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EXPLICIT SOLUTIONS FOR STURM-LIOUVILLE
OPERATOR PROBLEMS II

Lucas JODAR

ABSTRACT

It is proved that the resolution problem of an operator Sturm-Liouville oper-
ator problem for a second-order differential operator equation with constant co-
efficients is solved in terms of solutions of the corresponding algebraic operator
equation. FEzistence and uniqueness conditions for the ezistence on nontrivial

solutions of the problem and an ezplicit ezpression of them are given.

1. Introduction.

For the scalar case, the solution of boundary value problems for linear partial differen-
tial equations may sometimes be reduced to the solution of ordinary differential equations
containing a parameter and subject to certain boundary value conditions. So, the classical

Sturm-Liouville theory yields a complete solution of the problem
(1.1) XD 4+ 4, XD 4 (4 -ADX =0

My X(a) + Ny X (b) + Mya XD (b) + N XD (b)) = 0
M, X(a) + Nay X (b) + Mz XM(a) + Nyp XD(b) = 0

where Ag, A1, A, Nij, and M;j, for 1 < 7,5 < 2, are complex numbers and t € [a, b], see

[3], [6], for details.
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For the finite-dimensional case, second order operator differential equations are im-
portant in the theory of dampde oscillatory systems and vibrational systems, [5]. Infinite-
dimensional differential equations occur frequently in the theory of stochastic processes,
the degradation of polymers, infinite ladder network theory in engineering, [1], [20], de-
numerable markov chains, [7]. Infinite-dimensional second order differential equations of
the type arising in (1.1) arise in the linear theory of small oscillations of a continuum, [9],
[10], and are studied in [4], [8], [11]. Sturm-Liouville operator problems are studied with
different techniques in [14], [15], [17], [18], [19], [21], [23].

In order to solve the operator differential equation
(2.1) XD 4 4, XD 4 (4 - ADX =0,

and in a way analogous to the scalar case, we obtain a fundamental set of solutions of the

equation (2.1) from the existence of solutions of the algebraic characteristic equation
(3.1) X2+ A1 X +(4—A)=0

Thus an explicit expression for any solution of (2.1) is given in terms of a pair of solutions
of the algebraic equation (3.1). In this sense, this paper may be regarded as a continuation
of [12], [13]. Note that for the operator case, the equation (3.1) may be unsolvable; for
example, if A; = 0 and Ay — A, is a unilateral weighted shift operator on a complex
separable Hilbert space H, then the corresponding equation (3.1) is unsolvable, [23], p.
63.

The resolution problem of the equation (3.1) is related to the problem of the exis-
tence of a linear factorization of the polynomial operator L(z) = 22 + A;z 4+ Ay — AL
So, for the finite-dimensional case, the equation (3.1) is solvable, if L(z) is linearly fac-
torizable. Several recent characterizations about the problem of the factorization of the
polynomial operator L(z) may be found in [5], [16] and [22]. So, for example, if H is a

finite-dimensional, (3.1) is solvable if the companion matrix of L(z) is diagonable, [5].
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A methodology for solving the algebraic operator equation (3.1) when H is infinite-
dimensional is given in [12], by means of the application annihilating operator functions.

This paper is concerned with the study of the eigenvalue operator problem (1.1) where
Ao, A1, Nij and M;j, for 1 <¢,j < 2, are bounded linear operators on a complex separable
Hilbert space H, and ) is a complex parameter. Existence and uniqueness condition for
the existence of nontrivial solutions of (1.1) are given and computable expressions for the
solutions of (1.1) for the finite-dimensional case are obtained. A particular case of the

problem (1.1) for the operator case is studied in [13], where the problem
(4.1) X®_2QXx =0

E;X(0) + E; XW(0) =0
X0+ FBXDB) =0

is treated from the same point of view. Note that for the problem (4.1), the solvability of
the corresponding algebraic equation X2 — AQ = 0, means that AQ has a square root, and
in this case an explicit expression of the solutions of this equation is available by means of
the Riesz-Dunford functional calculus, see [13], for details.

Throughout this paper H will denote a complex separable Hilbert space and L(H) will
denote the algebra of all bounded linear operators on H. If T lies in L(H), its spectrum
o(T) is the set of all complex numbers z such that zI — T is invertible in L(H) and its
compression spectrum ocomp(T) is the set of all complex numers z such that the range

(2I — T)(H) is not dense in H, [2], pp. 240.

