STOCHASTICA Vol. X, N2 3, 1986.

ON INDEPENDENCE IN SOME FAMILIES OF
MULTIVARIATE DISTRIBUTIONS

José Juan ‘Quesada

ABSTRACT

In this paper we will prove a characterization
for the independence of random vectors with
positive (hegative) orthant dependence accor-—
ding to a direction. The result can be seen as
a generalization of a result by Lehmann [4].

1. Introduction.

If two random variables X and Y are independent, then X and
Y are uncorrelated, that is, cov(X,Y)=0. The reverse is not true
in general. If the distribution is the bivariate normal, then
uncorrelation also implies independence. We determined to study
some conditions for the variables, under which the knowfedge of
uncorrelation of the variables would be enough to assure inde-
pendence. These conditions will determine a family of bivariate
distributions where independence will be characterized by the
vanishing of a measure of association for the variables (in this

case the covariance).

This problem was solved by Lehmann [4]. He introduced the

family of bivariate distributions‘that are quadrant dependent. He
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proved, by using an identity from Hoeffding [3], that, in this
family, independence is equivalent to uncorrelation. We want to
find conditions such that combined with the '"uncorrelation' of
the variables (that we have to specify), they assure us of the
independence of these in the multivariate case; that is, we will

try to generalize Lehmann's result for n random variables.

The family determined by these conditions is constituted by
all the multivariate distributions with positive or negative
orthant dependence according to a direction., This concept of de-
pendence was introduced by Quesada [5], and is a generalization
of the orthant dependence studiedbby Esary, Proschan and Walkup
[1]. The "uncorrelation'" of the variables, which we will call "mu
tual uncorrelation', will not only express uncorrelation of all
the variables pairwise, because independence pairwise of the va-

riables is not enough to warranty independence.

In section 2, we will recall the concepts and results for
the bivariate case and in section 3 we will prove the generaliza-

tions for the multivariate case.

2. Bivariate dependence.

Let X and Y be two random variables, and let F, FX and FY

be the joint and marginal distribution functions respectively.

Definition 2.1. X and Y are positively quadrant dependent if

Flx,y) ZFy (x)-F (y) for every x,yeR.

Similarly, the negative quadrant dependence is obtained by

changing the inequality sign.

The following lemma from Hoeffding [2] is essential.



On independence in some families of multivariate... o158

Lemma 2.2. (Hoeffding). If E(XY), EX and EY exist, then

+0 400
E(XY)-EX-EY = [ [ (F(x,y)-Fy (x)-Fy(y))dxdy

-0 =00

By using this lemma, Lehmann proved the following result:

Theorem 2.3. (Lehmann). If X and Y are two random variables with

positive quadrant dependence, and E(XY), EX and EY exist, then

E(XY) = EX*EY

and the equality holds if and only if X and Y are independent.

This result establishes the equivalence between independen-
ce and uncorrelation for random variables with positive quadrant
dependence (PQD). An analogous result is obtained for random va-
riables with negative quadrant dependence (NQD) by changing the
inequality sign. So, if X and Y are uncorrelated and are PQD or

NQD, then they are independent.

3. Multivariate dependence

Quadrant dependence has been generalized for n random varia
bles by Esary, Proschan and Walkup [1]. tn [5], Quesada considered
a generalization of quadrant dependence which includes the concept
of Esary, Proschan and Walkup.

Definition 3.1, Let X "Xn be n random variables and let

1,XZ,..
gsRn such that Iai|=1, i=1,2,...,n. X]’XZ""’Xn are posit%vely

orthant dependent according to the direction aeR” (POD(a)) if

(3.1) P{ n (aix. > x.)} =1 P{aiX.> x.}
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for every x=(x1,x ...,xn)e R™,

2!

Similarly, X1,X2,...,X are negatively orthant dependent according

n
toa(NOD(a)) if (3.1) s verified with the reverse inequality.

I f XI’XZ""’X are posftive]y orthant dependent according

n
to geRn, then big values of Xi for iedJ are associated with small
values of X, for i el-J, where 1={1,2,...,n} and J={iel / ai=1}.
In the case of negative orthant dependence according to a direc-
tion NOD(g), there is no association between big values of

{X;, i €J} and small values of {Xi’ i el-J}.

