Stochastica XI-1 (1987), 5-12

CONVEXITY WITH GIVEN INFINITE WEIGHT SEQUENCES

ZOLTÁN DARÓCZY, ZSOLT PÁLES

ABSTRACT

The aim of the present note is to investigate the funcional inequality

$$f(\sum_{i=1}^{\infty} \lambda_i x_i) \le \sum_{i=1}^{\infty} \lambda_i f(x_i),$$

where $f: D \to R_+$ is an unknown function, $D \subset R^n$ is a compact convex set and (λ_n) is a fixed decreasing sequence with $\lambda_n > 0$ and $\lambda_1 + \lambda_2 + \cdots = 1$, further this inequality holds for all sequences (x_n) from D.

1. In his paper [1] C. Alsina investigated the inequality

(1)
$$T(\sum_{i=1}^{\infty} \frac{a_i}{2^i}, \sum_{i=1}^{\infty} \frac{b_i}{2^i}) \leq \sum_{i=1}^{\infty} \frac{1}{2^i} T(a_i, b_i)$$

where $T:[0,1]^2 \to [0,1]$ and (1) holds for any sequences (a_i) and (b_i) from [0,1]. His result is the following

Theorem A. If T satisfies (1) and T(0,0) = T(0,1) = T(1,0) = 0 then

(2)
$$T(x,y) \leq \max(x+y-1,0)T(1,1) \quad x,y \in [0,1].$$

In this paper we consider a generalization of the inequality (1). As a consequence of our results it turns out that (1) is equivalent to the convexity of T, and thus we obtain a new proof for the theorem of Alsina.

2. Let $D \subseteq R^n$ be a compact convex set. Denote by \wedge the set of all those real sequences $\lambda := (\lambda_n)$, for which $\lambda_n \ge \lambda_{n+1} > 0$ and $\sum_{n=1}^{\infty} \lambda_n = 1$ are satisfied. If $x_i \in D$ $(i \in N)$ then

$$\sum_{i=1}^{N} \lambda_i x_i + \left(\sum_{i=N+1}^{\infty} \lambda_i\right) x_0 \in D \text{ for some } x_0 \in D, \text{ hence by the compactness of D}$$

$$\sum_{i=1}^{\infty} \lambda_i x_i \in D.$$

Let $A(D, \lambda)$ denote the set of all those functions $f: D \to R_+(R_+ := [0, \infty))$ which satisfy the inequality

(3)
$$f(\sum_{i=1}^{\infty} \lambda_i x_i) \le \sum_{i=1}^{\infty} \lambda_i f(x_i)$$

for any sequence (x_i) from D, where $\lambda \in \Lambda$ is a fixed sequence. The right hand side of (3) is either convergent, or else, in the extended set of real numbers, it is $+\infty$.

Lemma 1. Let $f: D \to R$ be an α -convex function for some fixed $\alpha \in]0,1[$, i.e. assume that

(4)
$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

holds for all $x, y \in D$. Then f is also Jensen-convex, i.e. (4) is satisfied with $\alpha = \frac{1}{2}$.

Proof. By a repeated use of the inequality (4) we get

$$f(\frac{x+y}{2}) = f(\alpha(\alpha \frac{x+y}{2} + (1-\alpha)x) + (1-\alpha)(\alpha y + (1-\alpha)\frac{x+y}{2})) \le$$

$$\le \alpha f(\alpha \frac{x+y}{2} + (1-\alpha)x) + (1-\alpha)f(\alpha y + (1-\alpha)\frac{x+y}{2}) \le$$

$$\le (\alpha^2 + (1-\alpha)^2)f(\frac{x+y}{2}) + 2\alpha(1-\alpha)\frac{f(x) + f(y)}{2}$$

whence

$$(5) f(\frac{x+y}{2}) \le \frac{f(x)+f(y)}{2}$$

for any $x, y \in D$.

Remarks. (1) The statement of the above lemma is an immediate consequence of a well-known result of Kuhn [6] stating that if (4) is valid for some fixed $\alpha = \alpha_0 \in]0, 1[$ then it is valid also for any element of the intersection $K \cap [0,1]$, where K is the smallest subfield of R containing α_0 . However, our proof of Lemma 1 -differing in this form the proof of Kuhndoes not use transfinite means, it is quite elementary.

(2) It is known that the Jensen-convexity of f, i.e., the validity of (5) implies the validity of (4) for any rational number $\alpha \in [0,1]$ and $x,y \in D$. (This statement also follows from the result of Kuhn mentioned above).

Corollary. If $\lambda \in \Lambda$ and $f \in A(D, \lambda)$ then f is Jensen-convex on D.

Proof. Let $x_1 := x$ and $x_2 := x_3 := \cdots = y$ in (3). Then we see that (4) is satisfied with $\alpha = \lambda_1$. Thus, by Lemma 1, f is Jensen-convex.

