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CONVEX TRANSFORMATIONS WITH BANACH LATTICE RANGE.

RoMAN GER

ABSTRACT

A closed epigraph theorem for Jensen-convezr mappings with values in Ba-
nach lattices with a strong unit is established. This allows one to reduce the
ezamination of continuity of vector valued transformations to the case of convez
real functionals. In particular, it is shown that a weakly continous Jensen-convez
mapping is continuous. A number of corollaries follow; among them -a character-
ization of continuous vector-valued convez transformations is given that answers

a question raised by Ih-Ching Hsu.

It is known that a weakly continuous additive operator is bounded. This fact results
immediately from the classical closed graph theorem of Banach. What about convex
transformations? In many instances regularity properties of additive mappings are shared

by convex functionals (see e.g. M. Kuczma [6] ).

Some endeavours in this direction were a.lsb made with regard to convex transforma-
tions with values in vector spaces (see Ih-Ching Hsu and Robert G. Kuller [5] and Th-Ching
Hsu [4] ). In the latter paper the author deals with weak and strong convexity as well
as with some integral representation theorems. However, he confines his attention to the
usual convexity although midpoint convexity (convexity in the sense of Jensen) is men-

tioned. Motivated by some typical argumentation frequently used in the theory of vector
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measures, for instance, we have tried to reduce the examination of vector-valued convex

transformations to that of convex functionals.

Let us fix some notation and terminology. A real linear space is called a vector lattice
(or linear lattice, or Riesz space) provided it is equiped with a lattice structure in which
vector translations and scalar multiplications by positive reals are isotone in the sense tha
they preserve the partial order (see e.g. Birkhoff [2] ). A real Banach space (Y, - ||) &

termed a Banach lattice whenever Y is a vector lattice with a partial order < such that
(1) lu| % |v| implies [jul| < |vfl, u,v€Y,
where |u| := sup{u,—u}, ueY.

If (Y, || - ||, ®) is a Banach lattice then a positive element e € Y is called a strong unit
if and only if for every u € Y there exists an n € N such that u < ne. The existence of a
strong unit in a given Banach lattice (Y, || - ||, %) is equivalent to the order-boundedness of
the unit ball in Y. In particular, that is the case where metric boundedness is equivalent

to order-boundedness (see Birkhoff [2]).

A vector lattice is called boundedly complete iff each nonempty set A that has an
upper bound has a least upper bound, sup A. (This forces a nonempty set A having a

lower bound to possess a greatest lower bound, inf A4 ).

Finally, let us recall that a topological space X is called a Baire space provided that
each nonempty open subset of X is of the second Baire category (i.e. cannot be represented

as a countable union of nowhere dense sets).

Our first result yields a ”convex analogue” of the celebrated closed graph theorem of

Banach.

Theorem 1. (closed epigraph theorem). Let X be a real linear topological Baire

space, (Y,|| - ||, %) -a Banach lattice with a strong unit, and D- a nonempty open and
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convex subset of X. If a map f : D — Y satisfies inequality

@) f (z-zlry) < f(w);f(y), s,yeD,
and if the set
(3) {(z,y) € D xY : f(z) 2 y}

is closed in D x Y, then f is continuous.

In what follows, a map f fulfilling inequality (2) will be called Jensen- convex whereas

set (3) will be termed the epigraph of f and denoted by epi f.
Proof of Theorem 1. Inequality (2) and a straightforward induction imply the relationship

21 1 &
f( 5,;:!.') 2 2_an($i)

i=1 =1
valid for any choice of points z; € D, : € {1,...,n}, and any n € N . Setting here

Ty =..=zr =z and Zg41 = ... = Tgn =y We get inequality

(4) f (;;z + (1 - 2%) y) < 2i,,f.(z) + (1 - -2’—°,;) f)

satisfied for any z,y € D, k€ {1,...,2"},andn € N.
Fix arbitrarily a point z, € D and put D := D —z,, g¢(z) := f(z + z,) — (o),
z € D . Then the set D is open and convex, 0 € D, and g(0) = 0. Moreover, on account

of (4) applied for k =1,

(5) (—l-a:+ 1-2)y) < 2e@) + (1- 1) o) €D, neN
9\ om e o )9() =yED, neN.

and, in particular,

®) p (}z) < 50(), z€D, nel.
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Finally,
epi g = epi f — (2o, f(20));
. which proves that the epigraph of g is closed in D x Y because, by assumption, epi f is
closed in D x Y. Let e be a strong unit in Y and let

L:={zeD:g(z)=e}.

