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'CONVEXITY WITH GIVEN INFINITE WEIGHT SEQUENCES

ZoLTAN DARGCZY, ZSOLT PALES

ABSTRACT

The aim of the present note is to investigate the funcional inequality
oo (=]
FO Xz <3 (=),
i=1 i=1
where f : D — Ry is an unknown function, D C R™ is a compact convez set and
(An) 18 a fized decreasing sequence with A, > 0 and Ay + Az +--- = 1, further this

inequality holds for all sequences (z,) from D.

1. In his paper [1] C. Alsina investigated the inequality

W (2,3 %)< Y 2 T(ai )
i=1 i=1 =1

where T : [0,1]2 — {0, 1] and (1) holds for any sequences (a;) and (b;) from [0, 1]. His result

is the following
Theorem A. If T satisfies (1) and T(0,0) = T'(0,1) = T(1,0) = 0 then
2) T(z,y) < max(z +y—1,00T(1,1) =z,y€[0,1].

In this paper we consider a generalization of the inequality (1). As a consequence of
our results it turns out that (1) is equivalent to the convexity of T, and thus we obtain a

new proof for the theorem of Alsina.
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2. Let D C R"™ be a compact convex set. Denote by A the set of all those real sequences
o0
‘A= (Ap), for which A\, > A\,4; > 0 and E An =1 are satisfied. If z; € D (i € N) then

n=1

N oo
Z Aiz; +( z /\;) zg € D for some zy € D, hence by the compactness of D

i=1 i=N+1

(=<}
> izi € D.
i=1
Let A(D, X) denote the set of all those functions f : D — R4 (R4 := [0,00)) which satisfy

the inequality

(3) f(z Xizi) < Z,\ f(z.)

=1

for any sequence (z;) from D, where A € A is a fixed sequence. The right hand side of (3)

is either convergent, or else, in the extended set of real numbers, it is +oo.

Lemma 1. Let f : D — R be an a -convex function for some fixed a €]0, 1], i.e. assume
that

(4) . flaz + (1= a)y) < af(z) + (1 - a)f(y)

holds for all z,y € D. Then f is also Jensen-convex, i.e. (4) is satisfied with a = %

Proof. By a repeated use of the inequality (4) we get

FEEY) = fa(@®EY 1+ (1 - a)e) + (1 - aay + (1 - 0) Y <

<af(a$+y +(1—01)$)+(1—a)f(ay+(1_a)z_2_y)s
<(2+(1- a)z)f( ZEYy L oa(1 - )(w);f(y)
whence
() f(w+y)< f(z);—f(y)

for any z,y € D.
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Remarks. (1) The statement of the above lemma is an immediate consequence of a well-
known result of Kuhn [6] stating that if (4) is valid for some fixed a = aq €]0, 1] then it is
valid also for any element of the intersection K N [0,1], where K is the smallest subfield of
R containing ap. However, our proof of Lemma 1 -differing in this form the proof of Kuhn-
does not use transfinite means, it is quite elementary.
(2) It is known that the Jensen-convexity of {, i.e., the validity of (5) implies the validity
of (4) for any rational number a € [0,1] and z,y € D. (This statement also follows from

the result of Kuhn mentioned above).
Corollary. If A € A and f € A(D, A) then f is Jensen-convex on D.

Proof. Let z; := = and z5 := T3:=---=yin (8). Then we see that (4) is satisfied with

a = Ay. Thus, by Lemma 1, f is Jensen-convex.

For the purpose of characterizing the elements of the class of functions A(D, X) we

shall need the following notion and result.

Definition. A sequence ) € A is said to be interval-filling if for any ¢ € [0, 1] there exists

a sequence € = (€1, €2,...) from {0,1}¥, such that
oo
t= (6, A) = Ze,')\,'.
i=1

The sequence A, := — is clearly interval-filling.

1
2
Theorem B. ([3],[4],[7]). A sequence A = (A;;) € A is interval-filling if and only if

oo
A< YN
t=n+1

holds for any n € N.
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Lemma 2. If X € A then any number ¢ € [0, 1] can be written in the form

t= Za,-,\i,
i=1
where a; € QN [0,1] for all ¢ € N.

Proof. If A € A is an interval-filling sequence then we choose a; € {0,1} and the proof is
complete. If A is not interval-filling, then there exists a sequence n; < ny < nzg < --- of

natural numbers, such that
A oo
S DR
Tk i=n+1

for any k € N. Hence for the sequence

Y S R N T
p= n17 7n1’n2’ nzv

A A

~ —_— - —
ny — times  ng, — times

we have p € A and this y is interval-filling. Thus any ¢ € [0,1] can be written in the form
(o]
t= Z €ifti
=1
where ¢; € {0,1} (¢ € N). From this
[o}

t=z%/\,‘

i=1

follows with m; € {0,1,...,n;} (¢ € N). If we still put a; := %’- then we get the statement

of the lemma.