For n=2 we obtain POD(1,1)® NOD(-1,1)e NOD(1,-1)
@ POD(-1,-1)+ PQD and NOD(1,1)* NOD(-1,-1) ®POD(-1,1) «
POD(1,-1) ©NQD.

For a =(-1,-1,...,-1), we have the model of association
defined by Esary, Proschan and Walkup, because if X is
POD(-1,-1,...,-1), then

n n
P{ N (X.,<x.)} =2 T P{X.< x.}
P21 i i 121 i i

,x Je R", It is the same for negative

for every §=(x1,x2,... n

dependence.
Now we will define what we call "mutual uncorrelation' for

n random variables as a generalization of the bivariate uncorre-

lation.

Definition 3.2, The random variables XI’XZ""’Xn are said to be

"mutually uncorrelated" if

cov( I X., I Xi) =0

. i’
leJ1 l€J2

for every J.,J, €1 such that J.N J, =0,
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For n=2, the '"mutual uncorrelation' is the known bivariate

uncorrelation.

Our main result can now be enunciated, although we will

prove it later.

Theorem 3.3. |If X1,X2,...,Xn

: . . . n
negatively orthant dependent according to a direction a € R,

are random variables positively or
then the independence of X1,X2,...,Xn is equivalent to the '"mu-

tual uncorrelation' of these.

For the proof of theorem 3.3, we will first prove some
other results.

Lemma 3.4. The random variables X1,X2,...,X are '"mutually unco-

n
rrelated'" if and only if

(3.2) E( O X,)= T EX, for every subset JCI.

jed 4 jed 4
Proof. If XI’XZ""’Xn are '"mutually uncorrelated'" and JCI, then
for J]=J-{l} and J2={1} , we obtain

E( I X,)=EX]'E( n x.),
jed jeJ]

and with this reasoning we have the result. If (3.2) is satis-

fied, and Jiady Cl such that J1ﬂ J,=8, then by applying (3.2)

to J],J2 and J1UJ2’ we obtain the "mutual uncorrelation'.

Theorem 3.5. Let X]’XZ""’Xn be random variables such that any

1’Y2""’Yn

be random variables independent of the preceding, and with the

(n-1) of them are "mutually uncorrelated', and let Y

same distribution of these if n is even, or with the distribu-
tion of (-X],Xz,...,Xn) if n is odd. Then

E( I (X;-Yi))=2(E( I X.,)-1E xi)
iel iel iel
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Proof. If n is odd, then with the conditions of the theorem we

can obtain that

EC T (X;=v;))=2-{EC T X,)+ Z i x e x.)-
el el JeR jed 4 jer-u

-z (-nCerdWem xE( T x.))
JeP jed 4 jer-yd

where R and P are given by
R ={J : Jct, 1gJg , 1 <Card(J)<%}
P ={J : Jci, 1eJ , Card(J)<%}

By using the fact that any (n-1) of Xl’XZ""’Xn are "mutually

uncorrelated'" and lemma 3.4, we obtain the result.

If n is even, then we obtain

ECT (x-v, )=2-(e( T x)+ 5 (-0 e xye( X;)} +
el iel | JeH jed jel-y
s (-0MZE( T x)E(T X))
JelL jed J jel-J

where H and L are given by

H={J: JCi, 1<Card(J)<% 1

L ={J :9C1, Card(J)= }

n
2
With the 'same reasoning as before, the proof is concluded.

