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LATTICE VALUED ALGEBRAS

A. D1 NoLA* AND GIANGIACOMO GERLA**

1. Introduction.

The concept of fuzzy set, introduced by L.A. Zadeh [14], was applied to the theory
of groupoids and groups by A. Rosenfeld [12] that defines the concept of fuzzy-groupoid.
Subsequently, his definition, that was generalized by C.V. Negoita and D.A. Ralescu [11],
gives rise to a very large literature. Applications to code theory can be find in [1] and [7].
Indeed, a free (pure, very pure, unitary) fuzzy subsemigroup defines a class of free (pure,
very pure, unitary) subsemigroup via its cuts. Consequently, the tecniques proposed in
the quoted papers to building up fuzzy subsemigroups of the required type, enable us also
to obtain a large class of subsemigroup of the same type.

In this paper we propose a general approach to the theory of fuzzy algebras, while the
early existing papers deal with a particular type of fuzzy structures as fuzzy groups, fuzzy
ideals, fuzzy vectorial spaces and so on. Such approach is strictly related to the algebraical -
treatment of nonclassical logic as devised by H. Rasiowa, R. Sikorski and others. Indeed,
we are convinced that this is the natural theoretical framework for fuzzy set theory (see
(2] and [6]).

Namely, we propose for fuzzy algebras some basic tools of universal algebra type, such

as the concepts of homomorphism, congruence, quotient, direct product, reduced product
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2. Lattice valued algebras.

Let X be a set and L a complete lattice, then the direct product LX is a complete
lattice whose elements are named L-subsets of X [8]. The join and meet operations are
called union and intersection. The infimum and supremum elements of LX are denoted by
fo and fi, respectively. We denote by (X, f,L) an element f of LX.

If A = (D4, Fa) is an algebra with domain D4 é.nd operation set Fy, then we de-
note by (4,a,L) an L-subset of D4; such an L-subset is called lattice valued algebra or
L-algebra on A if:

(1) a(s(z1, - -,za)) 2 alz1) A Aa(zy)
for every n-ary operation s € F4 and z1,-+-,7, € Dy4.

Every constant function a : D4 — L is an L-algebra, in particular (4, fi,L) and
(A, fo, L) are L-algebras. If (A,a,L) is an L-algebra then an L-subalgebra of (A, a, L)
is an L-algebra (4,d',L) such that @’ < a. Of course, every L-algebra on A is an L-
subalgebra of (4, f1,L). Since we can identify (4, fi, L) with A, an L-algebra on 4 is also
named L-subalgebra of A. It is easy to prove that an L-subset (4, a, L) of A is an L-algebra
if and only if every a-cut C2 = {z € A: a(z) > a} is a subalgebra of A. Then to every
L-algebra (A, a,L,) it is associated a family (C%)qeyr of subalgebras of A. Obviously, if
a,f € L and @ < f then C* D CP. When L = {1} is the one element lattice we can
identify an L-algebra (A, a, L) with the algebra A. Then the L£-algebra concept generalizes
the usual concept of algebra. When L = {0,1} is the two elements lattice and a: A — L,
then (A, a, L) is an L-algebra if and only if a is the characteristic function of a subalgebra
of A. Thus the L-algebra concept generalizes the concept of subalgebra.

The following theorem shows that the class of all £-subalgebras of a given L-algebra
is a closure system. In particular, the class of all L-algebras on a given algebra A is a
closure system and to every L- subset (A4, a, L) of A we can associate the L-subalgebra on

A generated by (A, a, L).
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Theorem 2.1. The intersection of a family of £-subalgebras of an L-algebra (A4,a, L) is
an L-subalgebra of (4,a, L).
Proof. Let (A, a;, L)ies be a family of L-subalgebras of (4,a, L) then A;c;a; < a. More-
over from a;(s(z1, - +,2n)) > ai(z1) A -+ Aai(z,) for every ¢ € I, it follows that
N ai(s(@1), - 2a)) = \(@i(e)A, -+ Aa(2a)) =
i€l i€l

