A REMARK ON METRICS FOR FINITELY ADDITIVE DISTRIBUTION FUNCTIONS

Silvano Holzer and Carlo Sempi

It is well-known that the space of distribution functions (d.f.'s) for countably additive probability measures can be metrized in such a way that the topology of the metric coincides with that of weak convergence. This can be done both when the space of d.f.'s is assumed to be Δ° , which corresponds to considering only random variables that take almost certainly real values (i.e. $P(|X|=\infty)=0$) and when r.v.'s are allowed to take values in the extended reals \bar{R} (i.e. $P(|X|=\infty) \geq 0$); in this latter case the space Δ of d.f.'s contains Δ° properly. For Δ° the right metric is that of Lévy ([4],[5]), while for Δ one can choose in a large class of metrics (see [10],[6],[7],[9],[11],[12]).

There are, however, problems that are not amenable to a probabilistic treatment unless the probability measure used is finitely, rather than countably, additive; suffice it to mention the problem of the first digit that has recently received a great deal of attention ([2],[3],[8]).

The research here reported was partially supported by funds of the Italian Ministry of Education (M.P.I.). The authors are members of the G.N.A.F.A. - C.N.R.

It is thus natural to ask whether a similar metric can be introduced on the space Δ_{fa} of finitely additive d.f.'s. We recall that a finitely additive d.f. has all the properties of a d.f. in Δ with the possible exception of right- (or left-) continuity on the reals; specifically

(1) A function F: $\bar{R} \to [0,1]$ is said to be a finitely additive distribution function if it is increasing (i.e. x' < x'' implies $F(x') \le F(x'')$) and $F(-\infty) = 0$, $F(+\infty) = 1$. The space of such d.f.'s is denoted by Δ_{fa} .

This notion of d.f. is important also for the subjective foundation of probability. In fact a probability on the set of all the half-lines $[-\infty,x]$ is coherent iff it can be obtained by a finitely additive d.f. in the usual way, i.e. $P([-\infty,x])=F(x)$.

The answer to the question asked above is negative, as is easy to see; in fact it is enough to consider that the existence of a distance that metrizes weak convergence on Δ_{fa} is not compatible with the fact that weak limits of finitely additive d.f.'s are not unique. For instance the constant sequence $\{F_n\}$ with $F_n := \mathbf{1}_{\begin{bmatrix} 0,+\infty \end{bmatrix}}$ converges weakly to anyone of the d.f.'s of family $\{F_c\}$ where $F_c := \mathbf{1}_{\begin{bmatrix} 0,+\infty \end{bmatrix}} + c \ \mathbf{1}_{\{0\}}$; the family $\{F_c\}$ has the cardinality of the continuum. In this connexion, de Finetti's remark ought to be borne in mind that one should be free to assign to a d.f. at any of its points of discontinuity any value between its left- and its right-limit ([1]).

This negative answer is tempered by the following proposition

- (2) For a set Δ^1 of $\Delta_{\mbox{\it fa}}$ the following statements are equivalent:
- (a) there exists a distance d on Δ^1 that generates the topology of weak convergence;

- (b) two d.f.'s of Δ^1 coincide iff they are equal at their points of continuity (i.e. for Φ_1 and Φ_2 in Δ^1 , $\forall x \in C(\Phi_1) \cap C(\Phi_2)$ $(\Phi_1(x) = \Phi_2(x)) \Leftrightarrow \Phi_1 = \Phi_2$.
- Proof. (a) \Rightarrow (b) If two d.f.'s coincide, they obviously take the same values on the set of their points of continuity; thus it suffices to show that (a) implies the following:
- if two d.f.'s in Δ^1 take the same value at their points of continuity, then they coincide (i.e. $\forall x \in C(\Phi_1) \cap C(\Phi_2)$ $(\Phi_1(x) = \Phi_2(x)) \Rightarrow \Phi_1 = \Phi_2$).

But this implication follows from the requirement that the limit be unique.

(b) \Rightarrow (a) Going through the proof of [9] one sees that, for instance, the metric d_F can be defined on Δ^1 as a metric and not simply as a pseudometric; its topology is that of weak convergence.

It is a simple consequence of the above result that in order to define a metric on the space of finitely additive d.f.'s (or on one of its subsets) it is necessary to introduce a rule for assigning the value of a d.f. at every point of discontinuity: this rule is specified for countably additive d.f.'s while it can be chosen arbitrarily for finitely additive d.f.'s.

Let Δ_{max} be a maximal subset $\Delta^1 \subset \Delta_{\text{fa}}$ on which a distance d for weak convergence can be defined. Notice that Δ_{max} is composed by all the d.f.'s in Δ_{fa} with a rule for assigning a value to each d.f. at every one of its points of discontinuity; Δ_{max} does not contain Δ , the space of d.f.'s of countably additive probability measures, unless the rule assigns the right limit at each point of discontinuity. Since Helly's first theorem holds for d.f.'s in Δ_{max} in exactly the same manner as for Δ one can still conclude that the metric space (Δ_{max}, d) is compact and hence complete.

References

- [1] B. DE FINETTI, Teoria delle Probabilita', Einaudi, 1970.
- [2] A. FUCHS G. LETTA, Sur le Problème du Premier Chiffre Décimal, Boll. Un. Mat. It. (6) 3-B, 451-461 (1984)
- [3] A. FUCHS Ph. NANOPOULOS, Mesures Invariantes par Translations, Classes de Dynkin, First-Digit Problem, Adv. in Math. 55, 24-74 (1985).
- [4] P. LEVY, appendix to M. FRECHET, Recherches Théoriques Modernes sur le Calcul des Probabilités. Premier livre: Généralités sue les Probabilités; Eléments Aléatoires, Gauthier-Villars, 1936 (deuxième ed. 1950).
- [5] E. LUKACS, Stochastic Convergence, Academic Press, 1975.
- [6] B. SCHWEIZER, Multiplication on the Space of Distribution Functions, Aequationes Math. 12, 156-183 (1975).
- [7] B. SCHWEIZER A. SKLAR, Probabilistic Metric Spaces, Elsevier-North-Holland, 1983.
- [8] R. SCOZZAFAVA, Un esempio concreto di probabilità non σ-additiva: la distribuzione della prima cifra significativa dei dati statistici, Boll. Un. Mat. It. (5) 18-A, 403-410 (1981).
- [9] C. SEMPI, On the Space of Distribution Functions, Riv. Mat. Univ. Parma (4) 8, 243-250 (1982).
- [10] D.A. SIBLEY, A Metric for Weak Convergence, Rocky Mountain J. Math. 1, 427-430 (1971).
- [11] M.D. TAYLOR, New Metric for Weak Convergence of Distribution Functions, Stochastica 9, 5-17 (1985).
- [12] J.E. YUKICH, The Convolution Metric d_g , Math.Proc. Camb. Phil. Soc. <u>98</u>, 533-540 (1985).

Manuscript received in March 28, 1987.

Dipartimento di Matematica Università. C.P. 193. Lecce 73100 Italy.