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INSTABILITY IN SEMI-INFINITE STRIPS
OF SOLUTIONS OF LINEAR SYSTEMS

Ramén C(uintanilla

1. Introduction.

As it is well known, the use of the energy conservation law
is essential in order to apply the logarithmic convexity or
weighted energy method, among others. Using them [1 to 4] it ha-
ve been obtained a lot of informatibn about the qualitative
behaviour of the solutions of the equations of the ill-posed
linear elastodynamic problem. But the same attention have not

been observed to other conservation laws.

Recently, Knops and Stuart [5] have used a conservation law
obtained by Green [6] in order to prove the uniqueress of solu-
tions in non-linear elastostatic. A generalization of this con-
servation law was foind by Olver [7] and it was used by the
author [ 8] to prove instability of the classical solutions of
some autonomous and homogeneous linear and non-linear equations.
The present paper is devoted to study the behaviour at infinity
of some solutions of non autonomous and non homogeneous second
order linear systems in semi-infinite strips. Because we have
explicit dependence with respect to the independent parameters
of the evolution equations we lose the symmetry of the equations
and thus we are not going to have conservatio& laws in a strict

sense. Nevertheless this fact, we can obtain two evolution
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equalities from which, using similar methods to [81, we will

obtain inestability results of the solutions at infinity.

The coordinates of a point X will be noted by (xl,...,xn)
and uL=(3/3xk)u'. We express the total derivative respect x4 by
Dj and the partial one by (3/9xJ). The Einstein's summation

convention will be adopted, also.

We consider a prismatic cylinder Q=[0,t]x B where B is a
regular domain of Rn-l such that the boundary 9B is sufficiently
smooth to allow the divergence theorem to be applied. We denote
B(;l) the intersection of Q with the hyperplane x]=;]- This no-
tation also serves to abbreviate the integral of a function over

B in the following way:

I h dx = f h(il,x x ) dx

sy yoesydXx
B(xI) B 2 n v 2 n

In the section two we set down two evolutionary equalities

for the systems defined by the Euler-Lagrange equations of a

function W(x',ud) in the cylinder Q. In the section three we
apply these results to obtain inestability of solutions in a

semi-infinite strip,

From now on, we will suppose that the solutions are

classical ones i.e. Cz-function that satisfie the differential

system.

2. Evolutionary equalities. Consequences.

Let us consider the partial differential equations system

given by

D, ( aw/au})=o i=1,...,m; j=1,...,n (1)

in the cylinder Q, where w=w(x',u?) is a Cz-function of their

arguments. The associated boundary condition if given by
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u =0 X, el o,t] x 9B (2)

We can introduce the following functions

P _ K Ky _
Pj = ui(awﬁuj) Gijw
igi .
Y. = x'P} Lj=1,...,n (3)
it '
we have the following result
Theorem 1. Let u(x],...,xn) be a classical solution of the sys-

tem (1) with the boundary conditions (2). Then we have the

equalities

t
s P:dx =/ P}dx -7 (7 (Bw/Bx])dx) dz  (4)
B(t) B(0) 0 B(Z)
and
1 . .. t PN
€ f o Pidx 0 xIpdax = s dP{dx s (F 0 Nox'Pyds)dzs=
B(t) B(t) B(0) 0o 9B(z)d
t k K i i
=/ (S (u} (3W/ 3uy)-(nW+x (3 W/3 x Y)) dx)d ¢
o B(z) '
t 1
+ 7 (7 (aW/ 3x )dx) dtg (5)
0 B(Z)

where the sumation in the left-hand term of the equality (5) is
taken for i,j = 2, and Nj is the j-component of the normal vec-

tor to 09B.

Proof: Using the equation (1), we see

D.Pl=-(au/3x"
iP5 (dW/3x )

and
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D,Y; = u?(BW/uf) - (nWex ( W/3x))

Thus, employing the divergence theorem and the boundary condi-
tions we deduce the equality (4) and
P i t Py
Joox'Pidx - S x'Pyodx S (S N;x'P;ds)de =
B(t) 4 B(0) 0 3B(%)
t

=7 (s (W (aW/3u%) - (nW+x. (3W/3x'))dx) dz
0 B(C) 1 I I

Introducing the equality (4) in this last equality and using
that P}=0 if j#1 in the boundary we obtain the equality (5).

