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SUMMARY

This paper follows a companion paper (Stochastica, 8 (1984), 99-145) in
which we gave the state of the art of the theory of fuzzy relation equations under
a special class of triangular norms. Here we continue this theory establishing new
results under lower and upper semicontinuous triangular norms and surveying .
on the main theoretical results already appeared in foregoing papers. Maz-t fuzzy.
equations with Boolean solutions are recalled and studied. Many ezamples clarify
the results established.
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1. Introduction.

In [10], we gave the main theoretical and applicational aspects of fuzzy relation equa-
tions theory, showing that substituting the classical operator "min” of the unit real interval
with a suitable triangular norm t of Schweizer and Sklar [27], one obtains an extended form
of the usual max-min fuzzy equations introduced by Sanchez [25].

In the Sections 6 and 7 of [10], we characterized the greatest solution and the minimal
solutions of a max-t fuzzy equation. In the Sections 6 and 7 of [10], we studied the solutions

with the smallest fuzziness measure of Yager [34] valued by means of a triangular norm and
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conorm. In the Sections 8 and 9 of [10], we illustrated some applications to the analysis of
the fuzzy systems and of some decision-making processes in fuzzy environment.

" Since many results appeared in the literature, it have seemed again quite natural, with
the same spirit with which we wrote the first survey [10], to collect these results in this
second work in order to give the widest possible point of view on this theory.

For commodity of the reader, we exhibit, although with slight modifications, the proofs
of the theorems already established in previous papers. The results of [10] are only recalled
and new results are also given.

Section 2 contains some improvements of Section 2 of [10] in connection with the
results of Gottwald [15], [16]. Section 3 contains the basic preliminaries. Results of max-t
fuzzy equations under lower and upper semicontinuous triangular norms are in Section 4
and 5, respectively. Section 6 contains some general algebraic results and a condition which
guarantees the existence of Boolean solutions of a fuzzy equation under any triangular norm
t. In particular, if t is lower semicontinuous, we determine the greatest Boolean solution
in Section 7. In the Sections 8 and 9, we study minimal Boolean solutions for max-t fuzzy

equations under triangular norms that are continuous in both variables.

For uniformity of presentation, we adopt the same symbology used in [10].

2. Norms, v-operators and §-operators.

A triangular norm (briefly, norm) t [27] is a real function ¢: [0,1] x [0,1] — [0,1] of
two variables with the properties at0 = 0, atl = a, at(btc) = (atd)tc, atb < a'tt’ if a < o'
and b < b', where ath = t(q,b), a, d', b, V', c € [0,1].

By putting

I,(a,b) = {z €[0,1] : atz < b}

for any a,b € [0,1], following {20], we defined in [10] the operator y; : [0,1] x [0,1] — [0,1],
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connected with the norm ¢, as
(2.1) apb = sup{z € Ii(a,b)}

for any a,b € [0, 1], where ay;b = ¥¢(a, b).

It is easily seen that [15], [20], [24],

(2.2) apb<apy if b<ec,

(2.3) a(ath) > b,

for any a,b € [0,1]. Note that I;(a,b) # 0 for any a,b € [0,1] since 0 € Li(a,b). In general,
the position (2.1) does not assure that ai:b belongs to the set I(a,b) as it was shown
in the Example 1 of [10]. It is obvious that the belongness of ay):b to the set I,(a,b) is

guaranteed if one assumes
(2.4) at(a:b) < b

for any a,b € [0,1]. In the sequel, when no misunderstanding can arise, we put ab instead
of a.b.

We now restrict our attention to the norms which are lower semicontinuous (briefly,
LSC). As pointed out in [15], [16], since the norms are monotone and symmetric, the lower
semicontinuity is equivalent to the left continuity in both arguments. Further if T is LSC,

the following equality

(2.5) zt(sup yi) = sup(zty;)

bolds for any family {y;} of real numbers of [0,1] and for any z € [0, 1]. We now show that

Theorem 1. If t is LSC, then (2.4) holds. Further, (2.4) and (2.5) are equivalent.
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Proof. If t is LSC, then (2.5) holds. Thus
at(ahb) = at(sup{z € [0,1] : atz < b}) = sup{atz: atz < b} < b

for any a,b € [0,1] and hence (2.4) is satisfied.
Assume now that (2.4) holds for any a,b € [0,1] and let {y;} be a family of real

numbers of [0,1]. Since y; < supy; for any index i, we have by the monotonicity of ¢,

(2.6) sup(zty;) < zt(supy;)

for any z € [0,1]. Thus, from
zty; < sup(zty:),
it follows that
supy; < zyp(sup(zty;))

and hence by (2.4),

at(supyi) < zt(z(sup(aty:)) < sup(ety:)

for any = € [0,1]. This inequality and (2.6) prove that (2.5) holds.

It is clear that (2.1) can be used in order to define the operator ¢, connected with a
norm t, even if ¢ is not necessarily LSC. But, since the property (2.4) plays (and played
in [10]) an important key role in the whole theory of fuzzy relation equations, we shall
assume explicitly in some Sections of this paper the lower semicontinuity of the norms
under discussion.

Here we signal the works [2], [18], where the authors study sufficient conditions for
the determination of t-operators and see also Weber [31], Dubois and Prade {13] and
Mizumoto [22] for further studies and applications of the triangular norms.

