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SOME REMARKS ON A PROBLEM OF C. ALSINA

J. Matkowski and M. Sablik

SUMMARY
Equation.
(1) Fflax+y)+f(F(x)+f(y))=f(Ff(x+f(y))+f(f(x)+y))
has been-proposed by C. Alsina in the class of
continuous and decreasing involutions of (0,+%).
General solution of (1) is not known yet. Ne-

vertheless we give solutions of the following
equations which may be derived from (1):

(2) flxz+l) + f(f(x)+1) =1,

(3) f(2x) +f(2f(x)) = fl2f(x +f(x))).
Equation (3) leads to a Cauchy functional equa
tion

(4) o(f(x)+ x) = 9(f(x)) + ¢l(z),

restricted to the graph of the function f, of
the type not yet considered. We describe a ge-
neral solution as well as we give some condi-
tions sufficient for the uniqueness of solu-—
tions of (2) and (4).
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C. Alsina proposed at the 24th International Symposium on

Functional Equations to solve the following equation (cf. [11])
(1) fx+y)+FLF(x)+F(y) 1 = FIF(x+F(y))+Ff(y+f(x)) ]

where f is a continuous and decreasing involution of (0,+®). It
is easy to see that f given by f(x)=ax | for a positive a fulfils
(1) and all the requirements. However it is not known whether

there any other solutions.

Without loss of generality we may restrict ourselves to
the case where 1 is the only fixed point of f (cf. Z. Moszner
[10] and T. M. K Davison [41]). It turns out that any solution of
(1) fulfilling f(1)=1 satisfies

(2) Fx+1)+f(F(x)+1)=1

for x € (0,+=) (cf. Davison [ 4], Sablik [111). It may be interes-
ting that equation (2) has already been dealt with. W. Benz and

S. Elliger in their paper [3] proved that the inverse is the only
endomorphism (or antiendomorphism) of the multiplicative group

K* of a field K which fulfils (2). The same equation appears al-
so in the definition of the so called KT-hearfields (cf. R.Artzy

[21]).

Another equation which may be derived from (1) after

substituting x in the place of y is
(3) F(2x)+F (2F (x)) =F (2 (x+F (x)) ).

As we show later, (3) leads to a Cauchy equation on the
graph of f but of the type that has not been studied yet (note
that the number of results concerning this topic is quickly in-
creasing, cf. e.g. M.C. Zdun [13], G.L. Forti [6], J. Dhombres
[5), J. Matkowski [9] or M. Sablik [121]).

We give general solutions of (2) and (3) in classes of func-
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tions slightly more general than the one proposed by C. Alsina.
Then we give also some conditions assuring that the inverse is

the only solution of (2) or (3).

1. In the present section we will describe solutions of (2)-

First we prove some lemmas which enumerate properties of solutions

of (2). Let us start with the following.
Lemma 1. Let f:(0,+®) >(0,+») be a solution of (2) which is in-
vertible in (1,+»). Then f is an involution of (0,+=), i.e.f2=id.

In particular f is a one-to-one mapping of (0,+%) onto itself.

Proof. Fix arbitrarily x € (0,+e). Putting f(x) instead of x into
(2) we obtain

(4) F(F(x)+1)+F(F(F(x))+1)=1,
Comparing left hand sides of (2) and (4) we see that
F(x+1)=F(F(F(x))+1).

Hence x=f(f(x)) follows, since both x+1 and f(f(x))+1 are in

(1,+), where f is invertibie.

Remark. Invertibility assumption in the above lemma is essential
as the example of f:(0,+x) = (0,+x) set arbitrary for x in (0,1]

and equal to 1/2 in (1,+ ) testifies.

Lemma 2. If f:(0,4+=) + (0,+=) is a solution of (2) and f(1)=1
then F(2) = 1/2. If, m
f(x)=2-x if and only if x=1.

reover, f is invertible in (1,+*) then

Proof. First statement is obvious and to prove the second one
suppose that f(1+c)=2-(1+c)=1-c for a c> 0. Then (2) implies

F(f(c)+1)=1-f(c+1)=c.