(Aaita)) A AN ailn)).

i€l i€l

3. The category of L-algebras.

Define the type 7 of an L-algebra (A, a, L) as the type of the algebra A (see [9]). Then
we will show that the class of all L-algebras of a given type 7 define a category C(7) in a
very natural manner. The objects of C(7) are the L-algebras of type 7. The morphisms
from an L-algebra (A,a, L,) to an L-algebra (B, b, Ly) are pairs (h,k), with h: A — B
homomorphism from A to B and k: L, — Ly homomorphism from L, to Ly, such that

the following diagram commutes

A B

o| |s

k
Ly —— Lp

that is ak = hb. A morphism is also named L-homomorphism. The product of two
morphisms (h, k) and (h', k') is defined by setting (h,k) o (h',k') = (hoh',kok'). Tt is
casy to prove that the product of two morphisms is a morphism and that the identity is a
morphism.

The category C(7) is in some relation with the product of the category of the algebras
of type T and the category of the complete lattice. Namely, if we associate to every L-
algebra (A, a, L) the pair (A4, L) and to every morphism (h, k) still (, k), then we obtain

a forgetful functor.
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Theorem 3.1. C(7) has direct products. Namely if ((Ai,ai, L;))ier is a family of £-
algebras, A = [[A;, L =[] L; and a: A — L is defined by setting a((z;)iecr) = (ai(z:))ier
for every (z;)ier € A, then (4, a, L) is the direct product of ((A;, a;, L;))ier -

Proof. Let h be an n-ary operation of 4 and z; = (z})) =iep -+, 2, = (27);er elements
of A. Then h(z1,---,2,) = (hi(z},---,27"))icsr where h; is a suitable operation of A;, for

every 1 € I. It follows that
a(h(z1,- -+, 2a)) = (ai(hi(z}, -+, 27)))ier
> (ai(z) A - Aai(z?))ier = a(z1) A - Aalzy).

This proves that (4, a, L) is an L-algebra.
Let us assume now that (B,b, L) is an L-algebra and that, for every : € I, (h;, k:)
is a morphism from (B, b, L) to (A:,a;, L;). We have to prove that there exists a unique

morphism (k, k) such that the diagram

(B’ba Ln) (‘h7k) (A’ a, L)7

(hi, ks) \ /(p,-,p',~>
2 (Ai,ai, L)

is commutative for every ¢ € I. Let us now define k by setting h(z) = (hi(z)):es for every
z € B and k by setting k(y) = (ki(y))ier for every y € Ly. It is obvious that h and k
are homomorphisms from B to A and from L, to L respectively. Furthermore, for every
z € Bitis

k(b(2)) = (ki(5(z)))ier = (ai(hi(z)))ier = a(h(z))
and this proves that (k, k) is a morphism. It is obvious that (2) commutes. In order to prove
the unicity, it is enough to observe that if (h', k') is a morphism such that pi(k'(y)) = ki(y)

for every ¢ € B and y € Ly, then h' = h and k' = k.
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4. Congruences and quotients.
An L-congruence on an L-algebra (A, a, L) is a pair (6, ) of congruences respectively
of A and L, such that, for every z,y € A,

(3) v T =g y implies a(z) =y a(y).
The quotient of (4, a, L) by (8,%) is the tern (A/8,a’, L/v) where @' is defined by setting
d'([z]g) = [a(z)]y for every z € A.
Theorem 4.1. Every quotient of an L-algebra is an L- algebra.
Proof. Let h € F4 be an n-ary operation of A, h' the operation induced on A/6 by h and
[z1]g," -+ [zn], elements of A/f. Then |
a' (A ([21]g -+, [2nlg)) = @' ([A(z1," -+, 2n)lp)
= [a(h(z1, -, za))ly 2 [a(z1) A~ Aa(en)],
= [a(z1)]y A -~ Ala(ea)ly,

, =d ([z1]g) A+ A’ ([zn]p)-
The following theorem shows that, as in the classical case, the £- congruences are

strictly related with the £-homomorphisms.