In [10], according to [20], we assumed that

(2.7) for any a € [0,1], t(a,-) is continuous in [0,1].
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Of course, by symmetry, ¢ is continuous also in the first variable and in accordance to
the above establishments, the lower semicontinuity of ¢ (or equivalently the left continuity
in both arguments) is a more general assumption than (2.7). We also recall that Miyakoshi
and Shimbo [20] have established a one-to-one correspondence between the set of all the
left-hand continuous norms and the set of all right-hand continuous operators 1 satisfying

suitable properties. Further, we point out that if ¢ is LSC, then

L(a, b) = [0, ayb]

apb=1 iff a <b.

Remark 1. It is evident that, following the terminology of lattice theory from the
Birkhoff’s book [1], the structure ([0,1], A, V,<,t,0,1), if t is LSC, is a bounded residu-
ated lattice, with respéct to which ”t” is a binary isotone and commutative multiplication
and 1, is the related operation of residuation. For other algebraic aspects, see [16].

In the sequel, we shall use in some numerical examples the following norms and re-

spective i-operators:

) 1 xfaSl%
at;b=a /\ b=min(a,), ap1b= {b if a > b,
1 ifa<b
tob=a-b b= > b
atzb=a-b, ayy {b/a ifa>b,
at®p =1 — min{1,[(1 — a)? + (1 — b)P]/?},p > 1,
a‘lﬁ(?)b:{l sy
1-[1-bP ~(1—af? ifa>b,
1 fa<b
t4b = b-1 b= b
atsb = max{0,a + };q’b‘! {1+b—a if a > b,
. 1 ifa<b
0 ifat+b-1<0, e
tsh = N b=yt H1-ash
o {a/\b fatb-1>0, ¥ 5 < minfa1 -

1-a ifb<min{a,1~-a},
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where a,b € [0,1].

For t,,t; see Zadeh [35), for ¢3 see Yager [33], for t; see Giles [14], for 5 see [2]. We
note that t; is the well known Godelian implication operator used by Sanchez [25] and

t1,t2,t(P) ¢4 are continuous while ¢5 is LSC.

In [10], we define the set
Gy(a,b) = {z €[0,1] : atz = b}

for any a,b € [0,1]. If G¢(a,b) # 0, where t is any norm, then we have a = atl > atz = b
for any ¢ € G¢(a,b) and hence a > b. If a > b, and t is a norm satisfying property (2.7),
it is easily seen that (cfr. Lemma 2.1 of [10]) G¢(a,b) # 0. If t is LSC and a > b, the set

G¢(a,b) could be empty as it is proved in the following example.

Example 1. Let t =t5,a=0.3 > 0.2 =b. For z > 0.7, we have ¢ + z — 1 < 0 and hence
atsz =0 # 0.2 =>. For z > 0.7, we have a+ z — 1 > 0 and hence atszc = a Az =a =
0.3 # 0.2 = b. This implies that G(0.3,0.2) # 0.

However, assuming that ¢ is LSC and G¢(a,b) # @ for some a,b € [0,1] (a > b), we
have of course G¢(a, b) C I (a,b). Let £ € G¢(a,b) and since t is nondecreasing, we deduce
that b = atz < at(ayd) < b by (2.4). This means that aypbe Gi(a,d) (cfr. Lemma 2.2 of
[10]) and then

ayb = sup{z € G(a,b)}.

We now consider an upper semicontinuous (briefly, USC) norm t. By putting
Hi(a,b) = {z €[0,1] : atz > b}

for any a,b € [0,1], we note that 1 € Hy(a,b) if @ > b and Hy(a,b) = § if @ < b since
a = atl > atx > bfor any x € H(a,b). We define the following operator 3, : [0,1]x[0, 1] —
[0,1], dual of (2.1), as

0 if a<b,

(28) aﬂtb = {lnf{:ll € Ht(a, b)} if a > b,
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for any a,b € [0,1]. From now on, when no misunderstanding can arise, we put af3b
instead of aB;b. It is immediately seen that afBb < afc if either 5 < c<aora<b<g,
af(atb) < b,a = 1Ba and 0 = aB0, where a,b,c € [0,1].

Further, if ¢ is USC and a > b, we have that
(2.9) at(aPb) > b if a>b.

Of course, Hy(a, b) = [aBb, 1] if t is USC and (2.8) can be also used for norms that are
not necessarily USC. We note that if ¢ is not USC, then afb generally, if a > b, does not
belong to set Hy(a, b), as it is proved in easy examples. For instance, it suffices to consider
t = t5 (which is not USC because discontinuous [2]) and a = b = 0.5.

In the sequel, we shall consider USC norms and in some examples, the well known

"drastic product” defined

b h e a if b=1,
et = 0 otherwise,

and whose related bg-operator is given by

0 ifa<borb=0,
afsb=<¢b if 1=a>b,
1 fl>a>bora=b,

where a,b € [0,1]. Note that t is USC and since it is discontinuous, it is not LSC.
Further, we point out that, for the norm t;, B; coincides with the operator ¢ intro-
duced by Sanchez [26].
We note that if t is USC and a > b, G¢(a,d) could be empty as it is proved in the

following example.

Example 2. Let t =tgand1>a >b>0. Wehaveatzr =0if z <1 and atz =a > b if
z = 1. Hence Gy(a,b) = 0.
However, assuming that ¢ is USC and Gq(a,b) # @ for some a,b € [0,1](a > b), we

have obviously G(a,b) C Hy(a,b). Let € Gy(a,b) and since ¢ is nondecreasing, we get
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b= atz > at (afb) > b by (2.9). This implies that aBb € G(a,b) and then
afb = inf{z € Gy(a,b)}.
Of course, if t is a norm satisfying property (2.7), we have that
G(a, b) = [aBb, aypb).