J. Matkowski, M. Sablik 202

But by Lemma 1 f is an involution so we infer
f(c)+1=Ff(c)

which is a contradiction. This ends the proof for if f(1-c)k2-(1-¢c)
=l+c for g ¢>0 then using Lemma 1 again we get f(l+c)=1-c which

has already been proved to be impossible.

Now let us enumerate some properties of continuous solu-

tions of (2) which are invertible in (1,+®).

Lemma 3. Let f:(0,+o) > (0,+w) be a continuous solution of (2)
which is invertible in (1,+°). Then f is decreasing,

Tim f(x)=+», 1im f(x)=0 and 1 is the only fixed point of f.

x>0+ X >4

Proof. By Lemma 1, f is a continuous involution‘of (0,+°). It is
easy to see that it is the only continuous and increasing involu-
tion. But it does not solve (2) and thefefore f has to be de-
creasing. Hence the existence and values of limits of f at O and
+o as. well as the uniqueness of a fixed point. Letting x tend to

+o in (2) and using continuity of f we find out that f(1)=1.

Summarizing the above results we have

Proposition 1. If f:(0,+w)> (0,+w ) is a continuos solution of

(2) which is invertible in (1,+») then f]:=f|[] 2] is continuous,
decreasing, f1(1)=1, f1(2)=l/2 and f1(x)#2~x for x e (1,2].

The main result of this section is the following reverse of

Proposition 1.

Theorem 1. Let f]: [1,2]> R be any continuous and decreasing func
tion fulfilling f1(1)=1, f1(2)=1/2 and,f](x)#z-x for x € (1,2].
Then fl can be uniquely extended to .asolution f:(0,+») > (0,+®) of

(2). This solution is a continuous involution of (0,+=) .

The above theorem will follow in an obvious way from a

slightly more general result we prove below.
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Proposition 2. Let 1=]:[1,2]—> R be an arbitiary eontinuous and
decreasing/function which fulfils f1(1)=1 and fl(2)=]/2‘
Put cozﬁsup{c [0,1]:f1(1+c)=l-c}. Then f, can uniquely be exten-

ded to a function f:(co,ww) > (c°,+W) which solves (2) in (co,va

This function is a continuous involution of (co,+w).

Proof, Let f1 be a function fulfilling admitted assumptions.
Observe that f1([1,2])=ET/2.1]C(0,1]. Denote I]=[l,2], and

I h= (n,n+1 ] for n>2. We can define a sequence (fn)neN of mappings
fn:ln - (0,11 taking f1 as above and setting

(5) fn+1(x)=1-f1(fn(x-1)+1), x €l 1

for all neN . To make sure that functions fn,|1>2, may be de-
fined by (5) we use induction. Since f1(l1)C (0,11, f2 is well

defined (notice that if x Eln+1 then x-1 Eln, n €N, and
f

1(x-1)+1 € (1,2 for every x €l2). Moreover, fz(lz)c (0,1] as it
may be easily checked. Now, if fn:In (0,11 is defined, then
fn(x-1)+1 € (1,2] for every x €|n+1 and therefore fn+1 is well
defined by (5) and takes values in (0,11, which follows from the

properties of f1.

An easy induction shows also that fn are continuous and de

creasing for n eN. Moreover, we have for every n €N
(6) 1im f (x)=Ff (n+1).
x> (n+1)+ n+1 n

Indeed, for n=1 we have in virtue of the continuity of f1

Tim Fa(x)=lim (1=F, (F, (x=1)+1))=1-F (f, (1)+1)=1-(1/2) =1/2=F(2)
2 1 1 1 1 1
X2+ x+2+

If (6) holds for an neN then it holds for n+l, by continuity

of fI:
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lim f (x)= 1im (1-F,(f (x=1)+1)
xo(n+2)+ N*2 x>(n+2) + Toon#
=1-f, (1im fn+](x-1)+1)=1-f1(fn(n+1)+l)
‘x> (n+2)+
=fn+ﬁ(n+2),

which ends the induction.

