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EVALUATIONS OF FUZZY SETS BASED
ON ORDERINGS AND MEASURES

ALDO G.S. VENTRE, SIEGFRIED WEBER

ABSTRACT

Total orderings on the range of fuzzy sets can serve as choice criteria for
fuzzy sets, a wide class of orderings based on functions is proposed (section 2).
Decomposable measures are taken to measure the items on which the fuzzy sets
are given (section 8). Combining the two levels of measurement by means of the
integral introduced by the second author we obtain evaluations of fuzzy sets as
functionals with eppropriate properties, the concepts of energy and fuzziness are

included (section 4).

1. Introduction.

It has been stressed by several authors the role of fuzzy set theory in the analysis
of impreciseness that occurs in the descriptions of concepts, systems, see e.g. [7,8] and
references therein. The search for a unique context fitting out either fuzziness, i.e. the
impreciseness due to the occurrene of an event, that can arise simultaneously is one of the

issues of great interest, see e.g. [9,10,11,12].

If a fuzzy set is considered as a "global description” of a fixed universal set, it is
natural to try to evaluate such a description and, in particular, to answer the question

how precise and significant is the description, see e.g. [7,14]. Special evaluations of fuzzy
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sets were studied by De Luca and Termini [1,2] by means of their concepts of energy and
entropy of a fuzzy set in order to calculate the amounts of membership and fuzziness of a

fuzzy set, respectively.

More general, an evaluation of fuzzy sets can be given in two steps:
First, certain characteristic of a fuzzy set can be described by an order relation for

the values of the fuzzy set.

Second, this characteristic can be measured by an appropriate integral based on some

measure.

Knopfmacher [5] applied this principle to define a measure of fuzziness based on a
probability. Later on Di Nola and Ventre [3,4] and Weber [11,12] used this principle

dealing with some generalizations at the first and at the second step.

The aim of this paper is to deal with a unified presentation of these ideas.

2. Orderings as choice criteria

Let £'(2) denote the set of all fuzzy subsets ¢ : @ — [0,1] of a universe 2.

Let us assume a partial ordering <o on the range [0,1] of the fuzzy sets. A partial
ordering on L£'(2) will be induced by

p<o¥ iff @w)<opw) forevery weq, (21)

where we use the same symbol for the ordering on [0, 1] and on £L'(Q2).
If ([0, 1], <o) is a lattice, being A¢ and Vo meet and join respectively, then (L'(2), <o)
is a lattice too. Particularly, if <q is a total ordering on [0,1] , then ([0, 1], <o) is a lattice.
The natural ordering < on [0,1] is total with A = min, V = maz and induces the
lattice structure on L£'(f) originally proposed by Zadeh. Negoita [7] interpreted ¢ A 1 as

synthesis of ¢ and 9 and < as a choice criterion.



Evaluations of Fuzzy Sets ... 37

We will use these interpretations for any meet A¢ and ordering <o on £'(Q2) based on
a total ordering <y on [0,1]. In order to obtain not only a qualitative criteron <o but a

quantitative one, we generalize the construction from [3,4] in the following.

Definition 1. Given any function K : [0,1] — [0, 1], we set

K(z) < K(y)
z<gy iff or (2.2)
K(z)'_‘K(y)a z<y

It can be seen that every relation <y from (2.2) is a total ordering on [0,1] and that
z <gy implies K(z) < K(y), (2.3)

i.e. K is an order morphism: ([0,1],<x) — ([0,1],<) .
Example 1. Every increasing function E : [0,1] — [0,1] with E(0) = 0 and E(1) =1

yields <g=<. We will call E an energy function, see section 4.

