DECOMPOSITION OF OPERATORS WITH COUNTABLE SPECTRUM (*)

Lucas Jódar

ABSTRACT

Sufficient spectral conditions for the existence of a spectral decomposition of an operator T defined on a Banach space X, with countable spectrum are given. We apply the results to obtain the West decomposition of certain Riesz operators.

1. Introduction.

If T is an operator on a Banach space X and T has a thin spectrum then certain growth conditions on the resolvent function $R_z(T)=(z-T)^{-1}$ are sufficient to ensure invariant subspaces for T, [1], [6], [9] and [14]. In order to obtain a spectral theory of T, a reasonable and easy to verify condition is

$$\|R_{z}(T)\| \le (d(z,\sigma(T))^{-1}, z \notin \sigma(T)$$
 (1.1)

where $d(z,\sigma(T))$ denotes the distance of z to the spectrum $\sigma(T)$ of T, [10]. An operator which satisfies the property (1.1) is said to be a (G_1) -operator. If we extend condition (1.1) by

$$\|R_{z}(T)\| \le K(d(z,\sigma(T))^{-1}, z \notin \sigma(T)$$
 (1.2)

(*) This paper has been partially supported by a grant from the Conselleria de Cultura, Educació i Ciencia, de la Generalitat Valenciana.

then T is said to be a (G_K) -operator. It is well known that on a Hilbert space, every hyponormal operator is a (G_1) -operator, moreover the following results are known:

- (a) If T is a (G_1) -operator on a Hilbert space X, then T is isoloid, that is, every isolated point of $\sigma(T)$ is an eigenvalue of T, [11] .
- (b) If X is a Hilbert space, every operator T similar to a normal operator, is a (G_{ν}) -operator, [10].
- (c) If T is a (G_1)-operator on a Hilbert space X and $\sigma(T)$ is finite, in particular, if X is finite-dimensional, then T must be normal, [7] .
- (d) In [5] , it is proved that if $\sigma(T)$ is countable and has the property that for any $z \notin \sigma(T)$ there exists some $w \notin \sigma(T)$ for which $|z-w|=d(w,\sigma(T))$, then, in general T need not be normal.
- (e) Any (G_1) -operator having a countable spectrum has a normal part, [5] .

We denote L(X) the algebra of all bounded linear operators on the complex Banach space X. For T in L(X) we denote F(T) the famility of all functions f which are analytic on some neighbourhood of $\sigma(T)$, where the neighbourhood can depend on $f\epsilon F(T)$. We recall that an isolated point λ of $\sigma(T)$ is called a pole of T, if the resolvent function $R_{z}(T)$ has a pole at λ . By the order of a pole is meant the order of λ as a pole of $R_{z}(T)$ (see [3], chapter VII). If λ is an isolated point of $\sigma(T)$ we denote $E(\lambda)$ the spectral projection associated with the point λ .

If T is an operator defined on a finite-dimensional space X with poles of order one and spectrum $\sigma(T) = \{\lambda_1, \ldots, \lambda_n\}$, then by [3], p. 561, for all f in F(T) one obtain

$$f(T) = \sum_{i=1}^{n} f(\lambda_i) E(\lambda_i)$$

We recall that T in L(X) is a Riesz operator if satisfies the following properties:

- (i) The non zero points of $\sigma(T)$ consist of eigenvalues of T with zero as the only possible point of accumulation. For every complex non zero λ :
- (ii) λ I-T has finite ascent and finite descent.
- (iii) For every $k=1,2,\ldots$, the operator $(\lambda I-T)^k$ has closed range with finite codimension, and its kernel is finite-dimensional (see [2], chapter 3 for details).

