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BOUNDARY PROBLEMS FOR GENERALIZED
LYAPUNOV EQUATIONS

Lucas Jddar

ABSTRACT

Boundary value problems for generaliszed Lyapunov
equations whose coefficient are time-dependant
bounded linear operators defined on a separa-
ble complex Hilbert space are studied. Necessa-—
ry and sufficient conditions for the existence
of solutions and explictit expressions of them
are given.

1. Introduction.

Let L(H) be the linear space of all bounded linear opera-
tors on a separable complex Hilbert space H. When we endow this
space with the streng topolbgy we obtain a topological vector
space that we will denote by Ls(H)' In this space we can look

the infinite-dimensional operator Lyapunov equation

(d/dt)U(t)=A+BU (£)-U(£) B ; U(0)=U_ (1.1)
where A,B,U0 and U(t) are linear operators in L(H) and 8" deno-
tes the adjoint operator of B. Equation (1.1) arises in optimal
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control, [10], transport theory, [131], and filtering problems,
[2). In a recent paper, [81], it is studied the finite dimensional

boundary value problem
(d/dt)U(tkA+BU(t)-U(t)B™; U(b)=U(0) (1.2)
In [11], we study the infinite-dimensional boundary value problem
(d/dt)U(t)=A+BU(t)-U(t)C; EU(b)-U(0)F=G (1.3)

where all operators which appear in (1.3) are bounded linear

operators on H. In this paper we study the infinite-dimensional

boundary value problem

(d/dt)u(t)=A(t)+B(t)U(t)-u(t)c(t), o<t<b

EU(b)-U(0)F=aG, (1.4)

where A(t),B(t),C(t),E,F and G are operators in L(H). In section
2, necessary and sufficient conditions for the existence of

strong solutions, that is, solutions in LS(H) of problem (1.4)

are given. In addition we give explicit expressions for the solu
tions in terms of solutions of an algebraic operator equation
associeated to the boundary value problem. We apply the results

to the study of the existence of periodic solutions of the ope-
rator differential equation arising in (1.4), when the coefficient

operator functions are periodic.

We recall that an operator T in L(H) whose spectrum o(T)
is finite, is said to be an algebraic operator if there exists a
polynomial p(z) such that p(T)=0. It is clear that every finite-
dimensional operator is algebraic, but for the infinite-dimensio
nal case this fact is not true, [12], p. 53. An account of the

uses and properties of algebraic operators may be found in [6].

If T is a linear operator on H with domain D(T), we denote

the numerical range of T by
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0(T)= {zeC; z=(Tx,x), lIxll=1}

If weR, 0<6<m/2, we denote T 6={zeC; |arg(z-w) |<8+m/2}, and
%
W

plane.

s is the closure of the complement of Tw s in the complex
’ ’

Let A(t) be a bounded linear operator valued function such
that there exists an invertible fundamental operator UA(t,s) of
the equation (d/dt)u(t)=A(t)u(t), for 0<t <b, and 0 s <t <b.
Then in accordance with the property UA(t,u)=UA(t,s)UA(s,u), for
0 €Su<s €t< b, verified by UA(.,.), see [9] for details, and
taking into account the usual notation for the finite-dimensional
case, when there exists (UA(t,s))_], for b=t =s 20, we can
extend UA(.,.) to the points (t,s)e[O,b]z, such that 0SSt <s< b,

defined by the expression UA(t,s)=(UA(s,t)) 1. Thus we have

UA(t,u)=UA(t,s)UA(s,u), for any triple (t,u,s)e[O,b]z.

2. Boundary value problems for generalized
Lyapunov equations.

In order to simplify the statement of the following theorem

we introduce the definition of G-function:

Definition 1. Let A(t) be an operator in L(H) for all te[O,b].
We say that A(*) is a G-function, if

(i) o(A(t)) C ZW w<0, 0<8<m/2, te[0,b]

» 87
(ii) There exist constants a and C,, such that 0<a<1 and

A

H(AC)-A())A™ () < ¢y fe-t |

uniformly for all triple (t,T,s)e[O,b]3.
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Under the hypothesis of G-function, the function A(t)
generates a fundamental solution UA(t,s), 0<s <t<b, for the
linear equation (d/dt)u(t)=A(t)u(t),te[0,b]l, (see lemma 7 of [ 7]).

Theorem 1. Let us consider the boundary value problem (1.4) where
E,F,G, and A(t) are operators in L(H), and let us suppose that
B(*) and C(*) are G-functions on [0,b], such that UB(t,s),Uc(t,s)
are fundamental solutions of the systems (d/dt)u(t)=B(t)u(t),

and (d/dt)u(t)=C(t)u(t), te[0,b], respectively, with Uc(t,s)
invertible in L(H) for 0<s<t <b. Let M,N and P be operators

in L(H) defined by

N=EUB(b,0) H P=FUc(b,O)

(2.1)
M=-cuc(b,o)+Ejb Ug(b,s)A(s)U.(s,0)ds
o]

Then thg boundary value problem has a strong solution, if and

only if, the operator equation
M+NX=-XP=0 (2.2)

is solvable. Under this hypothesis, the solution set of problem

(1.4) is given by the expression
U(E)=U (£,0)XU (0, 0)+f° Up(t,s)A(s)U (s, t)ds (2.3)
o
where X is a solution of (2.2).

Proof. Let U(t) be a solution of problem (1.4). From the hypothesis
there exists Uc(t,s), fundamental solution of (d/dt)u(t)=C(t)u(t),
te[0,b]. Thus the Cauchy problem (d/dt)Y(t)=C(t)Y(t); Y(O)=1,

te [0,b], has only one solution Y(t) defined on [0,b]. Now let us
define Z(t)=U(t)Y(t), then it follows that
(d/dt)z(t)=(A(t)+B(t)U(t))Y(t), for all te[O0,b], and Z(0)=U(0).

