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SINGULAR BILATERAL BOUNDARY VALUE PROBLEMS FOR
DISCRETE GENERALIZED LYAPUNOV MATRIX EQUATIONS

Lucas JODAR

ABSTRACT

Ezistence and uniqueness conditions for solving singular bilateral initial and
two-point boundary value problemes for discrete generalized Lyapunov matriz

equations and ezplicit expressions of solutions are given.

1. Introduction.

Implicit vectorial systems of the form F(zk41,zk, k) = 0 arise in a variety of economic,
systems theory and signal processing problems [2], [3],[7], [8]. The theory of the linear case
Az + Bizy = fi is reasonably complete on a finite interval I'y = (0,1, ..., N|, where N
is a positive integer. The nonlinear case has been studied in [4] and on the infinite time
interval ' = [0, 1,...]. Throughout, the set of m x n matrices over a field X will be denoted
by Km,n. Moreover, a g-inverse of a K, , will be denoted by A~ and understood as a

matrix for which AA~A = A (see [2] for defajls).

In this paper we are interested in the study of singular bilateral boundary value

problems for the discrete generalized Lyapunov matrix equation
By Xy 41Ar — X =Ck, k€Tly (1.1)

where Ay € IC,,.,,,,’ By €Kmpny, Ck €Kman, Xk € Km,n. The discrete equation (1.1)

is interesting from a practical point of view because it results from a discretization of the
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corresponding continuous equation. It has also a theoretical interest as it has been proved
in [12], where the asymptotic stability of a discrete periodic linear system is related to
the periodic, positive definite, symmetrical solution set of a periodic discrete Lyapunov

equation. In section 2 the following problems will be studied

By Xp 1Ay — X3 = Cy
EX,F=G 2.1)
kelyn

B Xk414k — Xi = Ck
PX,Q=G

RX;S =L

J,k€TlN

(3.1)

By X1 Ar — Xy = Cy,
EX,F-GX;H=1L (4.1)

where E,P € Kipm, F,Q,S€K,,and G,L €Ky, n.

Initial conditions such as the one of (2.1) and boundary value conditions such us the
ones of (3.1) and (4.1) can be regarded as singular bilateral conditions because they can not
be reduced to unilateral ones and they are more general that the ones considered in [2], [3].
These conditions are related to the resolution problem of bilateral matrix equations of the
types AXB = C and AXB—~CXD = E which arise in the eigenstructure method for pole
assignment by output feedback [6], the theory of estimating covariance components in a
covariance components model, [14], etc.

If A belongs to Ky, n We denote by AT the conjugate transposed matrix of A and if
m = n, the set of eigenvalues of A will be denoted by o(A). The expression A > 0 means

that the matrix A is positive definite.
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2. Singular bilateral initial and boundary value problems.
We begin this section with a result that establishes a necessary and sufficient condition
for the consistence of the problem (2.1) so as an explicit expression for solutions. For

convenience we consider the associated linear discrete systems

X1 = Ae Xy (1.2)

Y41 = Bf Y2 (2.2)

and let ® and § the transition state matrix of (1.2) and (2.2) respectively and let ® ; and
Q4 ; their action on the pair (k,j) T'y X T'y. We recall that for instance
Qk,j = Ag_1Af_2-- 'Aj, if k> j and @j’j =1.

Theorem 1. Let us consider the matrices

N-1
A=EQ},; B=3%y,F; C=-E)» Q1,C; &, F+G (3.2)

j=o

then the problem (2.1) is consistent if and only if for some matrices A~ and B~ it is

satisfied that

AATC=C ad CBB  =C (4.2)
In this case, the general solution of (2.1) is given by the expression
N-1
X; =%, Xn®n,;— Y O Cy®,5, jETN (5.2)
r=1

where

Xy =A"CB~ +U+ AAUBB~ (6.2)

with arbitrary U € Km,n-
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Proof. By backward sustitution it is easy to show that the sequence defined by (5,2) with
XN given by (6.2) satisfies the equation (1.1) in T'y. The bilateral initial condition in (2.1)
is equivalent to the existence of a matrix X the satisfies the equation
N-1
EQF,XONo— »_ 97,Cp8p0)F =G
=1

From (3.2) it is equivalent to the equation AX B = C. Now, the result is a consequence of

lemma 1 of [1].

Corollary 1. Let us consider the problem (2.1) with K is the field of real numbers and
m = n. Suppose thta G > 0, —=Cx > 0, E = FT and Ay = B} for every k in T'y. If the
hypothesis (4.2) is satisfied, then for any positive defined matrix U € R,, , the sequence

(5.2) defines a positive definite solution of the corresponding problem (2.1).

