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ALGEBRAIC METHODS FOR SOLVING
BOUNDARY VALUE PROBLEMS

Lucas dJddar

SUMMARY

By .means of the reduction of boundary value
problems to algebraic ones, conditions for the
existence of solutions and explicit expressions
of them are obtained. These boundary value pro-
blems are related to the second order operator

differential equation X(2)+A1X(l)+AOX =0, and
X(Z) =A+BX+XC. For the finite-dimensional ca-—
se, computable expressions of the solutions are
given.

1. Introduction.

For the finite-dimensional case, second order operator
differential equations are important in the theory of damped
oscillatory systems and vibrational systems, [4], [7]. Infinite-
dimensional equations occur frequently in the theory of stochas-
tic processes, the degradation of polymers, infinite ladder
network theory in engineering,[1],[ 18], denumerable Markov chains,
and moment problems, [14],[21]. Throughtout this paper H will deno-
te a complex separable Hilbert space and L(H) will denote the

algebra of all bounded linear operators on H. In the section 2
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of this paper we consider two-point boundary value problems of

the type
U+ AU+ AU-=0
1 o
F,U(a)-u(0)6, = E, (1.1)
FZU(b)-U(O)G2 = E2

where the coefficient are operators in L(H), 0<a <b, 0<t<hp,.

It is well known that the resolution problem of a scalar
second.linear differential equation with constant coefficients,
u o+ au +'a0u=0, is solved from the det;rmination of the roots
of the associated algebraic equation, z +a1z+a°=0. In an analogous
way to the scalar case we obtain sufficient conditions for the
resolution problem (1.1) in terms of solutions of the algebraic
operator equation

2

TS+ AT+ A =0 (1.2)

1
This equation has been studied in [13] where a methodology for
its resolution is given. The problem of the solvability of the
equation (1.2) is related to the factorization of the polynomial
operator L(z)=zz+zA1+A0. For the finite-dimensional case, it is

known, [ 7], that if the companion operator

is diagonable, then there is a linear factorization
L(z)=(zl+T1)(zI+T2), and in this case -T,, is a solution of
(1.2). Different conditions for the existence of a linear
factorization of L(z) are given in [9] for the finite-dimensional

case, and in [20] for the infinite-dimensional one.
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In a recent paper, [12], we gave a resolution method for

solving boundary value problems of the type

U =A+ BU + UC

(1.3)

]
o

E1U(b)-U(0)F1

1
o

EZU(a)-U(O)F2

in terms of the solutions of an algebraic Lyapunov system of the
type

A,+B

L
o

1 1X + XCy

(1.4)

A2+B2X + XC2

"
o

where the coefficient matrices arising in (1.4) are related to
the data problem. Moreover, in [12], a resolution, method for
solving the system (1.4) by application of the annihilating,
polynomial technique is given. In the section 3 we obtain an
existence and uniqueness condition for the system (1.4) and an
explicit expression of the solution of (1.3) under the uniqueness

condition is given.

For the sake of clarity in the exposition we recall some
concepts that will be used below. If T lies in L(H), its spectrum
o(T) is the set of all complex numbers z such zI-T, is not inver-
tible in L(H), Oﬂ(T) denotes its approximate point spectrum and
OG(T) denotes its approximate defect spectrum. Definitions and

properties of these parts of the spectrum o(T) can be found in

[11].

For a matrix AGECn , where C denotes the complex plane,

- Xn -
we represent by A as a matrix satisfying A A A =A. We recall
that the Drazin inverse of A, denoted by AD satisfies this pro-
perty and its computatian is available as a polynomial in A, see

[5]1, [19], for details.
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If C is a mxm real matrix, CeR and DeR , then the
mxm kxs
tensor product of C and D written C B D, is defined as the par-

titioned matrix

an account of the uses and applications of the operation B can

be found in [15]) or [161]. If ceRnxn’ we denote

1 1

C=vecC= |. , cC .=

o

.n Cmj_

o .