It was also stressed in [10] that if a norm ¢, satisfying (2.7), is strictly increasing on the
support set {z € [0,1] : atz > 0} for any a > 0, then Gi(a,bd) = {afb} = {ayd} for
a>b>0.

Since the above norms t;, tg, t(P), ¢, are continuous, they satisfy this condition. We
like to point out that some partial results of this Section, as well as Lemmas 2.1, 2.2,
Examples 1, 2 and the results of p. 107 of [10] are due to Miyakoshi and Shimbo, appeared

in their preprint, prior of the publication of the actual paper [20].

3. Basic definitions.

From now on, I, denotes the set of the first r positive integers. Let
X ={z1,23, ,2a}, Y = {y1,¥2,- . Um}, Z = {21,223, -+, 2,} be three finite sets and
F(X)={A:X €[0,1]}, F(Y) = {B : Y — [0,1]} the sets of all the fuzzy sets of X and
Y, respectively. Further,let F(XxY)={Q: XxY = [0,1]}, (Y XZ)={R: YXZ —
[0,1]} and F(X x Z) = {T : X x Z — [0,1]} be the sets of all the fuzzy relations defined
in the specified domains.

It is well known that F(X) is a complete lattice with respect to the following pointwise

operations:

(A \/ A')(z) = max{A(z),A'(z)}, (fuzzy union)

(A /\A’)(z) = min{A(z), A'(z)}, (fuzzy intersection)
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for any = € X, where 4, A’ € F(X). Analogous operations shall be considered between

fuzzy relations. For brevity of notations, we put for any A € F(X), Be F(Y),Q e F(X €
Y), ReF(Y xZ), T e F(X x Z):

A(z:) = Ai, B(y;) = Bj, Q(zi,y;) = Qij» R(Yj, z¢) = Rk, T(zi, 2) = Tixs
where ¢ € I,, j € I, k € I,. We represent fuzzy sets and fuzzy relations as real matrices
and we use the following definitions of [10].
Definition 3.1. Let M, M' € F(X x Y) (resp. A, A’ € F(X)). We say that M(resp. A)
is contained in M' (resp. A'), in symbols M < M' (resp. A < A') if M;; < M;; (resp.
A; < A;) for any ¢ € I, j € I, (resp. i € I,,).
Definition 3.2. We define inverse of @ € F(X x Y), the fuzzy relation Q! € F(Y x X)
with membership function Q;l = Qij forany i €I, j € L.
Definition 3.3. Let Q@ € F(X x Y), R € F(Y x Z) and t be a norm. We define sup —
composition of R and @, the fuzzy relation T € F(X x Z), T = R1,Q, given by

(3.1) T = \'"/ (QijtRj]

i=1

for any t € I,,, j € I,,.

Definition 3.4. Tle sup —t composition of A € F(X) and M € F(X x Y) is the fuzzy
set B € F(Y), B= M1,A, given by

3

(3.2) B; = \[[AitM;;]

-
|

for any j € I,,.

Definition 3.5. Let t be a LSC norm. The ¥-composition of @' € F(Y x X) and
T € F(X x Z) is the fuzzy relation Q-1 ¥T € F(X x Z) given by
@'k = \(Q5'¥Ti)

i=1

for any j € I, k € I,.
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Definition 3.6. Let ¢t be a LSC norm. The ¥-composition of A € F(X) and B € F(Y)
is the fuzzy relation A¥B € F(X x Y) given by

(AUB);j = A; VB,

for any 1 € I,,, j € Inn.

Definition 3.7. We define lower (resp. upper) solution of a fuzzy equation, a minimal
(resp. maximal) element of the set, ordered by fuzzy inclusion in accordance to Def. 3.1,
of its solutions.

FQeF(XxY)and T € F(X € Z) (resp. A € F(Y)) are assigned, we denote by
R =R(Q,T) (resp. M = M(A, B)) the set of all the fuzzy relations R € F(Y x Z) (resp.
M € F(X x Y)) satisfying the Equation (3.1) (resp. (3.2)).

As in [10], we put
Qi(zi,y:i) = Qij and Ti(zi, 2x) = Tix

for any i € I,, j € Ip, k € I, and it was pointed out that, assuming @Q; € F({z;} x Y)
and T; € F({z;} x Z) as fuzzy sets for any ¢ € I,,, the fuzzy equation (3.1) can be seen as

a system of n equations of type (3.2),
(3.3) Th = RL1,Q4,

where h € I,. Then, if My = M(Qp,T1) denotes the set of all the solutions R € F(Y x Z)

of the Equation (3.3) for any % € I,,, we have
R=M10M20"'nMn.

In the sequel, we need the following well known Lemma 3.7 of [10]:

Lemma 3.1. Let R;, Ry € R (resp. M) and R € F(Y X Z) such that Ry < R < R,.
Then R € R (resp. M).
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4. Fuzzy equations under LSC norms.

In [10], as well as in [20], [24], the following results were proved for the Equations

(3.1) and (3.2) under norms satisfying property (2.7).
Theorem 4.1. R # 0 iff Q-'¥T € R. Further, Q~1¥T > R for any R € R.
Theorem 4.2. M # § iff AYB € M. Further, AVB > M for any M € M.

