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APPROXIMATE SOLUTIONS OF MATRIX
DIFFERENTIAL EQUATIONS

L. Joédar, A. Hervas, D. Garcia-Sala

ABSTRACT

A method for solving second order matrix diffe
rential equations avoiding the increase of the
dimension of the problem is presented. Expli-
eit approximate solutions and an error bound
of them in terms of data are given.

Introduction.

Secu.d order matrix differential equations are important in
the theory of damped oscillatory systems and vibrational systems,

[51,[8]. The standard method for solving the Cauchy problem

X(2)+A]X(])+A°X=O; X(l)(0)=C1, X(0)=C°, o< t< 4o (1)
where Ai and Ci’ for i=o,1, are nxn complex matrices, is based
(1)

on the application of the change X=Y1, X =Y2 and the transfor-

mation of problem (1) into the following extended linear system

Co Yl 0 l
Y; Y(0)= ; Y= , C = (2)
c
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Thus the solution of (1) is given by the first entry of the func
tion

¢ |
) | ° (3)

€

Y(t)=exp(tCL

Although there are interesting methods for computing the exponen-
tial function of a matrix, [10], [11], the above method for sol-
ving (1) has the numerical inconvinient of the increase of the
original dimension of the problem and the lack of an estimation
of the approximation error in terms of data problem, when one

computes the expression (3).

In a recent paper [7], a method for solving the algebraic

matrix equation
X2 + AX + A =20 (L)
1 o

is presented. In this paper and in an analogous way to the scalar
case, we provide an explicit expression of the solution of (1) in
terms of a pair of solutions of the‘algebraic matrix equation (4),
avoiding the increase of the original dimension 6f the problem.

We apply the result in order to obtain an iterative algorithm

for solving problem (1) by constructing approximate solutions of
this problem in terms of approximate solutions of equation (4),
when coefficients of equation (4) satisfy certain conditions. Al-
so, an estimation of the approximation error in terms of data
problem is given.

The resolution problem of equation (4) is related to the pro-

blem of the existence of a linear factorization of the matrix po-

lynomial L(z)=zzl+A1z+A. So, if the companion matrix C is diago-

L
nable, then L(z) admits a linear factorization of the type

L(z)=(zI-V])(zl-V2), for certain matrices V] and VZ’ and V2 is

a solution of (4). In this case an explicit expression of solu-
tion of (4) is given in [2] .

Nevertheless, it is interesting to remark that the standard
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method is always available, but equation (4) may be unsolvable.
For instance, if Ao and A, are nxn complex matrices such that

2
AoAl=A]Ao and the minimal polynomial of the matrix A1-4Ao has a

double root at the origin, then (4) is unsolvable, [91.

We recall some concepts and properties of matrix norms that
will be used below and whose proofs may be found in [6]. If A is
an nxn complex matrix, we denote by [[All the operator norm of A,
defined by

haxl,
Al =sup
X#0 Il
where |l "2 represents the usual euclidean norm. If A,B are nxn
complex matrices it follows that
fasll < ftall Iis i , (5)

1 1

z n 2 o
n “max { ¢ |a.. [} DAl < n “max{ I Ja,.|} (6)
jooi=r Y iog=r Y
1 1
__2. n E‘ n
n “ omax { % |aij|}< TAl < n “max{ Z laijl} (7)

Pg=1 R

Expressions (6)-(7) allow us an available estimation of the norm
lAll because the expression of IlAll is not interesting from a com-
putational point of view. If A and A+E are nonsingular nxn complex

matrices, then from the Banach lemma, [6], p.28, one gets

S I - -

I (a+E) -A ' <1 EllA ]H Il (A+E) 1U (8)
Finally from corollary (50.5) of [1], if A is a nonsingular ma-
trix and B is a matrix such that llB-All <||A-,1 H_‘, then B is also
nonsingular. Hence the set of all nonsingular matrices in c™" s

an open set of C"*" endowed with the Il Il-topology.
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A numerical method for solving matrix differential equations

We begin this section with a result that provides an explicit
expression of the solution of problem (1) in terms of a pair of
solutions of equation (4) satisfying certain additional condition.