Now we are able to state’the main result of this paper.

Theorem 1. Let A € A. Then f € A(D, )) holds if and only if f is convex on the set D.
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Proof. Let f € A(D, A). By the Corollary of Lemma 1, f is Jensen-convex, hence (4) holds
for any o € Q N [0,1] and z,y € D. By Lemma 2 there exist rational numbers o; € [0,1],
such that

t= i a; .

i=1

Now

1-t= i(l —a)hi.

i=1

Hence

ftz+ (1 —t)y) = f(z ol + Z(l —a;)Aiy) =

=1 i=1

= f( Z Ai(aiz + (1 — a,-)y)) < Z Aif(aiz + (1 —o4)y) <

i=1 i=1

<D Naif(2) + DML — @) f(y) = (=) + (1 - )f (),

i=1 i=1

i.e. f is convex.
To prove the reverse statement, assume that f is a convex function on D and let
(z) C D be an arbitrary sequence. Denote by X the affine hull of the sequence (). As-

sume that X is a k-dimensional hyperplane (0 < k < n). Thus, without loss of generality, we

.. A A
may assume that it is spanned by z;,-- -, Zx41. Then z¢ := (—1) T4+ ( k'H) g4
u b
(where p := A1 +- - -+Ak41) is an interior point of the convex hull of 2y, -+, zx41, i.e., zo is

an interior point of DNX in the k-dimensional topology. On the other hand, DNX is a com-

(=] o0

pact convex set, thus z* := Z ( A )z; € DNX. Therefore pzo + (1 — p)zx = Z Aiz;
isk2 LTH i=1

is also an interior point of D N X in the k-dimensional topology. Then the convexity of f

=)
implies that f|py is continuous at the point E Aiz; (since f|pnx is a convex function

i=1
and convex functions are continuous at interior points of their domain.)
Now we can prove (3). By the convexity of f|p,x we have

N o0 N o
f(z:)\izi"‘( > /\i) Io) <Y Nf@)+ Y Nif(zo)

i=N+1 i=1 i=N+1
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for all N € N. Taking the limit A" — oo and using the continuity of f|,x at i/\;a:.-
we obtain (3). =
The proof is complete.
Applying Theorem 1 we can give a new proof for Theorem A. Assume that T satisfies

(1). Then, by Theorem 1, T is a convex function. Thus Theorem A follows from the

following

Theorem 2. If T := [0,1]* — [0,1] is convex and T(0,0) = T(0,1) = T(1,0), then (2) is
satisfied.

Proof. Let eg := (0,0), e; := (1,0), e3 := (0,1). Then T(ep) = T(e1) = T(ez) = 0. If
z € [0,1)]? then there are two possibilities:
(i) z is an element of the closed triangular region determined by eq, €1, €.
(ii) z is in the complement with respect to [0,1]? of the triangular region defined in
).
In case (i) we can write z = Ageg + A1e; + Azez, where A; > 0and Mg + Ay + A2 = 1.

Hence, by the convexity of T,
(6) T(:c) _<_ /\oT(eo) + /\IT(el) + /\2T(€2) =0.

In case (ii) we have £ = Aje; + Azeq + Aze with A\; > 0 and A\; + A2 + A\; = 1. Hence by
the convexity of T

) T(z) < MT(e1) + AT (e2) + AsT(e) = AT (e).

In case (i) z = (z1,%2) satisfies 71 + 2, — 1 < 0; in case (ii) we get z; + 2 — 1 > 0. Hence

in case (ii) £ = (z1,%2) = (A1 + A3, A2 + A3), whence

Ty+zo—1=A 4+ +2)\3-1=);.
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Therefore (7) implies
)] T(z) < (z1 + 22 — 1)T(e).

The inequalities (6) and (8) together yield (2).

Remark. By putting a; = zy,a2 = a3 =+ =3, by = y1, by = b3 = --- = yain(1), we
can see that T is Jensen convex. On the other hand, by our hypotheses on T, we have that
0 < T(z) £1,i.e. T is a bounded function. Then, by the theorem of Bernstein-Doetsch
(12,18]), T is convex. From this we see that the convexity of T follows already form a

special case of (1) and the boundedness of T :
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