Theorem 4.2. If (h,k) is an £-homomorphism from (4,a,L,) to (B,b, L) then the
relations 8, = {(z,y) € A2: h(:c) = h(y)} and ¥ = {(u,v) € L2: k(u) = k(v)} define an
L- congruence of (4, a,L,). Moreover every L-congruence is of such type. V

Proof. 1t is well known that 6, and v are congruences of A and L, respectively. Moreover
from z =g, y it follows that h(z) = h(y) and therefore that b(h(z)) = b(h(y)). Since

bh = ka we have also that k(a(z)) = k(a(y)) and a(z) =y, a(y). This proves that (6, %)

is an L-congruence.

Assume that (6,¢) is a congruence of (4,a,L,) and let (B, b, L;) be the quotient of
(A,a,L,). Then the canonical homomorphisms h: A — B and k: L, — L; determine an

L-homomorphism whose associated L-conguence is (6,).
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In the sequel an £-homomorphism (h, k) such that both h and k are injective (surjec-
tive) is named L-monomorphism (L-epimorphism). If (k, %) is an £-monomorphism and
an L-epimorphism, then (h, k) is named L£- isomorphism and the relative L-algebras are
called isomorphic.
Theorem 4.3. If (h, k) is an epimorphism from (A, a, L,) to (B, b, L) then the quotient
(A',d',L!) of (A,a,L,) by (8ns, %) is isomorphic to (B, b, Lp).
Proof. Let h': A" — B and k': L), — Lj be defined by setting h'([z]6s) = h(v) and
k'([u]x) = k(u) for every z € A and u € L,. The functions A’ and k' are isomorphisms

between A/0), and B, and between L,/ and L; respectively. Moreover, for every [z]6, €
A6y it is

b(h'([ze,) = b(h(x)) = k(a(z)) = K ([a(2)]y,) = K'(a'([z]s, ).
This proves that (h', k') is the desired £-isomorphism.

If (h, k) is an L-homomorphism form (4, a, L,) to (B, b, L) and (A, d’, L,) is a sub-

algebra of (4, a, L,) then let us define the map b': — L, by setting, for every z € B,

b(z) = {V{k(a’(z)): T € h—l(z)} when h=1(z) # 0

0 otherwise.

Then the L-subset (B,b, Ly) is named the image of (A, a, L,) via (h,k). If L, = Ly
and k is the identity then this definition coincides with the well known definition given in

literature.

Theorem 4.4. If (h,k) is an £-homomorphism from (A4,a,L,) to (B,b, L), with L,
infinitely distributive, and (A,a', L) is an L-subalgebra of (4, a, L,), then the image of
(A,d', L,) via (h,k) is an L-subalgebra of (B, b, L).

Proof. Let us denote by (B,d',Ls) the image of (4,a',L,) via (h,k), by s € F4 any

operation of A and by s' € Fp the corrispondent operation of B. Then we will prove that,
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for every y1,--+,yn belonging to B, it is

4) V(' (155 9n)) 2 (1) A v A (yn)

Now if, for a suitable i = 1,---,n, h™(y1) = 0 then a'(y;) = 0 and (4) is proved.

Thus we can suppose that, for every ¢ = 1,---,n, there exists z; € h~1(y;). Since

W(s(z1, -+ zn)) = 8'(A(31), -+, h(2n)) = 8' (91,7, Ya),
we have also that 2~1(s'(y1,-+,ys)) # 0. Now by the hypothesis it is
d'(s(z1,++,2n)) 2 d'(z1) A+ Ad'(zn)
and therefore
k(a/(s(z1,+++,2n))) 2 k(@'(21)) A -+ A K(a'(n)).
Then
B(y) A A (yn) = [\/{k(a'(zl)): o € h‘l(yl)}] A
AV (k@ @a): 2n € b7 wa)}]
=V {k(@ @) A+ AR(@(2n)): @1 € K7 (y1)y -+, 70 € A7 (¥n)}
<V A{k(@ (s(z1,++,2a))): 1 €7 (w1), -, 20 € A7 (n)}
<V A{k@(s(2)): 2 € 7 (s (ase-+,yn))} = (s (W1, 4m))-