2. Sturm-Liouville operator problems for the equation X(® + 4, XM 4 4, — AD)X = 0.

If we consider the algebra L(H) with the strong operator topology, we obtain a topo-
logical vector space which will be denoted by Ls(H). In either one of the two spaces

Ls(H) or L(H) we can look the operator differential equation (1.1). If we consider the
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operator differential equation (2.1) on an interval J, we say that X is a solution of (2.1)
on J, if at each point ¢ of J, there exist the strong derivatives X ()(t), for i = 1,2, and the

equation (21) is satisfied by X for all ¢ in the interval J.

Theorem 2.1. (i) Let X, be a double root of the equation (3.1), that is, a solution of
(8.1) such that 2X + A; = 0, then any solution X of (2.1) on the interval [a, b], may be

expressed in the form

(1.2) X(t) = exp(tXo)(Th +tT3)

where the operators T} and T, are given by the expressions Cy = X (a), X((a) = C; and
22) Ty = exp(—aXo)((aXo + I)Co — aC1)); T = exp(—aXo)(Ci — XoCo)

(i) Let Xy, X; be two solutions of the equation (3.1) such that X; — X, is invertible in

L(H), then any solution X of (2.1) on the interval [a, b], may be expressed in the form
(3.2) X(t) = exp(tXo)T1 + exp(tX1)T

where Cy = X(a), XV(a) = C; and

(4.2) Th = exp(—aXo)(I + (X1 — Xo) ™ Co — (X1 — Xo)~1Cy;

T, = exp(—aX1)(—(X1 — Xo) ' XoCo + (X1 — Xo) ™' Cy)

Proof. (i) It is clear that under the hypothesis, the operator functions U;(t) = exp(tXp)
and U,(t) = texp(tXy), are solutions of the equation of (2.1). Let X be a solution of the
equation (2.1) on the interval [a, ], and let Cy = X(a), C; = X((a). If we consider the
operator function U(t) = exp(tXo)(Ty + tT3), where Ty and T} are unknown operators in

L(H), in order to satisfy the Cauchy problem

(5.2) YO 4L A vWD 4 (4 - MY =0; Y(a)=Co, YV(a)=0,
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the operators T3 and T2 must verify the following conditions
(6.2) U(a) = exp(aXo)(Ty + aT2) = Cy

UM (a) = exp(aXo )Ty + Xo(Ty + aTy))

The system (6.2) is equivalent to the system

(7.2) exp(aXo) aexp(aXo) Tl _|Co

: Xoexp(aXp) (aXo + Iexp(aXo)| | T2 C:
(8 2) exp(aXo) 0 I al T1 _ Co

; 0 exp(aXo)| [Xo aXo+I||T2| [Ci
From lemma 1 of [13], it follows that

-1
T al _|aXo+I —al

©2) [Xo | aX0+I] = [ X, I ]

From (7.2)-(9.2), it follows that

Ti| _|aXo+I —all [exp(—aX,)Co
Tz - —X() I exp(—aXo)C1

From here it is clear that U satisfies the same initial conditions as X. From the uniqueness
property for the solutions of the Cauchy problem (5.2), [11], it follows that X (t) = U(t),
and (2.2) is verified.

(i) Let X be a solution of the equation (2.1) such that Co = X(a) and C; = X(I(a).
Considering the operator function U(t) = exp(tXo)T1 + exp(tX1)T2, where T} and T, are
unknown operators in L(H), the Cauchy problem (5.2) is satisfied if T; and T verify the

conditions
(10.2) exp(aXo)Ti + exp(aX;)Ty = Cy

exp(aXo)XoT1 + exp(aX) X1 Tz = Cy
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(11.2) [;0 ;1] [‘”‘"(SX°) exp((()IXl)] [g] - [g:]

From the invertibility hypothesis of X; — Xj, and from the lemma 1 of [13], the operator

. _ I I .. . -1 _ I+ (X] —Xo)-l —(Xl — Xo)_l
matrix S = [Xo Xl] is invertible and S~ = (X1 - X)Xy (X1 — Xo)~d

From (11.2) it follows that T; and T; are given by (4.2). From the uniqueness property
for the solutions of the Cauchy problem (5.2), [11], the result is concluded.
The following result is concerned with the Sturm-Liouville problem (1.1). In accor-

dance with the notation used in th. 2.1, we represent by S the operator matrix

(12.2) s= [ ;0 ;}]

and if X; — X) is an invertible operator in L(H), then S is invertible and

(13.2) 51 = [ I+(X1—Xo) ! —(X; - Xo)-l]

(X1 —X0)'Xo (X1 —Xp)™!
Theorem 2.2. Let us consider the problem (1.1), and let A be a complex number such
that the equation (3.1) has a pair of solutions Xy and X3, such that X; — X, is invertible.