Observe that D c |J (2°L). Indeed, fix an z € D ; then g(z) < 2"e for some n, € N
neN
and, by (6),

1 1
g (Ex) 2 5, 9(z) Se

1 -
ie. o T € L whence z € 2" L C |J (2"L). Therefore, since D , as a nonempty and
° nEN

open subset of a Baire space X, is of the second Baire category, one has
int cl(2"L) # 0

for some n € N. Consequently,

) U:=intclL #0

Observe that L is closed in D . To see this, fix a point a € D\L . Then the pair (a,€)
belongs to the open set (D x Y')\epi g. Hence, there exist neighbourhoods U, C D and

Ve C Y of points a and e , respectively, such that
U, x Vo C(DxY)\epig

In particular, U, x {e} C (D X Y)\epi g which means that for every z € U, we have
¢ € D\L. Thus D\L is open, i.e. L is closed in D, as claimed.
Now, by virtue of (7),

PAUNL=UNDNdL=UND
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Therefore, U N L is a nonempty open set contained in L which means that
Vi=int L#90

Fix a v, € V and choose n € N large (_anough to have u, := il_zuv" in D (which is

possible because D yields a neighbourhood of zero). Plainly, the set
1
V,, = E;(V - v,,)
is a neighbourhood of zero. Let z € V, ; then, for some v € V, one has’

1 1 1
z=-2—n(v—vo)=2—nv+(1—2—n)u,,

whence z € D by convexity of D and, in view of (5),
1 1 1 1
o2) X or(0) + (1 55 ) 9u0) % e+ (1= 55 ) gw) = e < |
Thus

(8) V,cD and glv, 2l

€
) 1 el
U, := —2-"—0(V., N (=V,)) yields a symmetric neighbourhood of zero. For z € U, we have

Fix arbitrarily an € > 0 and take an n, € N such that Erln—: < Obviously,

2"z € V, whence, by (6) and (8),

1 1 1
o(2) =9 (@) = roo(2"0) < el

On the other hand, inequality (5) applied for n = 1 and y = —z yields
1 1 1 1
— —1 - ol B < - - et
0=900) =g (32 + 5(-) = 39() + 5o(~2)

i.e.

—g(z) 2 g(—z) = 2—,1;|c| for zeU,=-U,.
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Consequently,

|

lo(2)] = sup{g(z), ~9(2)} = 5-lel = |sre|, 2 €T,

whence, in view of (1),

llg(=)ll <

II S

2n° I||c:|| <e¢, z€U,

1+ Il |
This proves the continuity of g at zero which, obviously, is equivalent to the continuity of

f at z,, completing the prof.

Remark 1. In the case of scalar convex functions defined on the entire space (D =
X, Y=R, fOr+ (1 —-Ny) <Af(z)+ (1 =N f(y), z,y € X, A € [0,1]) the above result
is implicitly contained in the book of V. Barbu and Th. Precupanu [1] (Chapter II). Here

the vector-valued Jensen-convex functions are the objective on which we focus.

Let (Y,]| - ||, %) be a Banach lattice and let P := {u € Y : 0 < u} be a positive cone
inY . Then P is closed in Y (see Birkhoff [2] ) . Jointly with the Ih-Ching Hsu’s Lemma

given in [4] this leads to the following

Proposition. Let P be a positive cone in a Banach lattice Y. Then u € P if and
only if p(u) < 0 for all positive continuous linear functionalson Y .

(Recall that a functional is called positive provided its restriction to a positive cone
is nonnegative).

Now we are in a position to prove

Theorem 2. Let X be a real linear topological Baire space and let (Y, ||-||, %) be a Banach
lattice with a strong unit. Assume that a set D C X is nonempty open and convex. Then
any Jensen-convex function f : D — Y such that the composition p o f is continuous for
every bounded positive linear functional p on Y is continuous. In particular, every weakly

continuous Jensen-convex function from D into Y is continuous.
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Proof. Fix a point (z,,y,) € (D x Y)\epi f. Then the point z, := y, — f(z,) does not
belong to the positive cone P in Y. Therefore, according to the Proposition, a positive
functional p € Y* has to exist such that p(z,) < 0. Put € := —p(2,). In view of the
continuity of po f and p there exist neighbourhoods U;, C D and V,, of points z, and y,

, respectively, such that

©) (b0 H)@) = (po f)(zo)l < 3¢ for €U
and
(10) Ip(s) ~ Blwo)| < 3¢ for y € V.

The cartesian product W(;, 4.y := Uz, X Vy, is contained in D x Y and yields a neighbour-
hood of the point (,,y,). Fix arbitrarily a point (z,y) € W, 4,)- Then relations (9) and

(10) imply the inequalities

P(f(20)) = F(2)) < 3¢ and ply) ~ plwo) < 3¢

whence

p(y) — p(f(2)) + p(f(20)) — P(yo) < €

or, equivalently,

p(y — f(z)) < p(yo — f(xo)) + € =p(z,) + € = 0.

A repeated appeal to the Proposition proves that y — f(z) ¢ P. Thus
Wiz,,5.) C (D xY)\epi f which shows that the epigraph of f is closed in D xY . In virtue

of Theorem 1 this finishes the proof.

The theorem just proved allows one to reduce the investigations of regularity properties
of convex transformations to the scalar case (convex functionals). This is visualized by the

following series of corollaries.
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Theorem 3. Let X,Y and D have the same meaning as in Theorem 1. If f : D - Y is
Jensen-convex and order-bounded above (fesp. metrically bounded) on a second category

Baire subset of D, then f is continuous.