Theorem 4.1. of which Theorem 4.2 is a particular case, was proved in [10] using
essentially the properties (2.2), (2.3) and (2.4).
Hence it is evident that it holds for max-t fuzzy equations under LSC norms since
property (2.4) holds by Theorem 2.1.
Example 3. Let t = t5, m=n =2, A € F(X) and B € F(Y) be given by
Y1 Y2 Y1 Y2

A= (o.s 0.5) B- (0-5 0-0)

Thus M # 0 since (AUsB)L,, A = B where

Y1 Y2
Note that the equation
B=M1,A

has no lower solutions. Indeed, we have the following system of equations for any M € M:

{ (05t5M11) V(0.5t5M21) =0.5
(0.5t5M12) V(05t5M22) = 0

that is satisfied iff

0.5t5 My, = 0.5, 0.5ts M1, <0.5,
. 0.5t5M21 < 05, 0.5t5M2'1 = 0.5,’
either or
0.5ts M2 =0, 0.5ts M2 = 0,

0.5t5M22 = 0, 0.5t5M22 = 0,
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i.e.» iff either M11 € (05, 1], M21 € [0, 1] or Mu € [0, 1], M21 € (05, 1] and Mlz,Mzz €
[0,0.5]. For z € [0.5,1], we put

Y1 Y2 Y1 Y2
M; - T z 0.0 Mz — T 0.0 0.0
9 \ 0.0 0.0 Ta z 0.0

Thus M;, M; € M if £ > 0.5 but My 5 and Mp.5 do not belong to M.

Summarizing, we can say that if ¢ is LSC, the Equations (3.1) and (3.2) have unique
upper solution but in general, as Example 3 shows, do not have lower solutions. However,
the membership functions c;f A and B can be such that some lower solution may exist as

it is easily seen in the following example.

Example 4. Let t = t5, m = n = 2, A € F(X) be given by 4; = 0.6, A, = 0.5 and B as
in Example 3. Since (A¥sB)1, A = B, where

Y1 Y2

Ap.p_ T |05 04
sB =

T 1.0 05

then M # (. Reasoning as in Example 3, one can see that the fuzzy relations

Y1 Y2 Y1 Y2
N= T 0.5 0.0 M, = ;[ 0 O
z2 \0.0 0.0 zo \z O

where z € {0.5,1], are elements of M if z > 0.5. N is minimal in M but My 5 ¢ M.

Remark 2. In account of Remark 1, it is seen that Theorem 4.1 and 4.2 can be deduced
by Theorem 1 of Di Nola and Lettieri [5], result valid also in the context of complete

residuated lattices.
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5. Fuzzy relations under USC norms.
Let t be an USC norm and, considering the Equation (3.2), we define the following m
sets:
K; = {i € I, : Ait(Ai$B;) = B;}
for any j € I,,. The following result holds.

Theorem 5.1. M.# @ iff K; # 0 for any j € In,.

Proof. Let M # §. Then we have for any M € M and j € L;:

n
B; = V[A.‘tM,'j] = AptMy;

i=1
for some h € I,. Thus Myj € Gy(Aw,B;) # ¢ and hence, in accordance to the results of

Section 2, we have that AyBB; € Gy(An, Bj), i.e.
Ant(AnBB;) = Bj

and this means that K; # 0 since h € K. Vice versa, let K; # @ for any j € I,. Define
the following fuzzy relation AOB € F(X x Y) with membership function given by (cfr. p.
117 of [10]):

AipB; if 1€ K;, B; >0,
(5.1) (A@B),'j =<0 if 1€ Kj, BJ‘ >0,
0 if Bj=0.

for any ¢ € I,, j € I,,. We have for any j € I, such that B; > 0:

n

V14it(46B);] = { \/ [At(4:8B;)} \{ V (40} ={\/ B;}\/o= B,

i=1 i€K; igK; i€K;
If B; =0, the thesis is trivial.
Note that if ¢ satisfies property (2.7), then ¢ € K; iff A; > B; and hence Theorem
5.1 becomes Theorem 4.1 of [10] for the necessary part and Theorem 4.3 of [10] for the
sufficient part.

From the proof of Theorem 5.1, we can also say that
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Theorem 5.2. M #£ § iff AOB € M.

Proof. If M # @, then K; # 0 for any j € I, by Theorem 5.1. Consequently one proves
that the fuzzy relation A©B, defined in (5.1), belongs to M.
Adopting the same proofs of Theorems 4.2, 4.4, 4.7 of [10] respectively, we can show

the following results.

Theorem 5.3. If M # 0, then M has minimal elements L obtained by choosing an index
h € K; for any j € I, and by putting for any i € I, j € In:

AhﬂBj if Bj>0,i=h,
Li;=40 if B;>0,i#h,
0 if B;=0.

In other words, it suffices, in order to determine a lower solution L, to keep a non-zero
element A;#B; in the j — th column of A®B for which B; > 0 and : € K;. If B; = 0,

then we assume L;; = 0 for any : € I,.
Theorem 5.4. If M # {, the fuzzy union of all the minimal elements of M is A®B.

Theorem 5.5. If M # (), for any M € M there exists a minimal element L < M such
that L < M.

Example 5. Let t =tg, m =n =3, A € F(X) and B € F(Y) be given by

ry T2 I3 Y Y2 Y3
A= (0.2 0.5 1) B= (0.8 0.5 0)
We have
Yi Y2 Y3

e [00 00 00
A0sB= . 100 1.0 00

z3 \0.8 0.5 0.0
We get M # { since

(A©sB) Ly, A =B.
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Note that K; = {1}, K2 = {2,3}, K3 = I; and then M has the following minimal

elements:
Y Y2 Y3 i Y2 Y3

z; { 0.0 0.0 0.0 z; { 0.0 0.0 0.0
z; 100 1.0 00])° =z2|0.0 00 00
z3 \0.8 0.0 0.0 zz3 \0.8 0.5 0.0

It is easily seen also here, as in example 3, that M has not the greatest element.