Define f+:[l,+m) +(0,1] putting f+(x):=fn(x), whenever
x eln. Taking into account our previous observations we infer
that f+ is continuous and decreasing. The latter property implies
that -

(7) d=1im f+(x)
x—>+oo
exists and is in [0,1]. Moreover, f, fulfils (2) for every
x €[ 1,+*®). Indeed, let x €In for some neN. Then f+(x)=fn(x),
f+(x+1)=fn+](x+1) and f+(x)+1 €(1,2]. Thus

f (x+1)+f+(f+(x)+1)=f

. (x+1)+F](fn(x)+1)=1

n+1
by (5) which proves the required equality. Letting x tend to +®
in (2) we obtain in view of (7) and continuity of f,

f (d+1)=1-d

K
whence de[0,cd . If c =0 then d=c_=0. Suppose that 0< d < ¢y ST.
Then continuity of f+ makes possible choice of an xo€[1,+W) such
that f+(xo)=cb. Using (2), definition of ¢, and continuity of f]
which imply f+(c°+l)=l-co, we obtain

f+(xo+1)=co.

An easy induction shows that f+(x0+n)=co for n €N. This leads to

a contradiction with (7) and therefore d=c0. Thus, by monotonici-
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ty of f _~we obtain f+( h,+®))=(co,1]. As £ 1s invertible we are

able to define f:(co,+w) > (Co,+”) by

f+(x) for x €[ 1,+%),
f(x)=
-1

f, (x) for x € (c

1.

o’

0f course f is a continuous involution. We have already observed
that f fulfils (2) for x 6[1,+W). 1f x e(co,l) then

f(X)=f;1(x)1,+“) and hence

Fx1)+F (F(x)+1)=F (F(F(x))+1)+F(F(x)+1)

=f+(f+(f(x))+1)+f+(f(x)+1)=1.

It is easy to check that for any solution ?:(co,+w)*(co,+“) of

(2) such that ;[| =f1 we have FII =f , n€N, where f are given
1 a N n

by (5). Hence ?h | 4w) =Tl 1 4wy and finally if x e (c,,1) then
FOF(x)+1)=F(F(x)+1)=1-F(x+1)=1-F(x+1)=F(f(x)+1).

Thus f(x)=f(x) by invertibility of f. This ends the proof.

To get Theorem 1 it is enough to observe that c =0 under

its assumptions.

Remark., Let us observe that if f] is of higher regularity

(Cr, 1 <r< +») then it may be extended to a solution of (2)
which is of the same regularity. |t is enough to impose some na
tural boundary conditions on f1 and apply a similar proof as in

Proposition 2.

Now we are going to give two conditions which characteri-

ze the inverse among solutions of (2).

Theorem 2. Let f:(0,+») - (0,+=) be a solution of (2) which is
invertible in (1,+), f(1)=1, and suppose that g: [1/2,2]> R gi-
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ven by g(x)=xf(x) is monotonic either in [1/2,1) or inl[1,2].

Then f(x)=x-1 for every x€ (0,+®).

Proof. By Lemma 2 we get f(2)=1/2, and since by Lemma 1 f is an
involution we have also f(1/2)=2. Thus g(1/2)=g(1)=g(2)=1 and

monotonicity of g implies g(x)=1 inl 1/2,1]1 or in [1,2]. In both
cases however f(x)=x_1 for x& 1/2,2] because f is an involution.
The function f1=f|[],2] fulfils the assumptions of Theorem 1 and
therefore it has a unique extension to a solution of (2). Since

the inverse actually is such an extension we obtain our assertion.

The final result of this section reads as follows.

Theorem 3. Let f:(0,+w) = (0,+w) be a solution of (2) which is
invertible in (1,+w) and f(1)=1., If g=1/f is convex or concave

inl1/2,2] then f(x)=x—] for every x € (0,+),

Proof. Lemmas 1 and 2 imply f(2)=1/2 and f(1/2)=2. Thus g(x)=x
for x €{1/2,1,2}. It is easy to see that both convexity or ﬁonci
vity of g imply g(x)=x for x €[ 1/2,2], In particular f#x):=f}h ﬂpd
=x-1 for X € [1,2] and using Theorem 1 we get 'F(x)-=x'1 for all,

X € (0,+oo),

Remarks. 1. It is clear that any solution.f:(0,+w) +(0,+») of (2)
is bounded above by 1 in (1,+»), Therefore it is enough to assu-
me in Theorem 2 that g is Jensen (mid-point) concave. Indeed,

then g is bounded below in (1,2) and hence it has to be continuous
by well known results {(cf. e.g. M. Kuczma [ 8]).