Theorem 1, Let XO,X be two solutions of equation (4) such that

1
. . . nxn . .
X]-Xo is nonsingular in C , then the only solution of (1) is

given by the expression

X(t)=exp(tX )P + exp(tX,)Q (9)

where
-1 -1
P=I+(X1-Xo) (co-c1); Q=»(x1-x0) (c1-xoco) (10)

Proof. Considering the standard method for solving (1) it is
clear from the uniqueness property of solutions of a Cauchy pro-

blem, that there exists only one solution of (1). For any matri

nxn
c

ces P and Q in , it is clear that the matrix function

Y(f)=exp(tX°)P+exp(tX])Q, satisfies the matrix differential equa-
tion arising in (1). If we impose that Y(t) satisfies the condi-
tions Y ! (0)=C1, Y(0)=Co, it follows that matrices P and Q must

verify the following matrix system

Y(0)=P + Q = Co

(1), )
Y (0)—X0P + XlQ = C1

| | P C :
= (° (11)

From the invertibility of X -Xo, it is easy to show that the

1
coefficient matrix S arising in (11) is nonsingular and
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-1 1

! | 1+(X,-X,) - (Xy-X%,) "

-1 -1
X X S (X=X )Xy (X;-Xx)

Solving (11) it follows that [z] = S-] [gé} are given by (10).
1

As by construction Y(t) satisfies the Cauchy conditions arising
in (1), one concludes that the expression (9) defines the only

solution of (1).

Corollary 1. Let us consider problem (1) and let us suppose that

there exist a pair of solutions XO,X of (4) such that X1-Xo is

1
nonsingular, and let {zk},{wk} be sequences of matrices || I[-con-
vergent to X0 and X], respectively., Then for each real number t,

the sequence of matrix functions defined by

Xn(t)=exp(th)Pn+exp(twn)Qn
, (13)
-1
(€,-Cy)s Q=W -z ) (C,-Z C),n>o

Pn=|+(wn-zn)
is I l-convergent when n—*, to the only solution X(t) of pro-
blem (1).

Proof. The result is a consequence of th. 1, the continuity of

the exponential function and the property (5).

In order to obtain an effective computgtion of the solution
of (1) we need an explicit definition of the sequences {Zk}, {wk},
for k= o, as well as an estimation of the approximation error
for the approximate solutions in terms of data problem. Next re-
sult provides a complete information in this sense for a class of
matrix differential equations of fype (1).

Theorem 2. Let us consider problem (1) where A. is nonsingular and

1
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such that

1

- -1 1/2
d=(1-4 IIA1 | IIA1 A, 1) 7>0 (14)

Let a=(l-d)/(2HA;1H) and b=(2 HA;‘H)-], then it follows that

(i) There exist a pair XO,X] of solutions of equation (4) such

. . -1, -1
that X,-X_ is non-singular and ||X1-Xo|l>d(||A1 i .

(i) Let F:CMXN, XN q.cNXn C™" be matrix functions defined
by the expressions F(ZF-A;IAO-A;]ZZ, and G(Z)=-A;1A°-ZZA;], then

the sequences {Zk}, {wk}, defined by the recurrent expressions

1
Zo=o’zk+l=F(Zk)’k> o ; V_=0, Vk+]=ﬁvk),wk=4H-A1VkA1 (15)

o

satisfy HZkH< b, “VkH< b, for all k =o. If X, and X, are the ma-

trices given in (i) one gets

X =lim Z , X,=lim W
o k —»o0 k 1 k~poo k
in the lll-topology, and IlZ,lI<b,lIv, b, Il X JI<a,lx, i<l (1+alla] ).

(ii1) I f Xn(t) is given by (13) where W, and Z, are the matrices
defined by (15), then this sequence of matrix functions converges
when n>» |, for each fixed t, to the only solution X(t) of pro-
blem (1), 1f k(A )=IA AT, w=max {a,lA Il (1+ak(A,))},

M(:)=1+t2<1+znco-c]nuA;1n/d+(1+k(A]))(nc1u+aucon)+nconuA;‘n/d+tzuA;‘uk(A])(nc]u+mu

and en=(2aHA;]H)n HA;‘H/(1-2a HA;]H), then for n advanced one has
En(t)=HX(t)-Xn(t)" < ZM(t)exp(Zwt)en (16)

Proof. Premultiplying the equation (4) by A;] one gets the equa-
tion

-1,2 -1
Ay XT+X+A A = 0 (17)
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Now, let us consider the associated equation