Proof. From the hypothesis Ay = B,zw for k € T'y, it follows that ®n r = Qn. From the

expressions (3.2),(5.2) and theorem 1 the result is concluded.

The following result solves the problem (3.1).

Theorem 2. Let us consider the matrices

N-1
A=PQY,; B=%y,Q; C=G-P)Y 9T Cp.Q
p=o0
N-1
D=RQY;; E=9%n;S; F=L-K)Y QI.C,%,;J (7.2)
p=j

Then the problem (3.1) is consistent if and only if
ATA(ATA+ DTD)"DTFET(BBT + EET)" BB~

= DTD(ATA+ DTD)~ATCcBT(BBT + EET)"EET (8.2)
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In this case the general solution (3.1) is given by (5.2) where Xy is given by the expression
Xy =(ATA+DTD)~(ATCBT +Y + Z + DTFET)YBBT + EET)™ +U

—(ATA+ DTD)~(ATA+ DTD)U(BBT + EET)(BBT + EET) 9.2)

where U is an arbitrary matrix in Kpm n. The matrices Y and Z are arbitrary solutions of
Y(BBT + EET)BBT = ATCBT(BB” + EET)"EET
2(BBT + EET)"EET = DTFET(BBT + EET)"BBT (10.2)

Proof. Fron the lemma 1 the consistency of the problem (3.1) is equivalent to the existence

of a solution X = X of the algebraic system

N-1
P(Qg,oX‘I’N,o - Z QZ:oCP'I’p,O)Q =G
p=1

N-1
ROQY,;X®n;— Y OFiCpd,;)S=1L

P=j
Taking into account the expressions contained in (7.2) it is equivalent to the consistency

of the system
{ AXB=C
DXE=F

Now the result is a consequence of [10].

The following results is concerned with the resolution of the two-point boundary value
problem (4.1) . Before of its statement, we note that given square matrices A, B,C and D
in Ky n , there are at most n values of A such tht the determinants |C — AA| and |B + AD|
are annihilated simultaneously, bein A a complex number. This observation is related with

the hypothesis of the following theorem.
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Theorem 3. Let us consider the matrices A = EQ} ,; B =9®no.F; C=-GQJ ;;

N-1 N-1
D=¢%y;H; R=E) 9],Co8 F—G) O Cpdy;H+L.
P, r=j

(i) The problem (4.1) is solvable if and only if the equation AX B+CXD = R is consistent.
In this case the general solution of (4.1) is given by (5.2) being X, ~ a solution of
AXB+CXD=R.

(ii) The problem (4.1) is solvable if and only if for any complex A such that

|C—-XA|#0 and |B+AD|#0 (11.2)
the block matrices
((C’ —2A4)714 0 ) . ((C —A)"1A (C—-XA)'R(B+AD)! )
0 -D(B+AD)™ )~ 0 —D(B + AD)™}

are similar.

(iii) If for some A such that the condition (11.2) is satisfied, the spectrums o((C' —AA)~' 4)
and o(—D(B + AD)™!) have empty intersection, then the problem (4.1) has only one
solution.

(iv) Under the hypothesis of (iii) and if p(z) = i prz* is the characteristic polynomial of
(C —XA)71A , then the only solution of (4.1) is= ;iven by (5.2) where Xy is given by the

expression

Xy = (3 pe((C — AD) AP

k=o

n k
O3 pe((C - AD) A Y(C ~ AA) T R(B + AD)"}(=D(B + AD) k="

k=1r=1

Proof. (i) From the proof of the lemma 1 it is clear that the sequence given by (5.2) satisfies
the equation (1.1) . This sequence defines a solution of the boundary value problem (4.1)
if and only if the following condition is verified

N-1
E(Q%,OXNQNYO - Z QZ:oCP(I)P,o)F

p=o



Singular Bilateral Boundary Value Problems ... 51

N-1
—GOF kXNON,; — Y 0 iCp®p)H =L

p=j
That is, if X = X is a solution of the equation AXB + CXD = R.
(ii) From the hypothesis (11.2) and [13], the equation AXB + CXD = R is consistent if

and only if the equation
(C-XA)'AX + XD(B+ D)™ = (C - XA)'R(B + A\D)™! (12.2)

is consistent. Moreover, from [9] the result is concluded.
(iii) From the hypothesis and the Rosenblun theorem [8] , the equation (12.2) has only one
solution. From (i) and (ii) the result is proved.

(iv) The result is a consequence of (iii) and [5] .
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