If C is a compact operator and Q is quasinilpotent, $\sigma(Q) = \{0\} \text{ , then clearly C+Q is a Riesz operator. Given an operator T, it is said that T admits a West decomposition if there exist operators C and Q, being C compact and Q quasinilpotent, such that T=C+Q. If X is a Hilbert space, then every Riesz operator admits a West decomposition, (see [12]; [2] p. 51). The general problem is still unsettled for Riesz operators on Banach spaces, [2], p.50.$

In [4], it is proved that a sufficient condition for the existence of a West decomposition of a Riesz operator defined on a Banach space X, is the convergence of the series $\sum_{n > 1} n |\lambda_n|$, where $\{\lambda_n; n=1,2,\ldots\}$, is the set of its eigenvalues. In this paper we give different sufficient conditions on T for the existence of a West decomposition, being T a Riesz operator with poles of order one, defined on a Banach space X. Moreover, if V is an operator with countable spectrum of the type $\sigma(V) = \{0\} \cup \{\lambda_n, n=1,2,\ldots\}, \text{ with } \lim_{n \to \infty} \lambda_n = 0, \text{ and } f \text{ belongs to } \sigma(V),$ sufficient conditions for the existence of a decomposition of the form

$$f(V) = Q + \sum_{n \ge 1} f(\lambda_n) E(\lambda_n)$$

is given.

2. Decomposition of operators with countable spectrum.

We begin showing that for operators T defined on a Bánach space X, with spectrum $\sigma(T)=\{0\}\cup\{\lambda_n;\ n=1,2,\dots\}$, the (G_K) -condition (1.2) ensures a certain boundness condition related with the spectral projections of T.

Lemma 1. Let T be an operator on a Banach space X, with spectrum $\sigma(T) = \{0\} \cup \{\lambda_i; i \ge 1\}$. Suppose that T satisfies the condition (1.2). If we denote σ_n the set $\{\lambda_i; 1 \le i \le n\}$, then the spectral projection $E(\sigma_n)$ satisfies $\|E(\sigma_n)\| \le Kn$, for every $n \ge 1$.

<u>Proof.</u> Let n be a positive integer, and let $\{V_i\}_{i=1}^n$ be a family of neighbourhoods such that $\lambda_i \in V_i$ and $V_i \cap V_j = \emptyset$, $(\sigma(T) \sim \sigma_n) \cap V_i = \emptyset$ for $1 \le i, j \le n$, $i \ne j$. Let V be a neighbourhood of $\sigma(T) \sim \sigma_n$, with $V \cap V_i = \emptyset$, $1 \le i \le n$, and let γ_i be $\gamma_i(t) = \lambda_1 + r_i \exp(it)$, where $t \in [0, 2\pi]$, and r_i is chosen such that the image γ_i^* of γ_i , satisfies $\gamma_i^* \subset V_i$ for $1 \le i \le n$.

$$E(\sigma_n) = \sum_{j=1}^{n} E(\lambda_j) = (1/2\pi i) \sum_{j=1}^{n} \int_{\gamma_j} h_j(z) R_z(T) dz \qquad (2.1)$$

From (2.1) and the (G_K) -hypothesis(1.2), it follows that

$$\begin{split} \|E(\sigma_n)\| &= \|(1/2\pi i) \int_n h(z) R_z(T) dz\| \leq (1/2\pi) \int_T \|R_z(T)\| d|z| \leq \\ & \underbrace{\theta} \gamma_j \\ j=1 & j=1 \end{split}$$

$$\leq n \sup_{1 \leq j \leq n} (\sup_{z \in \gamma_j^n} d(z,\lambda_j) \|R_z(T)\|) \leq K n$$

Hence, the result is concluded.

Let T be an operator on X, and let λ be a pole of order one of T and $f\epsilon F(T)$, then considering the Laurent expansion of the resolvent function $R_z(T)$ in the neighbourhood $0<|z-\lambda|<\epsilon$, one obtain

$$R_z(T) = \sum_{n=-1}^{\infty} A_n(\lambda-z)^n$$
,

with

$$A_{-1} = -E(\lambda)$$

(see [3], p. 573). Therefore, if we consider the Taylor expansion of f in $0 \le |z-\lambda| < \epsilon$, it follows that

$$f(z)R_{z}(T) = E(\lambda)f(\lambda)(z-\lambda)^{-1} + \sum_{n \geq 0} C_{n}(z-\lambda)^{n}$$

for certain operators C $_n$ and for z in $0<\big|z-\lambda\big|<\epsilon.$ If we consider the circuit $\gamma(t)=\lambda+\text{rexp}(\text{it})$, $t\epsilon[\,0\,,2\pi\,]$, and $r<\epsilon$, then it follows that

$$\int_{\gamma} f(z) R_{z}(T) dz = f(\lambda) E(\lambda)$$
,

because the operator series $\sum\limits_{n\geqslant 0}^{}C_{n}\left(z-\lambda\right)^{n}$, is analytic in a neighbourhood which contains the image of the circuit γ^{*} .