Summarizing, we can say that if ¢ is USC, the set of all the lower solutions of the
Equation (3.2) is completely determined, but in general, as Example 5 shows, this equation
has not an upper solution. However, in certain particular cases, the membership functions
of A and B can be such that an upper solution exists, as it is easily seen with simple
examples.

About the Equation (3.1), we assume that R # §. By (3.4), we have M, # § for
any h € I,,. Thus the set Ly = L(Q#,Ts) of all the lower solutions of each Equation (3.3)
is nonempty by Theorem 5.3. If L, denotes an arbitrary element of L, we define the
following subset of F(Y x Z):

L=L(Q,T)={LeF(Y xZ): L=\/ Ly, Ly € Lp}.
h=1
Then the following result holds.

Theorem 5.6. R £ 0. if RNL # 0.

Proof. Let R € R. By (3.4), R belongs to M, for any h € I,,. By Theorem 5.5, there
exists an element Ly € Ly such that L, < R for any h € I,,.
This implies that

L=\/L.<R,
‘h=1
where, of course, L belongs to L. Since L, < L < R for any h € I,,, L belongs to M}, for

any h € I, by Lemma 3.1 and this means that L is in R since (3.4) holds. Then RNL # §

since Lisin RN L.
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The converse implication is trivial.
In other words, this theorem assures that for any R € R, there exists an element

L € L such that L < R. Further, we have that
Theorem 5.7. R is minimal in R iff R is minimal in RN L.

Proof. 1t suffices only to show that if R is minimal in R N £, then R is minimal in R.
Indeed, let R' € R such that R' < R. Then there exists an element L € R N L such that
L<PR.

This implies that L < R’ < R and hence L = R since R is minimal in R'N L. Then
R =L =R and thus R is minimal in R too.

Since each set L, h € I,,, is finite, L is also a finite set and consequently the set RNL
is finite. It has minimal elements, that are the minimal elements of R by Theorem 5.7, as

it is shown in the following example.

Example 6. Let t =t5,n=p=2,m=3,Q € F(X xY) and T € F(X x Z) be given by

Y1 Y2 Y3 S T
0= z; {09 1.0 0.6 o T= z; [ 0.8 0.6 ,
zo \0.7 0.5 1.0 o \0.2 0.7
We have
21 22 21 22
v [ 00 0.0 v [00 1.0
@OeTi=y, | 08 06| “OT2= 4 00 00

v \0.0 1.0 v \0.0 0.7
Then Ly = {L}, LY}, L, = {L}, L}}, where
z1 22 21 2o
vi (00 0.0 vi (0.0 00
Li=ylos 06| 1=y, |08 00l

Y3 0.0 0.0 Y3 0.0 1.0
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P 'z 2z
v [00 1.0 v (00 00
L=y 00 00| L=y 00 00

Then L = {L,R,U, W}, where

21 29 Z21 22

vi (00 1.0 v (00 00
L=Li\Ly=, | o5 06| B=LiVIi=, |05 06|

vs \0.2 0.0 vs \0.2 0.7

21 2 21 2z

vi [00 1.0 v [00 00

U=LiVIL= |08 00| W=EVIi=,]0s 00

ys \0.2 1.0 ys \0.2 1.0

It is easily seen that {R} = RNL. Thus R # 0 and obviously R is the unique minimal
element (i.e. the minimum) of R. Note that R has not the greatest element.

We conclude this Section recalling the papers of Czogala, Drewniak and Pedrycz [3],
Di Nola [4], Drewniak [11, 12], Higashi and Klir [17], Luo Cheng Zhong [19], Miyakoshi and
Shimbo [21], Pappis and Sugeno [23], Sanchez [26], Wang and Yuan [30] and the authors
of [32] where a detailed discussion on the lower solutions of a max-t; fuzzy equation is

presented and see [9] for max- ¢(P) fuzzy equations, where p > 1.

6. General results and Boolean solutions.
In this Section we consider a general norm ¢ without requiring particular assumptions
on it. Following Sanchez [26], we recall that the binary operation "o” defined as acb = b
if a>b, ach = 0if a < b and as in [10], considering the Equation (3.2), we put for any
JELy:
I; ={iel,: A; > B;}.
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Further, as in [8], we define the m sets:
Ij={i€l,: Ai=1}

for any j € I,. Note that I'; = K for any j € I, if £ is a norm satisfying property (2.7).

We now prove that

Theorem 6.1. Let I'; # 0 for any j € I,. Then the fuzzy relation A®B € F(X x Y)

pointwise defined as (A®B);; = A;joB; for any i € I,,, j € I, belongs to M.

Proof. We have for any j € I;:

/\[Ait(AiffBi)] = { A\ [4it(4i0B;)[} A{ \ [4it(4ioB;)]} =

i€T; igT;

{ A\ AtB)Y AL (4it0)} = A {(4itB)Y \o=

i€T; i¢T; i€T;
{ N @B NANQ-tB)}={ A (AitB))} \B;=B;
LT3 i€T; i€l;-T}

since A;tB; < 1tB; = B; for any ¢ € I'; — I';. This implies that (49 B) belongs to M.
This theorem was proved in [9] for ¢ = ¢(»), p > 1. In [10], the following result was

shown for norms satisfying property (2.7).