Thus he operator valued function t = ;Eth , satisfies the
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system

c(t) o T[v(v)] lY(O)] I'I
I J(t)l " ze0)] luco),

From the existence of UB(t.s) and Uc(t,s), it is easy to show that

\-Y(t)
(d/dt) [ = (2.4)

Z(t)

A(t) B(t)

the operator function

Uc(t,s) 0
W(t,s)=
ZUB(t,v)A(v)UC(v,s)dv UB(t,s)

is a fundamental solution of (2.4), and from the properties of

fundamental solutions, it follows that

Y(t) | ’ Ug(t,0)

=W(t,0)

t (2.5)
Z(¢) u.. Juglt,s)A(s)u (s,0)ds + U
(o)

B(c,o)uo

- =

-

where U0=U(0). As U(t) satisfies the boundary value conditions
of (1.4), it follows that

EZ(b)=EU(b)Y(b)=(G+UoF)Y(b) A (2.6)
From (2.5)-(2.6) it follows that

b
EC Jug(b,s)A(s)U (s,0)ds+Ug(b,0)U )=(G+U F)U.(b,0)
o
b (2.7)
(E {UB(b,s)A(s)UC(s,O)ds-GUc(b,O))+EUBUL0)UO-UOH%(b,0)= 0
Thus U°=U(O) is a solution of (2.1).

Conversely, let us suppose Uo is a solution of the algebraic
equation (2.2), where coefficients M,N and P are given by (2.1).
Now, let us define define the operator valued functions
Y(t)=Uc(t,0) and
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t
Z(t)= [OUB(t,s)A(s)uc(s,o)ds+uB(t,o)u0

From the hypothesis Y(t) is ibertible and (Y(t))-]=UC(O,t), for
all telo,b]l. Thus the operator function X(t)=Z(t)(Y(t))-], for
te[0,b] , is well defined. Computing the derivatives in the strong

operator topology, it follows that

(d/dt)X(£)=((d/dt)Z(e)) LY (t)) " 3-2(t) (Y(t)) M(d/de)¥(e)}(v(x)) "=
=A(t) + B(t)X(t) - X(t)c(t)

with X(0)=Uo, and postmultiplying Z(t) by (Y(t))—]=UC(0,t), and
taking into account the property U (s,0)U.(0,t)=U.(s,t), for
te[0,b], and 0<s <t<b, it follows that X(t) is given by

t
X(t)=Uc(t,0)UOUC(O,t)+ IOUB(t,s)A(s)UC(s,t)ds

Thus the result is proved.

Theorem 1 allows us to obtain explicit solutions of the boundary
value problem (1.4) in terms of solutions of the algebraic
Lyapunov equation (2.2) whith coefficients defined by (2.1). For
particular classes of operators M,N and P, a complete descrip-
tion of solutions of equaions of type (2.2) may be found in [1],
[4]. In the following corollary conditions on coefficients of
(2.2) in order to ensure the existence and uniqueness for solu-
tions of (1.4) are presented. Also, conditions for obtaining an

explicit expression of solutions are given.

Corollary 1. Let us consider the notation of th, 1, let
OG(N)= {zeC;z1-N is not onto} the approximate defect spectrum of
N, and let oﬂ(P)={ZeC; z1-P is not bounded below} the approximate

point spectrum of P, Then

(i) Problem (1.4) is solvable if

o (N) No (P)=p (2.8)
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(ii) Problem (1.4) has only one solutions if
og(N) N o(P)=¢ (2.9

(iii) 1f N is an algebraic operator annihilated by the polynomial
n
p(z)= % akzk, under the hypothesis (3.1), the only solu-
k=0

tion U, of equation (2.2) is given by

-1 n
U =-GZ ', G=- &
° =

k

N TInpd T zop () (2.10)
1]
In both cases for a solution UO of (2.2), the expression (2.3)

with X=U0 provides an explicit expression of solutions of (1.4)

Proof. (i) From th.5, of [3], and from (2.8), equation (2.2) is
solvable. (ii) It is a consequence of the hypothesis and
Rosenblun's theorem, [12], p.8. The part (iii) is a consequence
of corollary 1 of [5].

Next result is concerned with the problem of finding

b-periodic solutions of the equation
(d/dt)u(t)=A(t)+B(t)u(t)-u(t)c(t) (2.11)

Corollary 2. Let us consider equation (2.11) where coefficient
functions A(*),B(+) and C(*), satisfy the hypothesis of th. 1,
and are b-periodic, b>0 on the real line. Let N,M and P beopera=~
tors in L(H) defined by the expressions

b
N=UB(b,0);P=UC(b,0); M=f0UB(b,s)A(s)Uc(s,0)ds(2.12)

Then there exist b-periodic solutions of (2.11), if and only,
equation (2.2) with coefficients given by (2.12) is solvable. In
this case the solution set of b-periodic solutions of (2.11) is

given by (2.3) where X is a solution of (2.2), (2.12).
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Proof. Let us consider the boundary value problem (1.4) with

E=F=1 and G=0. Then from th. 1, there exist solutions of (2.11)
with U(b)=U(0), if and only if, equation (2.2),(2.12) is solvable,.
Given a solution U(t) of equation (2.11) is clear that one gets a
b-periodic solution of (2.11) on the real line, by extending the
solution b-periodically on all the real line. The result is now a

consequence of theorem 1.
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