Note that also other functions K lead to the natural ordering, e.g. a ”three- decision-

function” as
0 if z<e

K(z):=405 if z€e,1—€ €€(0,0.5]. (2.4)
1 if z>1-¢

Example 2. Let F be a fuzziness function in the sense of [12], i.e. a function F :
[0,1] — [0,1], increasing in [0,Umqz], decreasing in [Umasz,1] such that F(0) = 0 and
F(n(z)) = F(z), where n : [0,1] — [0,1] is decreasing and continuous with n(0) = 1 and
n(1) = 0 and umqz is the unique fixpoint of (the negation) n. The derived (total) ordering

<r is not the natural one, particularly,
0<rl<pz<pUume foral z#0 (2'5)

Let us denote by <s the ”sharpening” (partial) ordering in the sense of [1] with the
modification of [4,12],

z < if z,y<u
c<sy iffq =Y B HY=Tmas (2.6)
z>y if 2,y Umas
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Then we see that, for every fuzziness function,
z<sy implies z<fpy (27
and therefore by (2.3) that F is an order morphism:
([0,1],£5) = ([0,1], <)

Using (2.1), ¢ <s % will be interpreted as "y is sharper than ¢” and ¢ <r 9 as "y is less
fuzzy than ¢” with respect to F. The latter notion is a reasonable extension of the former

one, but it depends on F which shall reflect a concrete (quantified) meaning of ”fuzziness”.

3. Decomposable measures

We will evaluate some characteristic of a fuzzy subset ¢ of 2 by an ordering <y from
section 2, taking into consideration the "importance of the items” w € 2, for which the
values p(w) are given. Following [12] this "importance” will be measured by decompsoable
measures as introduced in [11] . In the present section we will recall briefly from [11] what

we need in section 4.

Definition 2. A function m : A — [0,M], M € (0,00], on a o-algebra A over Q with
the boundary conditions m(@) = 0 and m(§2) = M will be called a_o— L — decomposable
measure iff
m(AU B) = m(A) L m(B), (3.1)
A, T A implies m(An) T m(A), (3.2)
where L is a t-conorm on [0, M].
Recall that a binary operation L on [0,M] is a t-conorm iff 1 is non-decreasing in
each argument, commutative, associative and has 0 as unit.

We restrict ourselves to the Archimedean t-conorms L on [0, M], i.e. to those binary

operations L which are characterized by the representation, [6],

aLb=g""(g(a)+g(b)) : (3-3)
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by means of an increasing, continuous function g : [0, M] — [0, co] with boundary condition

¢(0) = 0 and pseudo- inverse g(~1) given by

9 (z) == g7 (min(z, g(M))). (3.4)

The function g in (3.3) is called (additive) generator of L and is unique up to a constant
positive factor.
Furthermore, within the class of Archimedean t-conorms, the strict ones are charac-

terized by the boundary condition.
9(M) = co. (3.5)

From (3.1), (3,2) and (3.3) there follows the classification into the three following cases,
[11].
(S) : L is strict. Then g om is an infinite o -additive measure on A.
(NSA) : L is non- strict and g o m is a finite o -additive measure on A .

(NSP) : 1 is non- strict but g o m is pseudo- o -additive in the sense that

(gom)(U4;) = g(M) < Z(g om)(4;) (3.6)

is possible.
More details can be found in [11,12].

4. Evaluations of global properties

Now we fix a 0— L-decomposable measure m on (Q2, A) with respect to an Archime-
dean t-conorm L on [0, M]. Let £(Q2) denote the subset of L£'(2) of all measurable fuzzy
subsets of 2, briefly denoted by L.

The last concept we need is that of an integral as a functional J : £ — [0, M] . Let
us recall from [11,12] briefly the following.
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Definition 3 A measure of fuzzy sets is defined by the integral
97 ([ pd(gom))  for (S) or (NSA)
Q

T (p) :=£cp Llm:= (4.1)

g(“‘)(i‘{. pd(gom)) for (NSP)
i=1 i

where in the (NSP) case we need that ) is m-achievable in the sense that there exists

Q = UR,Q; with m(Q;) < M. The classification from section 3 ensures that we can form

the Lebesgﬁe—integra.]s [ and [. The situation (3.6) can not occur in the subsets ;. The

definition is independezt of t‘lzl‘e choices of the generator g and the sequence (£2;) .More

details can be found in [11], where M = 1, but the properties can be modified for the

general setting M € (0, 0).
Theorem. Let K : [0,1] — [0,1] be some measurable function and < the derived total
ordering on [0,1] from (2.2). Let m : 4 — [0, M] be some o— L -decomposable measure
with respect to an Archimedean t- conorm L on [0,M] and J : £ — [0, M] the derived
integral from (4.1). Then