Theorem 6.2. If M # @, then I'; # @ for any j € I,.
We observe that the property (2.7) is not crucial in the proof of the above result.
Hence Theorem 6.2 holds for any norm ¢ and we now show an analogous theorem for the

Equation (3.1), but we first need to define the sets
Tit ={j €In:Qij > Tix}

for any i € I, kI,. Then we have that

Theorem 6.3. If R # 0, then I'ix # 0 for any i € I,, k € I,.
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Proof. f R # 0, then My, # 0 for any h € I, by (3.4). Hence I'ix # 0 for any ¢ € I,
k € I, by Theorem 6.2.
This theorem was proved in [28] for ¢t = ¢;. Theorem 6.3 is not invertible as it is
proved in the following example [28]. |
Example 7. Let t =ty,, m=n=p=3,Q € F(X xY) and T € F(X x Z) be given by
Y1 Y2 Y3 21 29 23
z; { 0.0 09 1.0 z; [ 0.8 0.3 0.6
@=¢,102 00 08| T= 2|06 05 038
z3 \0.5 0.0 0.9 z3 \0.6 0.5 0.9

We have
Z1 zZ9 z3

vi [ 06 05 09
QT = |08 07 1.0
y3 \0.7 0.6 1.0
and T'y; = Ty = I3 = {2,3}, Tyy = Tgp = T3 = I'3; = 33 = {3},T32 = {1,3}, ie.
Dix # 0 for any ¢,k € I3, but’

/

(Q7'UT) = L, Q#T

since

3
Tp2 =0.5>04=0A\0A04= A[Qita(Q " sT);i].
j=1

Thus R # @ by Theorem 4.1.

The rest of the present paper is dedicated to the study of Boolean solutions of the
Equations (3.1) and (3.2). We define Boolean solution of the Equation (3.1) (resp. (3.2))
a fuzzy relation R € F(Y x Z) (resp. M € F(X x Y)) such that Rz € {0,1} (resp.
M;; € {0,1}) for any j € I, k € I, (resp. 1 € I, j € I.). The following result holds for

the Equation (3.2) under any norm t.
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Theorem 6.4. The Equation (3.2) has a Boolean solution iff for any j € I, either exists

at least an index ¢ € I, such that A; = B; if B; > 0 or B; = 0.

Proof. The condition is necessary. Indeed, let M € M be a Boolean solution of the

Equation (3.2). For any j € I,,, we define the following sets:
Mi={i€l,: M;j=0} and MI ={i €L, : M;; = 1}.
Then, if B; > 0, we have
n
B; = \/(4itMyy) = { \/ (4t} \V{ V (4} = \/ 4
=1 ieM] ieMi ieM;

and hence there exists at least an index ¢ € M{ such that A; = Bj.

The condition is sufficient. To show this, we define the fuzzy relation

Mij={1 %f Z:=z:*’ B; >0,
0 if :<:*, B;>0 or B;=0.

Then we have if B; > 0,

n

V(A,'tM,'j) ={ V (A,'tM,'j)} V(A,‘ttM,'tj) =0 V(Bjtlj =0 VB]' = B;.

=1 =i
If Bj =0, then
V (4itM;;) = \/(Ait0) = 0 = B,.

=1 =1

This means that M is a Boolean element of M.
Theorem 6.4 was obtained in [6] for ¢ = ¢; and in [9] for ¢ = t:(,” ), where p > 1.

Similarly, it can be shown the following result for the Equation (3.1).

Theorem 6.5. The Equation (3.1) has a Boolean solution iff for any i € I,, k € I, there
exists at least an index j € I, such that either Q;; = Tix if Tix >0 or Ty =0.

If the Equation (3.1) (resp. (3.2)) has not Boolean solutions and if R # @ (resp.
M # 0), then we apply an algorithm of Di Nola and Ventre [7] in order to find the
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maximal Booleanity, i.e. the greatest number of 0 and 1, present in a solution R € R
(resp. M € M). As pointed out in [7], we note that the problem of maximizing the
Booleanity of an element R € R (resp. M € M) does not coincide with the problem of
minimizing the entropy of R (resp. M) since the amount of entropy depends from the
non-Boolean entries of R (resp. M). By other hand, this problem has been solved in (8]
for max-min fuzzy equations and in [10] for max-t fuzzy equations under a norm satisfying

property (2.7).

7. Boolean solutions under LSC norms.
In this Section, we consider fuzzy Equations (3.1) and (3.2) under LSC norms. If
R # 0, we denote by B = B(Q,T) the subset of R constituted by the Boolean elements

of R. In accordance to Sessa [29], we define the following element S € B:
1 i (@YW =1,
Sjk =

0 otherwise,

for any j € I, k € I,. Then Theorem 6.5 can be formulated in another interesting version.
Theorem 7.1. Let R # . Then B # 0 iff S € B and further S > R for any R € B.

Proof. Of course, we only prove the non-trivial implication. Let R € B # # . Since
Theorem 4.1 implies that (Q~'¥T) € R, then we have R < § < (Q~!¥T) for any R € B.
Therefore Lemma 3.1 assures the thesis.

This theorem was established in [29] for ¢ = t; but in the general context of bounded
Brouwerian lattices, in accordance to Sanchez [25]. In other words, Theorem 7.1 guarantees
that S, when it exists, is the greatest element of B.

Example 8. Let t =t3, m=n=p=3,Q € F(X xY) and T € F(X x Z) be given by
i Y2 Y3 21 2z z3
z; | 0.8 0.7 0.5 z; [ 07 08 05
@=2,]06 03 05| T=2]05 06 05|
23 \04 00 02 25 \02 0.4 0.2
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We have
2 22 23 2 22 23
v [05 1.0 05 v [00 1.0 0.0
Q7' T= 10 10 07> $=4, |10 10 00
vs \1.0 1.0 1.0 vs \1.0 1.0 1.0/
and it is easily seen that
S1,Q=T.

Theorem 7.2. If for any i € I,, k € I,
V Qi; = Tk,
=1

then R # 0 and (Q™'¥T)jx = Sjx =1 for any j € I, k € I,.

