the pseudometric spaces (S, d.).

In the particular case of Example 3.2, we have that

c
1-¢’

Fppn (6) =277 =277

whence, in view of (3.1), the quasi-inverse pseudometrics {d.} and the generating pseu-
dometrics {6} are related by d. = ;.. Thus again the mapping f in Example 3.2 is a

contraction on each of the pseudometric spaces (S, d.), but not an H-contraction.

(8) Clearly, from the probabilistic point of view, B-contractions and H- contractions both

have their shortcomings. It would be desirable to have a notion of a contraction on a PM

space which has the following properties:

(a) If the PM space (S, F,7) is complete and 7 > T, then any contraction on S has a
unique fixed point (at least with a high probability).

(b) If (S,F) is a pseudometrically generated PM space, then every strict contraction on

S is a contraction.
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Note again that B-contractions do not satisfy (a) and H-contractions do not satisfy
(b).

(4) As Theorem 2.2 shows, H-contractions are metric contractions. Similarly, in all in-
stances in which they have unique fixed points, B-contractions on PM spaces are metric
contractions on related pseudometric spaces. This is so for Menger spaces under Min (see

(2) above) and also for Menger spaces under t-norms that are equicontinuous at the point
(L1) 2]

(5) Since the appearance of the original paper by Sehgal and Bharucha-Reid, many papers
dealing with fixed point theorems on PM spaces have been published. Of these, by far the
vast majority deal with Menger spaces under Min or very closely related t-norms (see (4)
above). Since contractions on these spaces are contractions on associated pseudometric
spaces, it should come as no surprise that known fixed point theorems for ordinary metric
spaces can be "generalized”. Unfortunately, most of the authors of the papers in question
appear to be unaware of this situation. It is also quite remarkable that, to the best of
our combined knowledge, not one of these many papers contains even a single example or

counterexample!
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