2, f:(0,+») + (0,+») given by

r
27"+ (n+2) 270 for x €[ n,n+1) CneN
f(x)=

-2"x+n+2 for x G[Z-n,Z-n+])

is a convex and continuous involution solving (2). This shows
that convexity does not characterize the inverse among solutions
of (2).

2, Now let us focus our attention on solving equation
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(3). In Alsina's problem f is an involution (this actually follows
from the remaining assumptions, cf. Moszner [ 10]). Thus, setting
¢ (x):=f(2f(x)) for x € (0,+*) we can rewrite (3) in equivalent

form
(8) P (x+f(x))= w(x)+ ¢(f(x)).

The above equation means that ¢ is additive for all pairs
(x,f(x)), x € (0,+=), i.e. ¢ is additive on the graph of f. As we
have mentioned in the introduction additivity on graphs has been
widely investigated. However, usually point (0,0) was assumed to
be an accumulation point of the given graph, which is not the
case in our present situation (it may easily be observed that

Tim f(x)=+e),
x>0+

First result of this section describes a general solution
of (8) as ''depending on an arbitrary function" (cf. M, Kuczma

[ 71 for an explanation of this notion).

Theorem 4. Let f:(0,+») +(0,+>) be an involution satisfying
f(1)=1 and f((0,1)) C (1,+») and f((1,+=)) C (0,1). Then every
function wo:[1,+w)+ R such that

(9) 0y (2)=2 ¢ (1)

can uniquely be extended to a solution ¢:(0,+®) > R of the equa-

tion (8). Moreover if f and ¢, are continuous the ¢ is continuous.

Proof. Define ¢:(0,+») »R by

¢o(x) for x €[ 1,+x),
(10) p(x) =
¢o(x+f(&))-¢o(f(x)) for x € (0,1).

¢ is well defined since.in view of our assumption, x € (0,1) implies

f(x) >1 (and hence x+f(x)>1). For the same reason if x€(0,1)then
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w(X)+¢(f(X))=¢o(x+f(X))-¢o(f(X))+¢O(f(x))=¢O(X+f(x))=¢(X+f(X))-

If x=1 then (8) holds for ¢ because of (9). Finally, if x € (1,+w)

then f(x) € (0,1) and we have (keeping in mind that f is an invo-

lution)
Y (x)+p (f(x))= ¢O(X)+¢o(f(X)+f(f(X)))“wo(f(f(X)))
= ¢0(x+f(x))= ¢ (x+f(x)).

Thus ¥ extends wo to a solution of (8). Uniqueness is obvious
since every solution ¢ of (8) has to satisfy (10) where

¢o=wl[1’+“)° To prove the last sentence it is enough to check

continuity of ¢ at 1. But this fact easily follows from (10) and

(9).
Remark. Theorem 4 remains true if we assume that for some
a € (0,+°) we have f(a)=a, f((0,a)) C (a,+»), f((a,+>)) C (0,a)

and wO:[a,+w)+ R atisfies ¢0(2a)=2 wo(a).

Proposition 3. Let f:(0,+®)> (0,+*) be continuous and decreasing

surjection and let k be a positive constant. If v:(0,+=)> R is a

solution of

(11) ¢ (f(x)+kx)=p (f(x))+ ¢ (kx)

and the function g:(0,+*)>R given by g(x)=¢(x)/x for x € (0,+x)

is monotonic then there is a ceR such that ¢(x)=cx for x €(0,+x).