Finally in order to prove that b' < b we observe that if y is an element of B such that
h™Y(y) = 0 then '(y) = 0 < b(y). If A~ (y) # 0 then

b(y) = \/ {Ha'(2): = € b7 (»)}
< V {k(a(z)): z€ A7 (y)}
<V {bh(z)): = € b7 (@)} = by)
To conclude this section, let us observe that the given definition of £-congruence enable

us to define the concepts of reduced product and ultraproduct of a family ((Ai, ai, Li))ier
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of L- algebras. Indeed if F' is a filter on I and 6 and v are the congruence generated by F

in [] A; and [] L; respectively, and (z;)ier and (y;)icr are elements of [] 4;, then
(zi)ier =¢ (yi)ier implies {i€I: z; =y} € F

and therefore {: € F': a;(z;) = ai(y;)} € F. Thus, it follows that
(ai(z:))ier =y (@i(yi))ier, that is a [(z:)icr] = a[(yi)ier)- This proves that (6,%) is an
L-congruence of ([] Ai,[[ai, [] Li). We call reduced product (or ultraproduct if F is an

ultrafilter) the relative quotient.

5. L-congruences generated by equation.

The following theorem shows that the intersection of a family ((6;,%;))ier of L-

congruences is an L-congruence.

Theorem 5.1. The intersection (8,v%) = A;c;(6:i,%:) = (Ajer 6, Niep i) of a family

((6i,%i))ier of L- congruences of (4, a, L) is an L-congruence of (4, a, L).

Proof. It suffices to observe that, for every z,y € A, from z =g y it follows that z =4, y
and therefore a(z) =, a(y) for every i € I. Then a(z) =y a(y) and this proves that (8, 1)

is an L-congruence.

From Thm. 5.1 it follows that the class of all L-congruences of (A4, a, L) forms a
closure system with (A x A,L x L) as greatest element. Furthermore if « 2 A x A and

B 2 L x L are binary relations on A and L respectively, then
(e, 8) =N {(8,%) : (8,%) is an L — congruence of (4,a,L)}

is an L-congruence, the £-congruence generated bu (a, ). Since we can represent a and 3
as sets of equations of type {z = y/(z,y) € a} and {u = v/(u,v) € B}, then we also claim

that (a, ) is the L-congruence generated by the systems of equations o and §.
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Theorem 5.2. If & and B denote the congruences of A and L generated by o and 8

respectively, then; in general, it is (a, B) # (a, B).

Proof. Let A = B be the free semigroup with generator set B, L = N, where N is the
real numbers set, and I: B — L the lenght function. Then (4,1, L) is an L-algebra. Let
us assume & = {(z,z2): ¢ € Bt} and 8 = {(u,u): u € L}. Then B = B and @ is the well
known congruence for which B* /@ is the free band with generator set B. If (8,%) = (a, 8)
is the L-congruence generated by (d, B), then, in particular, from yz =4 yz? it follows
that I(yz) = l(yz?) and therefore that I(y) + I(z) =y I(y) + 2(I(z)). This proves that
.T+y =y ¢+ 2y for every z,y € N. Thus, if m and n are two elements of N and m > n
then | .

m=02m-n)+n—-m=y (2m—n)+2(n —m) =y n.

This proves that ) = N x N and therefore that 8 = 8 # ¢.

6. Subcategories of C(7).

There are several ways for obtaining subcategories of C(7). One can put conditions on
the algebras obtaining for example, the subcategory of the L—semigroﬁps, L-groups, etc.
In this manner we obtain the natural framework for a general t‘reatment of the questions
examined in literature.