Remark. In the case that (3/3X1)W < 0 the equality (4) leads to
the inequality of the energy

s P}dx > E(0)
B(z)

and in the particular case that (a/ax])w=o we obtain the well

known energy conservation law

s P:dx = £(0)

Now, we suppose that our cylinder is semi-infinite. Then

2=[0,2)xB. The theorem 1 leads us to the next theorem.

Theorem 2., Let W be a function such "that

e

() uS(owy 2u) - (nu+xd (au/ax)) < 0 where j > 2
(i) (a/a3xHw <o

and let B be a regular region such that

(iii) ij'P} >0 for all x€93B and i,j = 2.
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Then the classical solutions satisfy that -/ ( )xJP% dx (where
B(t
j 2 2) goes to infinite when t goes to infinite if we suppose
that J  Pldx>0.
B(0)

Proof: First, let us consider the function
1 t 1
o(t)=t S (S (aW/3x )dx)ydz-f (f z (38W/3x )dx)d ¢
0 B(z) 0 B(Z)

This function is non-positive because ®(0)=0 and

t 1
' (t)=s (s (3W/93x )dx)dg < 0.

0 B(z)
Then, if we recall the equality (5) we see

e/ plax+ s xded ax - 5 xedax <o
B(0) B(t) B(0)

where j =2 2.,

3. Dimension one.

Let us consider the case in which B is a closed interval of
the real line. We can suppose that one end of the interval is ze
ro and the other one is a real number R>0. We consider the
linear case for the evolution system. To see the system as an
evolution one, we are going to use t for the first coordinate

and x for the second one. We have

w=a!m(t,x)u!uw (6)
ij i)
where i,j may be t or x and 1,m lie between one to the number of
unknown variables. In order that W will be a C2 function we
will suppose that the coefficients a:? are Cz-functions of their

arguments.
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To obtain a theorem for the behaviour at infinity we assume:

(a) There exists a positive constant & such that

for all t =2 0.

(b) The partial derivatives of the coefficients satisfy

(Ba:?/at) u!u? <0 for all t =20

x(aa:T/ax)u:uT <0 for all t =0

(c) There exists a positive constant k such that
|a;;[< k for all t = 0.

Theorem 3. We assume that W satisfies (a), (b) and (c). Let
u'(t,x) be a classical solution of the problem given by (1), (2)

being W given by (6). If we suppose that

R .. . R .. .
fo aLi(O,x)uLu{dx>‘f0 a;i(o,x)u;uidx (7)
RO
Then f utuédx goes to infinite when t goes to infinite.
0

Proof. Using the Euler's formula for homogeneous function and
the hypothesis (b) we have the conditions (i) and (ii) of the

theorem 2.

In our case the left hand term in the condition (iii) is

k1 k1
BxxtxUx

Thus, condition (iii) is satisfied because hypothesis(a).Becmme
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(7) is equivalent to R P}(O,x)dx>0 we obtain by theorem 2 that

- J x P7 dx > o« when t + o«

where PT = u
Now, using the arithmetic inequality, the monotonicity of the
integral, the inequality of the energy and the hypothesis (a)
we obtain that there exist two constants M and a such that

- J xP2 dx <M [ ul uL dx + a
now, the theorem is proved.
The autonomous case appear when we suppose that

( 3a)™/ 3t) = o0 (8)
i

In a similar way to the non autonomous case we make the following

assumptions:

(a') There exists a positive constant § such that

R e e R P
J a;{uiu{ = §f u;uédx
0 0
(b') a'duiul >0
XXX X
1
x(aa.w/ax)u!uw <0
i ivj

We have the theorem,

Theorem 4. We assume that W satisfies (8), (a') and (b'). Let
u'(t,x) be a classical solution of the problem given by (1), (2)
being W given by (6) such that E(0)>0, then R u;u;dx goes to

0

infinite when t goes to infinite.
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In a similar way as in theorem 3 Euler's formulae gives us
the condition (i) and the condition (iii) is given by (b'). The
use of arithmetic inequality, the monotonicity of the integral

and energy equation proves the theorem.
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