For the purpose of characterizing the elements of the class of functions $A(D, \lambda)$ we shall need the following notion and result.

Definition. A sequence $\lambda \in \Lambda$ is said to be interval-filling if for any $t \in [0,1]$ there exists a sequence $\epsilon = (\epsilon_1, \epsilon_2, ...)$ from $\{0,1\}^N$, such that

$$t = \langle \epsilon, \lambda \rangle := \sum_{i=1}^{\infty} \epsilon_i \lambda_i.$$

The sequence $\lambda_n := \frac{1}{2^n}$ is clearly interval-filling.

Theorem B. ([3], [4], [7]). A sequence $\lambda = (\lambda_n) \in \Lambda$ is interval-filling if and only if

$$\lambda_n \le \sum_{i=n+1}^{\infty} \lambda_i$$

holds for any $n \in N$.

Lemma 2. If $\lambda \in \Lambda$ then any number $t \in [0,1]$ can be written in the form

$$t = \sum_{i=1}^{\infty} \alpha_i \lambda_i,$$

where $\alpha_i \in Q \cap [0,1]$ for all $i \in N$.

Proof. If $\lambda \in \Lambda$ is an interval-filling sequence then we choose $\alpha_i \in \{0,1\}$ and the proof is complete. If λ is not interval-filling, then there exists a sequence $n_1 \leq n_2 \leq n_3 \leq \cdots$ of natural numbers, such that

$$\frac{\lambda_k}{n_k} \le \sum_{i=n+1}^{\infty} \lambda_i$$

for any $k \in N$. Hence for the sequence

$$\mu := \left(\frac{\lambda_1}{n_1}, \cdots, \frac{\lambda_1}{n_1}, \frac{\lambda_2}{n_2}, \cdots, \frac{\lambda_2}{n_2}, \cdots\right)$$

$$\overbrace{n_1 - \text{times}} \qquad \overbrace{n_2 - \text{times}}$$

we have $\mu \in \Lambda$ and this μ is interval-filling. Thus any $t \in [0,1]$ can be written in the form

$$t = \sum_{i=1}^{\infty} \epsilon_i \mu_i$$

where $\epsilon_i \in \{0,1\} (i \in N)$. From this

$$t = \sum_{i=1}^{\infty} \frac{m_i}{n_i} \lambda_i$$

follows with $m_i \in \{0, 1, ..., n_i\}$ $(i \in N)$. If we still put $\alpha_i := \frac{m_i}{n_i}$ then we get the statement of the lemma.

Now we are able to state the main result of this paper.

Theorem 1. Let $\lambda \in \Lambda$. Then $f \in A(D, \lambda)$ holds if and only if f is convex on the set D.

Proof. Let $f \in A(D, \lambda)$. By the Corollary of Lemma 1, f is Jensen-convex, hence (4) holds for any $\alpha \in Q \cap [0, 1]$ and $x, y \in D$. By Lemma 2 there exist rational numbers $\alpha_i \in [0, 1]$, such that

$$t = \sum_{i=1}^{\infty} \alpha_i \lambda_i.$$

Now

$$1-t=\sum_{i=1}^{\infty}(1-\alpha_i)\lambda_i.$$

Hence

$$f(tx + (1 - t)y) = f(\sum_{i=1}^{\infty} \alpha_i \lambda_i x + \sum_{i=1}^{\infty} (1 - \alpha_i) \lambda_i y) =$$

$$= f\left(\sum_{i=1}^{\infty} \lambda_i (\alpha_i x + (1 - \alpha_i)y)\right) \le \sum_{i=1}^{\infty} \lambda_i f(\alpha_i x + (1 - \alpha_i)y) \le$$

$$\le \sum_{i=1}^{\infty} \lambda_i \alpha_i f(x) + \sum_{i=1}^{\infty} \lambda_i (1 - \alpha_i) f(y) = t f(x) + (1 - t) f(y),$$

i.e. f is convex.

To prove the reverse statement, assume that f is a convex function on D and let $(x_n) \subset D$ be an arbitrary sequence. Denote by X the affine hull of the sequence (x_n) . Assume that X is a k-dimensional hyperplane $(0 \le k \le n)$. Thus, without loss of generality, we may assume that it is spanned by x_1, \dots, x_{k+1} . Then $x_0 := \left(\frac{\lambda_1}{\mu}\right) x_1 + \dots + \left(\frac{\lambda_{k+1}}{\mu}\right) x_{k+1}$ (where $\mu := \lambda_1 + \dots + \lambda_{k+1}$) is an interior point of the convex hull of x_1, \dots, x_{k+1} , i.e., x_0 is an interior point of $D \cap X$ in the k-dimensional topology. On the other hand, $D \cap X$ is a compact convex set, thus $x * := \sum_{i=k+2}^{\infty} \left(\frac{\lambda_i}{1-\mu}\right) x_i \in D \cap X$. Therefore $\mu x_0 + (1-\mu)x * = \sum_{i=1}^{\infty} \lambda_i x_i$ is also an interior point of $D \cap X$ in the k-dimensional topology. Then the convexity of f implies that $f|_{D \cap X}$ is continuous at the point $\sum_{i=1}^{\infty} \lambda_i x_i$ (since $f|_{D \cap X}$ is a convex function and convex functions are continuous at interior points of their domain.)