Proof. Let f(z) =< c (resp. ||f(z)|]| £ M ) for ¢ € T C D, where T is of the second
Baire category. Take any positive functional p € Y*. Then ¢ := po f is a scalar Jensen-
convex function on D and ¢(z) < p(z), z € T, because of the positivity of p (resp.
(@) = IF@)] < Iplllf@)]l < Mlpl, = € T ). Therefore  is contimous (see e.g.

Kuczma [6] ) and hence so is f by virtue of Theorem 2.

Theorem 4. If Y satisfies the assumptions of Theorem 1 and D is a nonempty open and
convex subset of R®, then any weakly measurable Jensen-convex function from D into Y

is continuous.

Proof. Let f: D — Y be a weakly measurable Jensen-convex function and let p € Y* be
positive. Then ¢ := p o g is a measurable Jensen-convex function with values in R. Thus

¢ is continuous (see Kuczma [6], for instance). An appeal to Theorem 2 finishes the proof.

Theorem 5. Let (Y, ||-|| X) be a boundedly complete Banach lattice with a strong unit and
let an open interval (a,b) C R be given. Then a function f : (a,b) — Y is Jensen-convex

and continuous if and only if there exists a function g : (a,b) — Y such that

(11) f(s)+tg(s) 2 f(s+t) forall s€(a,b) andte€(a—s,b—2s)
Proof. Necessity. Since f is Jensen-convex and continuous we have

(12)  fOz+(1=Ny) 2 Af(z)+ (1 - A)f(y) forall A€ [0,1] and z,y € (a,b).

This results from (4), the density of dyadic numbers in (0,1) and the fact that the positive

cone in Y is closed. Essentially the same proof like that presented in Kuczma’s book [6],
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shows that relationship (12) forces the function
I(s,t) := w, s €(a,b), te(a—s,b—s),

to be nondecreasing with respect to the second variabl; (actually, I is nondecreasing in
either variable). Fix an s € (a,b) and take u < 0 < ¢ such that s+« and s+t are in (a, ).
Thén

I(s,u) 2 I(s,t)

which shows that the set {I(s,t): ¢t >0, s+t € (a,b)} is bounded below and since the

lattice Y is boundedly complete, the function
g(s) :=inf{I(s,t): t > 0,5+t € (a,b)}

is well defined on (a,b). Plainly, g(s) < I(s,t) for all s € (a,b) and all ¢ > 0 such that
s+t € (a,b), which gives (11) for positive t.
Likewise, taking an arbitrary s € (a,b) and ¢ < 0 < u such that s + ¢, s+ u € (a,b),

in view of the monotonicity of I, one obtains
I(s,t) 2 I(s,u).
Therefore, function
(13) h(s) := s:télo){I(s,t) : <0, s+t€(a,b)}, s€(ab),
is well defined on (a, b) and, obviously,
h(s) 2 I(s,u) for all s € (a,b) and all positive u € (a — s,b — s).
Consequently,

h(s) = .igf;{I(s,u) :u>0, s+ué€(ab)}=g(s), s€(ab),
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ie.
(14) h(s) X g(s) for s € (a,b).
Now, the inequality
I(s,t) < h(s), s € (a,b), t <0, t €(a—s,b—ys),

resultiﬁg from (13), says that

f(s) +th(s) X f(s+1), s€(a,b), t<0, t€(a—s,b—23),
which jointly with (14) implies that

f(s)+tg(s) 2 f(s+1t), s€(ab), t<0, t€(a—s,b—23s).

Thus (11) is satisfied for all s € (a,b) and t € R such that s + ¢ is in (a,b) (for t = 0
inequality (11) is trivially satisfied).
Sufficiency. Suppose that f satisfies (11) with some function ¢(: (a,b) — Y and fix a

positive functional p € Y*. Put ¢ = po f and ¢ :=pog. Then
(15) o(s) +tp(s) < p(s+t), s€(a,b), t€(a—s,b—3s).

Then ¢ is Jensen-convex and 1 is increasing (see Hardy-Littlewood-Polya [3] on Ih-Ching

Hsu [4]). Fix a point ¢ € (a,b) and put ¢ := ¢ — s in (15). Then

©(s) < p(e) + (s — )y(s), s € (a,b),

i.e. @ is bounded above by a measurable function on (a, b) which proves that ¢ is continuous
(see Kuczma [6] ), for example). Thus po f is continuous which, by virtue of Theorem 2,

in view of the unrestricted choice of p, gives the continuity of f and finishes the proof.
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Remark 2. To prove the sufficiency we did not use the assumption that Y is boundedly
complete. Moreover, one can s:how even more about f in this direction giving the integral
representation of f (ITh-Ching Hsu (4] ) but the proof is long and involved. Our goal here
was to give yet another application of Theorem 2. On the other hand, Theorem 5, as
phrased in the form of a necessary and sufficient conditin, gives an affirmative answer to
a question raised by Ih-Ching Hsu in [4] whether vector-valued convex-functions can be
characterized by (11).
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