Theorem 3.6. Let X1,X2,...,Xn be random variables such that any
(n-1) of them are independent and let Yi,Yy,...,Y, be random va-
riables independent of the preceding and with the same distribu-

tion of these if n is even, or with the distribution of
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(-X,,X ..,Xn) if n is odd. Then if n is even,

1) 2,'

E{nm (1(u.,X,)=1(u,,Y.))}=2-{P( N A)-T P(A.)}
el e o iel ' iel !

and if n is odd,

n
E{ I (1(u.,x.)—l(u.,Y.))}={P(B1 R Ai)-P(B])' I P(A,)}-
el o o i=2 j=2 !
‘{P(nAi) = HP(Ai)}:
iel iel

where Ai={w: Xi(w) >ui}, i=1,2,...,n and B1={w:-X](w)>u]},

and

Proof. Let H, L, R and P be the same as in theorem 3.5. If n is

even, we have that

T (X -1, vy 2 tp(n Aps 1 (-0 e
iel iel jeH jed jel-Jd

P( NAP(N Aj)}+

v 3 -0™%(nA)P( N AL
jeL jed I jer-ud

I1f n is odd, we obtain that

n
E{ I (|(ui,Xi)-I(ui,Yi))}={P(B] N Ai) +
el i=2

vz (-nard@paa)pe. N A)-I (-1)°ard(J)P(s] AA)P(N A)I-

JeR jed d JEIEN 3 sep jsJ]J jel-J
-{P( N A+ (-1)card(J)P( nAPCN A.)-
iel JeR jed jel-J
oz (-ntrdecaagp(n A}

JeP jed 4 jer-a )
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where J =J-{1} and 1 =1-{1},

By using the fact that any (n-1) of X1,X2,...,Xn are inde-
pendent, we obtain the result.

Now, we can prove theorem 3.3.,
Proof theorem 3.3. It is clear that independence implies "mutual
uncorrelation'., The reverse implication will be proven by induc-
tion on n. If n=2, the "mutual uncorrelation" is reduced to the

usual bivariate uncorrelation and our result is reduced to
Lehmann's result. Let us assume that the result is satisfied for
(n-1) and let us prove it for n. The “mutual uncorrelation" of
X]’XZ""’Xn implies that any (n-1) of them are also "mutually
uncorrelated'". Moreover, because XisXy,.00,X  are POD(a) or
NOD(%), then any (n-1) of them are also POD (a*) or NOD(g*), where
a* is the resulting vector after eliminating in o the component

corresponding to the variable that is excluded.

Then, by inductive hypothesis, any (n-1) variables between
X1,X2,...,Xn are independent, and X]’XZ"“’Xn satisfy the condi

tions in theorem 3.5 and 3.6. Therefore,\a]X1,a2X2,...,ann also

satisfy these conditions, and so, if Y]’YZ""’Yn have the same

distribution as XI’X ...,Xn when n is even, or the distribution

2 b
of _XI’XZ""’Xn when n is odd, then

+00 +00
(3.3) E(igl(aixi—aivi))=gj_m ...f_iigl(l(ui,aixi)—l(ui,aiYi))}du]duz...dun

Because we are assuming that all the moments E( I o.X.) exist for
jed J
every JCi, thenwe can compute the expectation under the integral
signs. As Xl’XZ""’Xn are '"mutually uncorrelated', and by using
theorem 3.5, the left side in (3.1) is zero for either n even or

odd. By theorem 3.6.

E{ I (I(“i’aixi)_l(ui’aiyi))} is non-negative
iel
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{f either X is POD(a) and n is even or X is NOD(a) and n is odd,
and non-positive in the remaining cases. Therefore, in any case,

we obtain that

P(NA.) = 1T P(Ai)’ or
iel iel
n
P{a1X]>u1,a2X2>u2,...,aan>un} =1 P{aiXi>ui}

i=1

for every (u],uz,...,un)eRn except, perhaps, on a set with zero
Lebesgue's measure. By using the right-continuity of

P{ N (uiXi>ui)},‘(3.h) is satisfied for every (u1,u2,...,un)€Rn
' iel

and therefore o.X,,a.X.,...,0 X are independent, and so are
171 272 n'n
X1,X2,...,Xn.
Remarks. It is necessary to point out that (3.4) is obtained for
n odd as well as for n even. This is so because, for instance,

if the random variables are POD(a), then

P(B1i

s =

n
ALY P(B,): I P(A.) and
2 ! -

P( O Ai) =1 P(Ai) ,
iel iel

and (3.4) is obtained. It is similar for the case of NOD (a) .

| should mention that the main result in this paper has
been independently obtained later by Fang [2], by using a diffe-

rent technique.
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