Proof. We observe that for any i € I,, j € Im, k € I;:

Qi; <\ Qij=Tu

i=1
and this implies, by Definition 3.5 and property (2.8), that
n n
@7'UT)je = N\(Qi¥Tu) = A\ 1=1=Sjr.
i=1 i=1
Since

T =\ Qi = V (@Qijt1) = \/[Qit(Q ' UT) ;]
j=1 j=1

i=1
for any i € I,, k € I,,, we have R # 0 by Theorem 4.1.
Denoting by B’ = B(A, B) the subset of M constituted by the Boolean elements
M € M, one can enunciate, similarly to Theorem 7.1, the following result for the Equation

(3.2).
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Theorem 7.3. Let M # 0. Then B’ # 0 iff the fuzzy relation S’ € F(X x Y) pointwise
defined as

ik =

. { 1 if (A¥B);j =1,

0 otherwise,
for any ¢ € I, j € I, belongs to B’ and further S’ > M for any M € B'.
Let B}, = B(Q#,T#), b € I,., be the set of the Boolean solutions of the Equation (3.3).

Of course, it follows that
(7.1) B=B;NnByNn...NB,,

If S}, h € I,, stands for the greatest element of B}, then we have the following

theorem.

Theorem 7.4. If B # §, then

Proof. The fuzzy relation S belongs to each set B}, h € I, since (7.1) holds. Thus S < S3
for any h € I,, by Theorem 7.3. Then
(7.2) s<w=N\S<S)

h=1
for any & € I,. By Lemma 3.1, the fuzzy relation W belongs to the set M}, for any h € I,,.
Since (7.1) holds, W is in B and hence W < § by Theorem 7.1.

The converse inequality is in (7.2) and then W = S.

Example 9. Recalling Example 8, we have

21 29 23

v [ 0.875 1.000 0.625
@¥:Th=, | 1000 1.000 0714 |

ys \1.000 1.000 1.000
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2 22 z3
vi [ 0.833. 1.000 0.833
Q2%2T2= 4, | 1.000 1.000 1.000 |-
ys \1.000 1.000 1.000
21 22 z3

y; [ 0.500 1.000 0.500

Qs%2T3 = . | 1.000 1.000 1.000 |
ys3 \(1.000 1.000 1.000
Therefore
2 22 23 21 z3  z3
vy, | 0.000 1.000 0.000 v { 0.000 1.000 0.000

' _ o
51=y, | 1.000 1.000 0.000 | S2=5=y, | 1000 1.000 1.000 |’
ys \1.000 1.000 1.000 vs \1.000 1.000 1.000

and it is easily seen that the fuzzy relation S of Example 8 is equal to S] A Sj A S3.

8. Minimal Boolean solutions of the Equation (3.2).
Although the results of this Section can be deduced easily from [29], we give them for

sake of completeness. Here we characterize the minimal Boolean solutions of the Equation
(3.2) under a norm ¢ satisfying property (2.7), assuming of course B’ # §J. In accordance
to Di Nola and Ventre [7], we define in M the following binary operation:

ML if M #9,

MAM');; =
( Ji {0 if M;; =0,

forany h€1,,j € I,, M, M' € M. Remembering that a norm satisfying property (2.7)
is necessarily LSC and USC, we have that S’ € B' by Theorem 7.3 and we define the

following set:

S=S(4,B)={Le M:L<S"},
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where L is a minimal eiement of M. S is nonempty by Theorem 5.5 and clearly we have
L <(LAS') < S’ for any L € S. By Lemma 3.1, the fuzzy relation (LAS') belongs to M

and it is obviously an element of B'. Then the following set:
Ss =Ss(A,B) = {LAS': L € S}

is a subset of B and the following result of [29] holds.

Theorem 8.1. If B' # 0, the minimal elements of B’ are the minimal elements of S and

vice versa.

We illustrate Theorem 8.1 with a suitable numerical example assuming ¢ = ¢; and
observing that (cfr. Example 2 of [10]) for @ = b, we have Gy(a,b) = [a,1] and G¢(a,b) =

{b} for a > b, a,b € [0,1].
Example 10. Let m =4, n =3, A € F(X) and B € F(Y) be given by

Ty Tz I3 Vi Y2 Y3 Ys

A= <0.6 0.4 0.7)1 B= (0.4 0.6 0.0 0.7)-

We have that

Y1 Y2 Ys Y4 Y1 Y2 Ys Y
2 {04 1.0 00 1.0 z [00 1.0 00 1.0
— I—
AVB= . 110 10 00 10" 9= 2|10 10 00 10|

z3 \04 06 0.0 1.0 z3 \0.0 0.0 0.0 1.0

Yi Y2 Ys Ya

z (04 06 00 00
A0B= ;104 00 00 00
z3 \0.4 0.6 0.0 0.7
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Since S'1;, A = B, we have B’ # ) and by Theorem 5.3, there exist six lower solutions
given by
Vi Y2 Y3 Ya Y1 Y2 Y3 Ya
z; {04 06 00 0.0 z; { 0.0 0.6 0.0 0.0
Li= 2,100 00 00 00| L2=2,]04 00 00 00|
z3 \0.0 0.0 0.0 0.7 z3 \0.0 0.0 0.0 0.7
Y Y2 Y3 Ys Yy Y2 Y3 Ya
z; {00 06 00 0.0 z; {04 0.0 0.0 0.0
Ly = z2| 00 0.0 00 0.0 | Ly= z2 | 0.0 0.0 0.0 0.0 |
z3 \04 0.0 0.0 0.7 zz3 \0.0 0.6 0.0 0.7
Y Y2 Ys Ya Vi Y2 Ys Ya
z; (0.0 0.0 0.0 0.0 z; {00 00 00 0.0
Ls = z2 1 04 0.0 00 0.0} Le = z2 | 0.0 0.0 0.0 0.0 |
z3 \0.0 06 0.0 0.7 z3 \04 06 0.0 0.7

and it is easily seen that S = L,. Hence S; €= {L2AS'}, where

Y Y2 Ys  Ya

2 (00 1.0 00 00
r__
LAS"= . 110 00 00 00|
25 \0.0 0.0 00 1.0

It is the unique minimal element of B’ and every Boolean solution lies between

(L2AS") and S

Theorem 8.2. If B’ # @, for any M € B’ there exists an element M' € S; such that
M' <M.