Now we can prove (3). By the convexity of $f|_{D \cap X}$ we have

$$f\bigg(\sum_{i=1}^N \lambda_i x_i + \bigg(\sum_{i=N+1}^\infty \lambda_i\bigg) \, x_0\bigg) \leq \sum_{i=1}^N \lambda_i f(x_i) + \sum_{i=N+1}^\infty \lambda_i f(x_0)$$

for all $N \in N$. Taking the limit $N \to \infty$ and using the continuity of $f|_{D \cap X}$ at $\sum_{i=1}^{\infty} \lambda_i x_i$ we obtain (3).

The proof is complete.

Applying Theorem 1 we can give a new proof for Theorem A. Assume that T satisfies (1). Then, by Theorem 1, T is a convex function. Thus Theorem A follows from the following

Theorem 2. If $T := [0,1]^2 \to [0,1]$ is convex and T(0,0) = T(0,1) = T(1,0), then (2) is satisfied.

Proof. Let $e_0 := (0,0)$, $e_1 := (1,0)$, $e_2 := (0,1)$. Then $T(e_0) = T(e_1) = T(e_2) = 0$. If $x \in [0,1]^2$ then there are two possibilities:

- (i) x is an element of the closed triangular region determined by e_0, e_1, e_2 .
- (ii) x is in the complement with respect to $[0,1]^2$ of the triangular region defined in (i).

In case (i) we can write $x = \lambda_0 e_0 + \lambda_1 e_1 + \lambda_2 e_2$, where $\lambda_i \ge 0$ and $\lambda_0 + \lambda_1 + \lambda_2 = 1$. Hence, by the convexity of T,

(6)
$$T(x) \le \lambda_0 T(e_0) + \lambda_1 T(e_1) + \lambda_2 T(e_2) = 0.$$

In case (ii) we have $x = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e$ with $\lambda_i \geq 0$ and $\lambda_1 + \lambda_2 + \lambda_3 = 1$. Hence by the convexity of T

(7)
$$T(x) \leq \lambda_1 T(e_1) + \lambda_2 T(e_2) + \lambda_3 T(e) = \lambda_3 T(e).$$

In case (i) $x = (x_1, x_2)$ satisfies $x_1 + x_2 - 1 \le 0$; in case (ii) we get $x_1 + x_2 - 1 > 0$. Hence in case (ii) $x = (x_1, x_2) = (\lambda_1 + \lambda_3, \lambda_2 + \lambda_3)$, whence

$$x_1 + x_2 - 1 = \lambda_1 + \lambda_2 + 2\lambda_3 - 1 = \lambda_3$$

Therefore (7) implies

(8)
$$T(x) \le (x_1 + x_2 - 1)T(e).$$

The inequalities (6) and (8) together yield (2).

Remark. By putting $a_1 = x_1$, $a_2 = a_3 = \cdots = x_2$, $b_1 = y_1$, $b_2 = b_3 = \cdots = y_2 in(1)$, we can see that T is Jensen convex. On the other hand, by our hypotheses on T, we have that $0 \le T(x) \le 1$, i.e. T is a bounded function. Then, by the theorem of Bernstein-Doetsch ([2],[5]), T is convex. From this we see that the convexity of T follows already form a special case of (1) and the boundedness of T:

Acknowledgement. The authors wish to thank the unnamed referee for his valuable comments.

References

- Alsina, C., (1980) "On a family of functional inequalities". In General Inequalities 2.
 Birkhäuser Verlag. 419-428.
- [2] Bernstein, F. & Doetsch, G., (1915) "Zur Theorie der konvexen Funktionen". Math. Ann. 76, 514-526.
- [3] Daroczy, Z., Jarai, A. & Katai, I. "Intervallfüllende Folgen und volladditive Funktionen". Acta Sci. Math. Szeged.
- [4] Kakeya, S., (1914) "On the partial sums of an infinite series". Science Reports Tôhoku Imp. Univ. (1), 3, 159-163.
- [5] Kuczma, M., (1985) An Introduction to the Theory of Functional Equations and Inequalities. Warszawa-Krakow-Katowice.
- [6] Kuhn, N., (1984) "A note on t-convex functions". General Inequalities 4. Birkhäuser Birkhäuser Verlag, 269-276.

[7] Ribendoim, P., (1985) "Representation of real numbers by means of Fibonacci numbers", L'Enseignement Mathématique. 31, 249-259.

Institute of Mathematics Kossuth Lajos University H-4010 Debrecen, Pf. 12 HUNGARY