2 -1 -1
XA, +X+A A = 0 (18)
and the scalar function f:[0,b] =--[0,°[, defined by the ex-
pression
-1 2 -1 ‘
F(s)=lA; Il s™+ ITA; Al (19)

then f(b)<b and £ ') (b)=1. From th.2.1, and section 3 of [4], it
follows that the matrix sequences {Zk} and {Wk} defined by (15),
converges to solutions X  and U, of equations (17) and (18) res-
pectively, with ”Xo" < a,llu ll < a. Note that the matrix X  is a
solution of (4). From section 3 of [4], considering the matrix
X]=-A -A.U A;], is a solution of (4) such that X1-X0 is nonsingu-

1 17
lar and

-1 -1 -1 -1
- =|=-D:D=- - < -
A (x] xo) I-D;D=-U A, -A X, HXIH HAIH(1+aHA1 fl),lfolf<1-d (20)

From (20) it follows that HA;1HHX1-XOH >|1-0ll |>d. Hence (i)
and (ii) are proved. (iii) From corollary 1, the matrix functions
Xn(t) defined by (13) where Zn’vn’ are given by (15), converges

when n>», and t is fixed, to the only solution X(t) of problem

(1). Considering the difference X(t)-Xn(t) it follows that

X(t)-Xn(t)=exp(th)(P-Pn)+(exp(th)-exp(th))Pn+exp(tX])(Q-Qn)+(exp(tx1)'exp(twn))Qn

(21)
From (10), (13) it follows that
-1 -1
P-P =((X,=X ) =W -z ) ) (22)
Q-Qn=((x1-xo)'1-(wn—zn)'1)(c]-xoc0)+(wn-zn)‘1(c1-x0co-cl+znco)=

iy iy iy (23)
S B L R A LA



L. Jédar, A, Hervds, D. Garcia-Sala 290

From the convergence of Zn and wn to X0 and X1 respectively, and

from (i), there exists an integer N, such that for n >no one gets

A1y -1
- = -
Hwn an /nx] xon /2>("A1H) d/2. Thus for n>=nO we have

1

-1 - -1
Hw -z ) "< 2xg-x ) " <2ita; i /d (24)

From (8), (24) and (i), for n= ", it follows that

1 1

<00y =x) ™I Hu =2 T (kg =u )+ (x -2 IS
(25)

H(xy=xg) -(w -z.)
< - -7
< 2(Ix, wnll+|lxo an)

Considering the function f given by (19) and from th.2.1-(L4), of
[4], one gets

=Tpynpa-1 -1
- <e = - . - <
||Xo ZnH <e_ (ZaHA] (] IIA1 It/ (1 2aIIA1 (B "Ul Vn” e (26)
In accordance with the notation of [6], p. 25, let

k|=k(A])="A1"”A;]“, the condition number of A,, and taking into
account (15) and (26) one gets

-1 -1
llxl-wnll=IIA1vnA1 ~A U A, < epk(Al) (27)
From (25)-(27) it follows that
-1 -1
H(x]-xo) -(wn-zn) I < Zen(1+k(A1)), n >no (28)

where e, is defined by (26).

From (23), (24), (27) and (28) it follows that
Q- <zen((1+k(A]))(nc,u+auc°n)+McounA;'n/d), if n>n (29)

As HX°H<Q,”X]H< HA1H(l+ak(A1)), from the mean value th., [31,p.
158, it follows that '
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llexp(tXx_)-exp(tz )I< t2exp(2at)ll Xo'-Zn||<t2exp(2at)en (30)

lexp(tX,)-exp(tW )I< tzexp(2||A1|| t(1+k(A‘)a))||Xl-wn||<t2k(A])exp(leA]H t(1+k(A))a))e,

(31)

From the expressions (13) and (24), for n >no we have

e <1+l -c Il AT /a5 I i< 207 I (e Ivallc ) /d (32)

Let w=max{a,HA1"(1+ak(A]))}, then from (21)-(32), it follows that

1X(£)-X_(£)1<ze exp(2wt) {1+t” (1421 -, IIA; I /d) + (1+k (A))) (I C lwallc 1) HICIAL /) )
+2e exp(2wt) t2(IC l+a T I)IALIK (A})/d

Thus the result is proved.
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