The closure properties of these classes of algebras assure analogous closure properties
for these subcategories. So, for example, the category of L-semigroups is closed with
respect to intersections of £- subsemigroups of a given £-semigroup, direct products and
quotients.

Moreover one can put conditions on the blaLttices, tne morphisms, etc.
~ In this section we examine the subcategory C(L, ) of C(7), where L is a fixed com-
plete lattice, whose objects are L- algebra.s (A, a>, L) and whose morphisms are the £-

homomorphisms (h, k) such that k is the identity. In this case we call (A, k) L-homomor-



146 A. Di Nola and G. Gerla

phism and we denote it by h. We also denote by (A, a) the objects of C(L, ).

The hypothesis that k is the identity is assumed in order to obtain the closure of
C(L, ) with respect the quotients. Indeed, if k is not the identity, then L, /v # L, and
this proves that the quotient (A/6s,a’', Lo/tk) is not an object of C(L, 7). For the same
reason we consider in C(L, T) only £- congruences (6,%) such that 9 is the equality. In this
case we denote (6, ) simply by 8 and (6, ) is named L-congruence. Now, let us prove for

C(L, 7) an homomorphism theorem.

Theorem 6.1. Let h: (4,a) — (B,b) be an L-homomorphism, then the following propo-
sitions hold:
(i) the relation 8, = {(z,y) € A%: h(z) = h(y)} is a L- congruence of (4, a) and every
L-congruence is of a such kind;
(ii) if h is an L-epimorphism then (B, b) is isomorphic to the quotient of (4, a) via j;
(iil) if L is infinitely distributive, then the image of an L- subalgebra of (4,a) is an L-
subalgebra of (B,b). -

Proof. 1t suffices to apply the theorem 4.2, 4.3 and 4.4.

Note that the intersection of a family of L-congruences of (4, a) is an L-congruence,
but that the class of L-congruences of (4, a) is not a closure system. Indeed if « is a subset
of A? it is possible that {6: 6 is an L-congurence and @ < 8} = . The following theorem

gives a simple example.

Theorem 6.2. Let B* the free semigroup with generator set B and I: Bt — N the
lenght function. Then a set @« C Bt x Bt of equations generates an L-congruence @ of
(B*,1,N) if and only if I(z) = (y) for every (z,y) € a. In this case @ coincides with the

congruence of B generated by a.

Proof. Let a be the L-congruence generated by a, then (z,y) € « implies z =z y and

therefore I(z) = I(y). Conversely, let us assume that I(z) = I(y) for every (z,y) € @, and
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let @ be the congruence of BT generated by a. Now if ¢ =z y then there exists a chain "
Zo,- - Tp of elements of A with 2y = z, z,, = y and such that forevery: =0,---,n—1 z;4;
is connected to z; by an elementary a-transition [10], that is there exist z,y,yit1,¥; € 4

such that z;4; = zyi+1y; T; = zyiy and (Yit1,yi =€ a or (¥i,yit+1) € o. It follows that

(zit1) = U2) + Ayi+1) + U(y)

=U=z) + U(y:) + Wy) = (=),
and therefore I(z) = I(y).

From Thm. 6.2 it follows, for example, that there is no L-congruence contain-
ing @« = {(z,2%): = € BT} and that there exists the L-congruence generated by a =
{(zy,yz): z,yz € B*}. This L- congruence coincides with the congruence of B+ gener-
ated by @ and the quotient of (B*,l, N) (B*/a&,l', N) is the free commutative semigroup

togheter with the lenght function.

7. The n-algebras.

Now we examine the category C(Ln,7) where n is a natural number and L, =
{1,---,n} is the chain with n elements. We will show that in this case there is a sim-
ple interpretation of the concepts given in this paper.