If M, N and P are matrices with suitable dimensions and PT deno-
tes the transposed matrix of P, then for the column lemma, [3],

one gets vec(MNP)%PTEM)vecN.

2. Boundary value problems for the second
order operator differential equation.

For the sake of clarity in the exposition we state the

following result whose proof can be found in [13].

Lemma 1. ([131). If T, is a solution of the operator equation

(1.2), then the operator function
t
U(t)=exp(tTo)Co+f exp((t-s)To)exp(sT])Dds (2.1)
o

where T,=-(T_+A.) and D=C,-T C , is a solution of the problem
1 o 1 1 oo



Algebraic methods for solving boundary value problems 263

<.
+
>
o
<
L}
o

(2.2)

<
—
o
-~
]
[}
c-
—
o
~
]
o

Our first result gives an algebraic condition on the data

problem for solving the boundary value problem (1.1).

Theorem 1. Let us consider the boundary value problem (r.1). If

To is a solution of the equation (1.2) and the system

AT - TB
DT - TE

1]
o

(2.3)

]
-

is compatible, where

T1= '(T°+A1); A=F]exp(aT°); B=G C=E1-F]exp(aT])

(2.4)

1 5
D=F2Toexp(bTo); E=Gy; F=E2-F2exp(bT1)

then the problem (1.1) is solvable and a solution is given by

the expression

U(t)=exp(tTo)Co; 0 <t< b (2.5)
where CO is a solution of the system (2.3)-(2.4).
Proof. Given the operator To’ from the lemma 1, it follows that

a solution of the problem (2.1) has the expression (2.2). Taking
C,=T C_, one gets D=0 and
o o

1
U(t)=exp(tTo)co; te[ 0,b] (2.6)

where Co=u(0). By differentiation in (2.6), it follows that

Q(t)=exp(tTo)ToCo=Toexp(tTe)CO=TOU(t) (2.7)



Lucas Jédar 264

From here, the boundary value conditions arising in (1.1) are

verified if there exists a solution C0 of the system

I
m

(F]Toexp(aTo))C0 - o6,

(2.8)

(FZToexP(bTo))co - COG2 = E2

From the hypothesis the result is established.

Remark 1. A methodology for solving infinite-dimensional systems
of the type (2.3) by means of its reduction to another one of
the type TE=F, MT=N, by application of the technique of annihila

ting analytic functions of operators is suggested in [10].

The following result is concerned with the boundary value

problem (1.1), when a=b, Fi=F,=F, G,=G,=G and E, =E,=E.

Corollary 1. Let us consider the problem

U+ AU+ AU=0
1 o

F l.J(b)—U(O)G=E (2.9)

0< t<b
I f T0 is a solution of the equation (1.2) and
N =
Od(FToexp(aTo)) OW(G) [ (2.10)

then the problem (2.9) is solvable and a solution {s given by

the expression
U(t)=exp(tTo)Co;.;tE[O,b] (2.11)

where Co is a solution of the algebraic equation

AT - TB = C (2.12)
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and
A=FT exp(aT ); B=G; C=E-Fexp(aT,); T1=-(TO+A]) (2.13)

Proof. From the hypothesis (2.10) and th. 5 of [6], there exists
a solution C_ of the equation (2.12). From here and from theorem

1 the result is proved.

In order to obtain an explicit solution of (2.11) it is
clear we need an explicit expression of the solutions of the
algebraic problem (2.12). In [10], conditions for obtaining such
expressions are given. In [1] and [8] the solutions of this
equation when the coefficient operators belong to certain classes
are studied. For the finite-dimensional case an explicit and

computable expression of the solutions of (2.12) is available.