Let us denote by T the operator matrix

(14.2)

T — M11 M]g S exp(aXo) 0 ] [Nu N12 S exp(Xob) 0
Ms My, 0 exp(aX,) N31 Nap 0 exp(X1b)

then

(i) I T is invertible in L(H @ H), the only solution of the problem (1.1) is the trivial
one, X(t) =0, for all t € [a,b].

(ii) If 0 € ocomp(T), then there are nontrivial solutions of (1.1). These solutions take
the form

(15.2) X(t) = exp(Xot)C + exp(tX;)D,

where C' and D are operators in L(H) satisfying

/[5)-[2
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and T is given by' (14.2). Moreover, if N is a closed subspace of H @ H that is orthogonal
to the subspace T(H @ H), and Nj, N, are the subspaces of H @ H, defined by

Ny=Nn(H&{0}), N,=Nn({0}& H)

then C and D can be chosen as the projections on H with ranges N; and N, respectively.
(iii) If H is finite-dimensional, there are nontrivial solutions of (1.1), if and only if, T
is singular. In this case nontrivial solutions of (1.1) are obtained from (15.2) solving the

algebraic system (16.2).

Proof. From th. 2.1-(ii), the general solution of the operator differential equation (2.1)
takes the form expressed by (15.2). If we impose that X (t) given by (15.2) satisfies (1.1),

it follows that the operators C and D must verify the conditions
(17.2) M1 (exp(aXo)C + exp(aX1)D) + Nii(exp(bXo)C + exp(bX,)D)+

+M12(exp(aXo)XOC + exp(aX1 )XlD) + ng(exp(on)XoC + exp(bX; )XlD) =0
M1 (exp(aXo)C + exp(aX;)D) + No1(exp(bXo)C + exp(bX1)D)+
+M32(exp(aX0)XoC + exp(aX1)X1 D) + Naz(exp(bXo)XoC + exp(bX1) X1 D) =0

The system (17.2) may be written in the following form

(18.2) My M, exp(aXo) exp(aXy)
’ My My, | |exp(aXo)Xo exp(aX1)Xs

e[V Vo] [, sk 1) (5] (8]

Considering the operator matrix S given by (12.2), from the hypothesis, S is invertible

and S7! is given by (13.2). From here (18.2) may be expressed in the form
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02) ([2 3] s[5 ]

e[ Nals [0 oo ) [5]=[6)

Under the invertibility hypothesis of T, it is clear that the only solution of (19.2) is C' =
D = 0, thus the only solution of (1.1) is X(¢) = 0, for all t € [a, b]. Thus (i) is proved.

(ii) I 0 € ocomp(T'), then the subspace T(H @ H) is not dense in H @ H. From here
and (19.2) the result is concluded.

(iii) It is a consequence of (i), (ii) and the fact that for the finite- dimensional case

0(T) = Ocomp(T)- /

Example 1. Let us consider the problem (1.1) where A = —3I, A; = —I, then the

corresponding characteristic equation (3.1) takes the form
X*—X-2I=0

and X, = 2I, X; = —I, are two solutions of this equation satisfying X; — X, invertible.
If {en}n>0 is an orthonormal basis of H and the coefficient operators M;; and N;; for
1 < 4,5 < 2, arising in (1.1) satisfy the property that their ranges are contained in the
subspace LIN({en }n>1), then from (14.2) and (19.2), it is clear that if we take C = D = P,
where P is the orthogonal projection on the subspace LIN({e, }), the expression (15.2) with
C =D = P, and X, = 2I, X, = —I, provides a nontrivial solution of the problem (1.1).
The following result deals with the study of the problem (1.1) when the algebraic

equation (3.1) has a double root.

Theorem 2.3. Let us consider the problem (1.1) where A is a complex paramenter and

X is a double root of (3.1), and let W be the operator matrix
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(20.2) W= M1 My, exp(aXo) aexp(aXo) ]
: My M, | |exp(aXo)Xo (aXo + Iexp(aXo)
N11 N12 exp(on) bexp(on) ]
No1  Njo exp(on )Xo (on + I)exp(on)

then the following results are verified.

(i) f W is invertible in L(H & H), the only solution of the problem (1.1) is the trivial

one.

(ii) I 0 € gcomp(W), then there are nontrivial solutions of (1.1). These solutions may

be expressed in the form
(21.2) X(t) = exp(tXo)(C + tD)

where C and D are operators in L(H) satisfying

v-[5]-[}

If R is a closed subspace of H ® H that is orthogonal to the subspace W(H & H), and R;
and R, are the subspaces of H @ H, defined by

(23.2) Ri=RN(H®{0}), R,=Nn({0}aH)

then C and D can be chosen as the projections on H with ranges R; and R; respectively.
(iii) If H is finite-dimensional, there are nontrivial solutions of (1.1), if and only if, W
is singular. In this case, solving (22.2) and placing the solutions C, D, in the expression

(21.2) one gets nontrivial solutions of (1.1).