Proof. By Theorem 5.3, for any M € B’ there exists a minimal element L € M such
that L < M < §'. If M;; =0, we have L;j = 0 and hence (LAS');; =0 = (LAM);;. If
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M,'J' = 1, we have S,'j = 1 and hence (LAM),']' = M;j = 1= S,'j = (LAS’),‘]’. By setting

(LAS') = M' € S;, then we deduce M' = (LAS') = (LAM) < M, i.e. the thesis.

Lemma 8.3. Let M, M', M” € M. Then
(M'AM)\/(M”AM) = (M'\| M”)AM.

Proof. Trivial since it follows directly from the definition of the operator 4.

Theorem 8.4.

\/(LAS') = (A6B)AS',
where the sup is calculated on the minimal elements of M.

Proof. By Theorem 5.4, AOB is the fuzzy union of all the minimal elements of M. We

have by Lemma 8.3,

(40B)AS' = (\/ L)AS' = \[(LAS"),

i.e. the thesis.

9. Minimal Boolean solutions of the Equation (3.1).

In [29], the author proved directly Theorem 8.1 for the Equation (3.1) assuming t = #;
in a linear lattice. However, with a slight different presentation from [29], we like to show
here how Theorem 8.2 concerning Equation (3.2) can be applied to the Equation (3.1), for
which we assume B # §.

Bearing in mind Equation (3.3) and similarly to the symbology of Section 8, we define

the sets:

Sk =S(Qn,Th) = {Ln € L : Ly < 53}

Sk = Ss(Qn,Th) = {LnASh : Ly € Sy}
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for any h € I,,, where L, is a minimal element of M;,. By (7.1), the greatest element S of
B is in each set B), and by Theorem 8.2, the set

Ap={M,eS: M, <S}#0
for any h € I,,. If we define the set
A=MNQT)={UEF(YXZ):U= \"/ My, My, € St}
h=1
we have that M, < U < S for any h € I, and U € A. This means that U € M, for any
h € I, by Lemma 3.1 and hence U € R since (3.4) holds. Of course, the fuzzy relation U,

that is fuzzy union of Boolean matrices, is also an element of B. Hence A C B. We now

prove the following characterization theorem.
Theorem 9.1. The minimal elements of B are the minimal elements of A and vice versa.

Proof. Let U be minimal in A and let W € B be such that W < U. We must prove
that W = U. Since W € B}, for any h € I,,, by Theorem 8.2, let M; € S! be such that
My < W for any h € I,. Then

M=\n/M,,SW§U,

=1
but U is minimal in A and this implies W > M =U > W, ie. W = U. Vice versa, it
suffices to prove only that a minimal element U of B is in A. Indeed, since U € B}, for
any h € I, by Theorem 8.2, let M}, € S be such that M;, < U for any h € I,. Then
M, <M= \"/ M, <U
h=1

and hence the fuzzy relation M is in B}, for any h € I, by Lemma 3.1. Since (7.1) holds,
M is in B and therefore M = U since U is minimal in B. It is evident that M is in A.

We illustrate Theorem 9.1 with the following example.
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Example 10. Let ¢ = t; and pointing out that G¢(a,b) = {1} ifa=5b>0 and

G; € (a,b) = {b/a} if a > b > 0, we have from Example 9,

21
Y 0.875
10T = | 1000

ys \ 0.000
21

v [ 0.833

Q20:T2 = o, | 0.000

ys \ 1.000
21

y1 { 0.500

@:0:T5 =, | 0.000

y3 \ 1.000

where O, stands for ©,,. Bearing in mind S}, S3, 53

that S; = {L}, Sz = S3 = {L'}, where
zZ1 29 z3

y; [ 0.000 1.000 0.000
L=

y3 \0.000 0.000 1.000

22
1.000
0.000
0.000

22
1.000
0.000
0.000

22
1.000
0.000
0.000

Y

" _
2 | 1.000 0000 0.000 [° L' = 4

Ys

23
0.625
0.714 |
1.000
23
0.833
0.000 |-’
1.000
23
0.500
0.000 |-

1.000

calculated in Example 9, we have

z1 22 23

0.000 1.000 0.000
0.000 0.000 0.000
1.000 0.000 1.000

In this case, we have LAS; = L < S and L'AS; = L'AS; = L' < S, where S is given

in Example 8. Thus A; = S} = {L}, A2 = A3 = S%2 =S} = {L'}, hence A = {M}, where

21

22

23

v [ 0.000 1.000 0.000
M=IL\/Z'= | 1000 0.000 0.000

ys \1.000 0.000 1.000
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M is the unique minimal element of B and every Boolean solution lies between M and S.

Another numerical example for ¢ = ¢; can be found in [29].

Acknowledgement. Thanks are due to S. Gottwald, M. Miyakoshi and M. Shimbo for
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