We call n-chain every chain A; D --- D A, of algebras of type 7, where 4; 2 A4
means A;;; substructure of A;. An n-morphism h from 4; D --- D A, to an n-chain
B; D --- 2 B, is a homomorphsim from A; to B; such that, for every ¢ € L, and z € 4,,
z € A; if and only if h(z) € B;. An n-congruence of A; D --- 2 A, is a congruence
8 of A; such that every A; is union of classes modulo #. The n-quotient of an n-chain

A; D --- D A, by an n- congruence is the n-chain 4,/6 D --- D A’,,/G.

Theorem 7.1. We can identify -the L,-algebras, the L,- homomorphisms, the L,-

congruences and the quotients with the n-chains, the n-homorphisms, the n-congruences
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and the n-quotients respectively.

Proof. To every L,-algebra (A,a,L,) we can associate the n-chain C! 2 .-- D CI.
ViceQersa if4, 2 ---D A, is an n-chain let us define a: A, — L, by setting, for every
z € Ay, a(z) =max{i € Ln: z € A;}. Then Ci = A;. Indeed z € C: implies that a(z) > 1,
and therefore that A,;y € Ai. Since x € Ay, it is also z € A;. Conversely, if z € 4;
then, by definition a(z) > i, i.e., z € CE. This proves that all cuts of a are subalgebras of
A;, and therefore that (A;,a,Ly) is an L,-algebra. Then to every n-chain 4; D --- D 4,

corresponds an Ly-algebra whose chain of cuts coincides with A; D --- D A,.

Now let h be an L,-homomorphism from (4, a,L,) to V(B, b, L,). Then, since a = bh,
z € C! & a(z) >iw b(h(z)) >i % h(z) € C}.

This proves that h is an n-homomorphism from C} D --- D CP to C{’ 2 .- 2 Ch
Conversely let h be such n-homomorphism, then, for every i € L,, . € C} if and only if
h(z) € Ci. It follows that a(z) > ¢ if and only if b(h(z)) > i. By setting i = a(z) we have
b(h(z)) > a(z), by setting i = b(h(z)), we have a(z) > b(h(z)). Then (b(h(z)) = a(z) for
every z € A and this proves that k is a Lp-homomorphism. |

Let 6 be an Ly-congruence of (4, a, L,) and let us suppose that = =¢ y and z € C%.
- Then from a(z) > ¢ and a(z) = a(y) it follows that a(y) > i, i.e. y € C:. This proves that
6 is an n-congruence of the n-chain C! D ..- D C*. Conversely let § be an n-congruence
of the n-chain. Then form z =4 y and « € C} it follows that y € Ci, i.e. from z =5 y
and a(z) > ¢ it follows that a(y) > i, for every ¢ € L,. By setting : = a(z) we obtain
that z =4 y implies a(y) > a(z). Now from = = y it follows also y =4 = and, by utilizing
the above i'esult, a(z) > a(y). In conclusion a(z) = a(y) and this proves that 6 is an

L,-congruence. Finally, let us observe that if  is an L,-congruence of (4, a,L,) and
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(4',d', Ly) the relative quotient, then

Ci = {lzls : @' ([z]o) = 3}

= {[z]s: d'(z) > i} =Ci/6.

From Thm. 7.1 we get, in particular, that if n = 1 then we can identify the L;-algebras,
L;- homomorphisms, L;-congruences and L;-quotients with the classical concepts with
the same name. This shows that all concepts given in this paper generalize the classical
ones.

Theorem 7.1 enable us also to give simple characterizations of the L,-congruences.
For example if 7 is the type of groups and (G, @, L,,) a L,-group, then the L,-congruences
are just the congruences 6 determined by a normal subgroup H such that H C C7. Indeed
let us suppose H C C?. Then from z =4 y and z € C! it follows that z7'y € H C
C? C C! and therefore that y = zz~'y € Ci. This proves that 6 is an n-congruence
of C! D ... D C? and therefore an L,-congruence of (G,a,L,). Conversely if § is an
L,-congruence determined by the normal subgroup H, then from z € H it follows that

z =4 1. Since 1 € CJ we have also that z € C7. In conclusion H C C}.
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