Proof. It is clear that g defined in our theorem satisfies

(12) g (F(x)+kx)= L) g (f(x))+ —KX g (kx)
f(x)+kx f(x)+kx

for every xe (0,+ @), We will show that any monotonic solution of
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(12) is constant. Without loss of generality we may assume that
g is nondecreasing. For x sufficiently small we have

kx<f(x)<f(x)+kx as it follows from our assumptions that

(13) lim f(x)=+c
x>0+

Hence and by (12) we get

g (F(x)+kx)< —F0O) (£ (x))+ — KX _g(£(x)) = g(f(x))< g(Ff(x)+kx)
fx)+kx f(x)+kx )

and thus g(f(x)+kx)=g(f(x)) for small x. Again, using (12), we
infer that g(f(x)+kx)=g(kx) for small x. Consequently, g has'to
be constant on every interval [ kx,kx+f(x) ] provided x is small

enough,

Hence and from (13) we immediately deduce that g is constant.

Remark. It is worthwhile to observe that a function ¢:(0,+») ~
(0,+=) fulfils (11) if and only if for every xe(0,+®) points (0,0),
(kx,p(kx)), (F(x), o(f(x))) and (kx+f(x), o (kx+f(x))) are verti-
ces of aparallelogram. This provideé an immediate geometrical proof

of the above thesis.

Let us conclude our considerations with a result characteri
zing the inverse (up to a multiplicative constant) with the help

of Alsina's equation (1).

Theorem 5. Let f:(0,+=)= (0,+») be a continuous and decreasing
solution of (1). If functions g: (0,+®)+ (0,+») and h:(0,+») -
(0,+») given for x ¢ (0,+») by

g(x)=f(2f(x))/x and h(x)=F(3f(x))/x

are monotonic then there exists an a> 0 such that f(x)=ax-] for

every x € (0,+=).
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Proof. As it has been mentioned at the beginning of this paper
we may assume without loss of generality that 1 is the only fi-
xed point of f., We will prove that f(x)=x-] for every x € (0,+%),
Using Lemma 1 we infer that f2 = id, since f solves (2) of course.
Thus as we have mentioned at the beginning of this section,
¢(x)=xg(x), x € (0,+=), defines a solution ¢:(0,+=) +(0,+») of (8)
or (11) with k=1. In particular all assumptions of Proposition 3
are fulfilled. It follows that there is a c € R such that g(x)=c
for x € (0,+%)., Taking into account Lemma 2 we obtain

c=g(1)=f(2f(1))=f(2)=1/2, and hence, since f is an involution
f(x/2)=2f(x) for all x e (0,+=),

An easy induction shows that

(14) £(2"x)=2""F(x) for all nez and x € (0,+%).

Now put y=2x into (1). We get for all x e (0,+w)

(15) FO3X)+F(F(x)+F(2x))=F (F(x+F(2x))+F(2x+Ff(x))).

Using (14) for ne{-1,1} we can write the left hand side of the

above equality in the following form
(16)  F(3x)+F(F(x)+f(2x))=F(3x)+F(2F(2x)+F(2x))=F(3F(F(x)))+F(3F(2x)),
while the right hand side may be written in the form

(17)  FOF(x+fF(2x))+F(F(x)+2x)))=F (F(x+(1/2) f(x))+f(f(x)+2x))
=S (F((1/72) (2x+F (X)) )+F(F(x)+2x))=F(2F(2x+F(x)) +

FOFE(x)+2x))=F(3F(2x+F(x))).

Taking into account (15), (16), (17) we see that ¢:(0,+)>(0,+w)
given by ¢(x)=xh(x) fulfils (11) with k=2. Since h is monotonic
there is a c eR such that h(x)=c (cf. Proposition 3). Thus we ha
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ve c=h(1)=Ff(3F(1))=Ff(3) and consequently 3c=3f(3)=3h(3)=f(3f(3))=
f(3c). Since 1 is the unique fixed point of f we obtain 3c=1 or

c=1/3. This together with f2=id implies
f(x/3)=3f(x) for all x € (0,+),
whence by an obvious induction we get

(18) F(3"x)=3"MF(x) for all meZ and x € (0,+w).

From (14) and (18) we derive (putting x=1) f(2"3™)=2""3"" for all
n, me Z. The set 12"3™.n,meZ} is dense in (0,+»). This implies
in virtue of continuity of f that f(x)=x-] for all xe (0,+») and

finishes the proof.
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