Proof. From th.2.1-(i), the general solution of the equation (2.1) may be expressed in the
form (21.2). If we impose that X(t) given by (21.2) satisfies the boundary value conditions

arising in (1.1), it follows that the operators C and D must verify the conditions
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(24..2)
My (exp(aXo)(C + aD) + Nq1(exp(bX,)(C + bD)) + Miz(exp(aXo)(D + XoC + aXo D))

+N12(exp(bX0 )(D + Xoc + onD)) =0
M1 (exp(aXo)(C + aD) + N2y (exp(bXo)(C + bD)) + Maa(exp(aXo)(D + XoC + aXo D))
+Na2(exp(bXo ) (D + XoC + bXoD)) =0

This system may be written in the form

(25.2)

(Mnexp(aXo) + Mlgexp(aXo )XO)C + (Muaexp(uXo) + M]z(aepro + I)exp(aXo ))D+

+(N11exp(on) + ngexp(on)Xg)C’ + (Nllbexp(on) + ng(bepro + I)exp(on))D =0
(Mglexp(aXo) + Mzgexp(aXo)Xo)C + (M21aexp(aXo) + Mgg(exp(aXo)(aXo + I))D+
+(N218Xp(bX0) + Nggexp(on)Xo)C + (N21 bexp(on) + Nzg(beXpXo + I)exp(on))D =0

or equivalently

ez ([ ] [ e ]

+ N]l ng exp(on) bexp(on) C _ 0
N21 N22 exp(on)Xo (on + I)exp(on) D - 0
This proves (i).
(ii) If 0 € Gcomp(W), then the subspace W(H @ H) is not dense in H @ H and the

results of (ii) are proved.

(iil) It is a consequence of (i), (ii) and the fact that for the finite- dimensional case

one has ocomp(W) = o(W).
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Example 2. Note that if X, is a double root of the equation (3.1),that is such that
2Xo + A1 = 0, then Xo = —A;/2. As X, has to be a solution of (3.1), the following

condition has to be satisfied
(27.2) 0=XZ+A1Xo+Ao— M =A%)4—A2)24+ Ag— NI, —A%/4+ Ay —X[=0

Let us consider the problem (1.1) where Ay and A; satisfy (27.2), then X, = —A4;/2
is a double root of (3.1). Let us suppose that M3 = My, = Ny3 = Nyjp = 0, and
My = M2 = N11 = Nyp = I. Then the operator matrix W given by (20.2) takes the
form 4

(28.2)

W= exp(aXo) 0 I al n exp(bXo) 0 I b1
- 0 exp(aXo) Xo G.Xo + I 0 exp(on) Xo ng + I

From the lemma 1 of [13], it follows that

(02 [ I o T aXo+I —aIl [I b 17" _ [bXo+I —bI
’ Xo aXo+1 - -Xo I "1 Xo bXo+1T - —Xo I

From (28.2) and (29.2), postmultiplying the right hand side of (28.2) by

bXo+1I —bI| |exp(—bXo) 0
—Xo I 0 exp(—bXy)

exp(aXy) 0

0 exp(aXo) ] and

and taking into account the commutativity between [

[ )go anI+ I] , it follows that W is invertible in L(H @ H), if and only if, the operator
matrix

exp((a — b)Xo) 0 I+(b—a)Xo (a—0b)I
(802) I+ [ 0 exp((a—8)Xo)| | (b=a)X2 I+ (a—b)X

Is invertible in L(H @ H). As Xo = —A; /2, from (30.2) and th. 2.3, it follows that for the
finite-dimensional case, there are nontrivial solutions of (1.1), if and only if the following

operator matrix is singular
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exp(Ai1(b—a)/2 0 I—A(b—a)/2 a—b)I
I+ [ o (0 7 exp(As(b— a)/2)] [ Ag(b(— a)/t)l/ I+ Ea - b;Al /2]
_ [I + (I —(b—a)A1/2)exp(A1(b—a)/2) (a — b)exp(A1(b—a)/2) ]
((b - a)A}/4)exp(A1(b — a)/2) I+ (I—(a—b)A;1/2)exp(A1(b— a)/2)

Under this condition, solving the system (22.2) with W given by (20.2), and placing the

solutions C, D into the expression (21.2), nontrivial solutions of (1.1) are obtained.
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