K(g) == T(K o) (42)

gives a functional K : £ — [0, M] with the following properties:

i) ¢ <k ¢ impliesKyp < K¢, (4.3)
il) ¢n T(<x) ¥ implies Ky, T(<) Ko (4.4)
iii) K (p Ak ) L K(p Vi $) = K L Ky, (4.5)

Proof. (i) and (ii): follow from (2.1), (2.3) and [11] theorem 4.2 (ii) and (v) respectively.
(iii): For cases (S) and (NSA) we obtain (4.5) directly:

K(p Ak %) LK(p Vk %) =g (J K(p Ak %) + [ K(p VK $))

=¢( [ Ke+ [ K¢+ [ Ky+ [ Ko
{e<k ¥} {e>K ¥} <k ¥} {¢>k ¥}
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=g (J Kp+ [Ky)=Kp LKy,

where we used the abbreviation

[Ky for ‘{(K o p)d(g o m).

For the case (NSP) we obtain by the same splitting as above:
o Klprcw)+ 3 [ Klpviw) =3 [ Ke+3 [ K¢. (4.6)
i i i i : i i i i
In order to complete the proof of (iii) we have to distinguish two cases:
a) If Z [ K(¢ Vi ) < g(M) then, by (2.3), the other three terms in (4.6) are also less
Sk
than g(M) . Applying the pseudo-inverse g{~1) to (4.6) we obtain (4.5).
b) If E ] K(p VK ¥) > g(M) then the left side in (4.5) attains the maximum value M.
~Q;

Applying ¢(=1 to (4.6) we obtain therefore that

M =g} [ Ke+) | Ky). (47

If both terms at the right side of (4.7) are less than g(M) then both right sides of (4.5)
and of (4.7) coincide. If one term (or both) at the right side of\(4.7) is greater than or
equal to g(M) then this term can be replaced by g(M) without changing (4.7). This
completes the proof.

Let us illustrate the theorem looking at the examples from section 2.

Example 1: Applying the theorem to a measurable energy function K = E, prop-
erties (i), (ii) and (iii) hold for K =: T with respect to the natural lattice (£, <,V,A).
Furthermore,

iv)p =0ae. iff T =0, (4.8)

v) ¢ =1 a.e. implies Ty = M. (4.9)

We call 7 an energy measure derived from E, compare with [2].
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The energy T derived from E = id is the measure of fuzzy sets from [12] , which in
the probability case m = P was already proposed by Zadeh [13].

Example 2: Applying the theorem to a measurable fuzziness function K = F, properties

(1), (ii) and (iii) hold for K =: F with respect to the lattice (L, <p,AF,VF). F\xrthermoré,

iv) p =14 ae. iff Fp =0, (4.10)

V) ¢ = Umqz a.e. implies Fp = M. (4.11)

In accordance with [12] we call F a fuzziness measure derived from F.

We note that the extension property (2.7) gives as a corollary the following two prop-

erties corresponding to <,:

i)* ¢ <s ¢ implies Fp < Fp, (412)

ii)* Pn T(Ss) '¢7 implies .7'-(,0" T(S) .7'-90. (4.13)

But note that (£,<g) is not a lattice, particularly a meet As does not exist in general.

Therefore a property analogous to (iii) has no sense in (£, <s).

In the proof of the theorem we needed that <y is a total ordering.

5. Conclusion.

The functional K : £ — [0, M] from the theorem is an order morphism (i), a
L -valuation in the sense of (iii) and continuous from above (ii) with respect to the lattice
structure in £ derived from the total ordering <y on [0, 1].. This ordering shall describe
some property/criterion for the values of fuzzy sets. The functional X measures this

property for fuzzy sets.and will be called evaluation of fuzzy sets.
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