Corollary 2. If H is a finite-dimensional Hilbert space and
substituting the hypothesis (2.10) by the following one

O(FToexp(aTo)) N o(G)=p

then a solution of (2.9) is given by (2.11) being Co the operator

ky-1, 0k =1 k-]
pk(FT exp(aT )*) " (¢ L p.(FT exp(aT ))J7 EGFTI)
o ° ° k=1 j=1 4 ° °

pkzk, the characteristic polynomial of G.

o

n
(z

and p(z)=

=
™3> x

Proof. The result is a consequence of the corollary 1 and [10].

Next result is concerned with a particular case of the problem
(1.1) that is interesting in the applications and for which an

explicit and computable expression of its solution is available.

Theorem 2. Let H be a finite-dimensional Hilbert space and let

T0 be a solution of the algebraic equation (1.2). If we consider

the boundary value problem
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Uu+AU+AU=0
1 o

U(0)6,=E F]l](a)=E (2.14)

2} 1
0<t<b

then this problem is solvable if the following condition is

satisfied
F1exp(aTo)T0E2=E1G2 (2.15)

In this case the matrix function U(t)=exp(tTo)Co, satisfies (2.14)

for everY matrix Co of the type
CO=A E]+E2G2 - A AE2G2+(|-A A)V(I-GZGZ) (2.16)
where V is an arbitrary matrix with dim(H)=dim V, and A=F]exdaTo)To.

Proof. Considering the theorem 1 with G]=0=F2, it follows that
(2.14) is solvable if there exists a solution Co of the matrix
system

AC =E
o 1

(2.17)

I
m

CoGZ =

where A=F|exp(aTo)To, and in this case the matrix function

U(t)=exp(tTo)Co, is a solution of (2.14). Now, from the lemma 2.2
of [17] and the hypothesis (2.15), the system (2.17) is solvable
and its general solution is given by (2.16). From here the result

is established.
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3. Boundary value problems for the Lyapunov
equation U = A+BU+UC.

In this section we are interested with the determination
of explicit and computable expressions for solutions of finite-
dimensional boundary value problems related to the Lyapunov
type equation 0 = A+B U+UC.

Lemma 2. Let Ai’Bi and Ci be matrices in R for i=1,2, and

nxn’
let us denote by r, B for 1 <j <hi, i=1,2 and s, ., for
1 <k <ni, i=1,2, respectively the eigenvalue sets of the matrix

B; and C; respectively. If the following property is satisfied

ri,j”i,k"o’ 1 <j <”‘i’ 1 <k<ni, i=1,2 (3.1)

then a necessary and sufficient condition for the existence and

uniqueness of solutions of the system (1.4) is the following one
1”7 1

LI T -
(1 ® B1+C]El) AL = (1 8 B,+C,H 1) A, (3.2)

In this case the only solution of (3.2) is given by

~ _1/\ .
X = (1 8B +clE 1)TTA, i=1,2 (3.3)
Proof. By application of the tensor product to each equation of
the system (1.4), and taking into account the column lemma, [31,

one gets

~ T ~ ~

A+ (1BB,+C;RI)X = 0, i=1,2 (3.4)
From the hypothesis (3.1) it follows that the matrices

IEBi+C¥HI, are invertible for i=1,2. From here and (3.4) the

result is obtained.
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Theorem 3. Let us consider the problem (1.1) and let Ai» B, and

Ci be the matrices defined by the expressions

Bl=F1exp(aB), C]=-G]exp(-Ca), B =erxp(Bb), o =-G2exp(—Cb)

2 2

a
A]=—E]exp(-Ca)+F]’f exp(B(a-s))Aexp(C(t-s))ds , (3.5)
(o)

b
A2=-E2exp(-Cb)+F2 [ exp(B(b-s))Aexp(-Cs)ds
)

If the spectral condition (3.1) is satisfied then the boundary

value problem (1.3) has only one solution given by the expression

t
U(t)=ekp(Bt)Coexp(Ct) + f exp(B(t-s))Aexp(C(t-s))ds (3.6)
)

where C_ is given by the expression (3.3).

Proof. From theorem 6 of [12], the boundary value problem (1.3)

is solvable if an only if the system (1.4)-(3.5) is solvable.
Furthermore, the solution set for the problem (1.3) 1is given by
(3.6), where C, is a solution of the algebraic system (1.4)-(3.5).
Now,® the result is a consequence of the previous lemma 2 and
theorem, 6 of [12].

References.

[1] c. APOSTOL, On the operator equation TX-XV=A, Proc. Amer.
Math. Soc. Vol. 59, N.1. (1976), 115-118.

[2]1 N. ARLEY, V. BORCHSENIUS, On the theory of infinite-systems
of differential equations and their application to the theory
of stochastic processes and the perturbation theory of quan-

tum mechanics, Acta Math. 76(1944), 261-322.



Algebraic methods for solving boundary value problems 269

[3] S. BARNETT, Matrix differential equations and Kronecker
products, SIAM. J. Appl. Math. vol. 24, N¢ 1 (1973), 1-5.

[41 H. BART M.A., KAASHOEK and L. LERER, Review of Matrix
Polynomials, by 1. Gohberg, P. Lancaster and L. Rodman,
Linear Algebra and its Applications, 64:267-272 (1985).

[5]1 S. CAMPBELL, Singular systems of differential equations,
Pitman Publ. Comp. (1980).

[6] C. DAVIS and P. ROSENTHAL, Solving linear operator equations.
Can. J. Math., Vol. XXVI, NS 6, 1974, 1184-1189.

[71 . GOHBERG, P. LANCASTER and L. RODMAN, Matrix Polynomials,

Academic Press, 1982.

[8] J. A. GOLDSTEIN, On the operator equation AX+XB=Q, Proc.
Amer. Math. Soc. 70. N. 1 (1978).

[9]1 V. HERNANDEZ and F. INCERTIS, A block bidiagonal form for

block Companion matrices, Linear Algebra and its Applica-
tions, 75:241-256 (1986).

[10] V. HERNANDEZ and L. JODAR, Sobre la ecuacidn cuadratica 'en
operadores A+BT+TC+TDT=0, Stochastica, Vol. VIl. N? 2,
(1983), 145-154,

[11] b. A. HERRERO, Approximation of Hilbert space operators,
Pitman Publ. Comp. Vol. I, 1982,

[12] L. JODAR, Ecuaciones diferenciales matriciales con dos con-
diciones de contorno, Rev. Unién Matemdtica Argentina, Vol.
32 (1985), 29-40.

[13] L. JODAR, Boundary value problems for second order operator
differential equations, Linear Algebra and its Applications
83 (1986), 29-38.

[14]1 J. G. KEMENY, J. L. SNELL and A. W. KNAPP, Denumerable

Markov chains, Van Nostrand, Princeton.

[15] P. LANCASTER, The theory of matrices, Academic Press, New
York, 1969.



Lucas Jédar 270

[16] c. c. MaCDUFFEE, Theory of matrices, Chelsea, New York,
1956.

[171 5. k. MITRA, Common solutions to a pair of linear matrix
equations A1XB]=C] and A2XB2=CZ, Proc. Camb. Phil. Soc.
(1973), 74, 213-216.

[18] M. N. OGUZTORELLI, On infinite systems of differential
equations occurring in the degradations of polymers, Utili-
tas Math. 1 (1972), 141-155,

[19]1 C. R. RAO and S. K. MITRA, Generalized inverse of matrices
and its applications, Wiley, 1971,

[20] L. RODMAN, On factorization of operator polynomials and

analytic operator functions, Rocky Mountain J. Math. 16
(1986), 153-162.

[21] S. STEINBERG, Infinite systems of ordinary differential
equations with unbounded coefficients and Moment problems,
J. Math. Anal. Appl. 41 (1973), 685-694,

Department of Applied Mathematics:. Manuscript received in
Polytechnical University of Valencia. November 19, 1986 and in
P.0. Box 22.012, Valencia, SPAIN. final form June 29, 1987.