Theorem 1. Let T be an operator on a Banach space X. Suppose that its spectrum $\sigma(T)$ is of the form $\sigma(T) = \{0\} \cup \{\lambda_i; i=1,2,\ldots\}$, where λ_i is a pole of order one of T, and arranged so that $|\lambda_{i+1}| \le |\lambda_i|$ for every $i \ge 1$. If T satisfies a (G_K) -condition of the type (1.2) and f is a function of the class F(T) which satisfies the properties

$$f(0)=0; \quad \lim_{n\to\infty} nf(\lambda_n)=0; \quad \sum_{n\geqslant 1} |f(\lambda_{n+1})-f(\lambda_n)|_{n<+\infty}$$
 (2.2)

Then there exists an operator $Q \in L(X)$ such that

$$f(T) = Q + \sum_{n \ge 1} f(\lambda_n) E(\lambda_n)$$
 (2.3)

Proof. From lemma 14.1.3, p. 301, [13], there exists sequence of neighbourhoods $\{V_n\}_{n \geq 1}$, such that $\gamma_j(t) = \lambda_j + r_j \exp(it)$, $t \in [0,2\pi]$, satisfies $\gamma_j^* \subset V_j$; V_j is a neighbourhood of λ_j , with $V_i \cap V_j = \emptyset$, if $i \neq j$. Clearly we can choose $\{V_n\}$ such that for every $j \geq 1$, there is a neighbourhood W_j of $\sigma(T) \sim \{\lambda_i; 1 \leq i \leq j\}$, whose boundary ϕ_j is a positively oriented Jordan curve, with diameter d_j satisfying $\lim_{j \to \infty} d_j = 0$. Of course we can take r_j with $\lim_{j \to \infty} r_j = 0$.

Let Γ_n be the cycle $\Gamma_n=\phi_n v \ \Theta \ \gamma_j$, then by application of the Riesz-Dunford functional calculus, [3], p. 576, it follows that

$$f(T) = (1/2\pi i) \left(\int_{\Phi} f(z) R_z(T) dz + \int_{n} f(z) R_z(T) dz \right)$$

$$= (1/2\pi i) \left(\int_{\Phi} f(z) R_z(T) dz + \int_{n} f(z) R_z(T) dz \right)$$

=
$$(1/2\pi i) (\int_{\phi_n} f(z) R_z(T) dz + \sum_{j=1}^n \int_{\gamma_j} f(z) R_z(T) dz)$$

From the previous observation to the theorem, the last expression takes the form

$$f(T) = (1/2\pi i)(\int_{\phi_n} f(z) R_z(T) dz) + \sum_{j=1}^n f(\lambda_j) E(\lambda_j)$$
 (2.4)

Now, we prove the convergence of the operator series

$$\sum_{n=1}^{\infty} f(\lambda_n) E(\lambda_n)$$
 (2.5)

From the Abel transformation, [8], p. 128, it follows that

$$\sum_{k=1}^{n} f(\lambda_k) E(\lambda_k) = f(\lambda_n) E(\sigma_n) - \sum_{k=1}^{n-1} E(\sigma_k) (f(\lambda_{k+1}) - f(\lambda_k))$$
(2.6)

where $\sigma_k = \{\lambda_i; i=1,\ldots,k\}$. By the lemma 1, and the hypothesis (2.2) one obtain that the sequence $\{f(\lambda_n)E(\sigma_n)\}$ converges to 0 in L(X), when $n \to \infty$, and the convergence of the series

$$\sum_{k=1}^{\infty} \| E(\sigma_k) \| | f(\lambda_{k+1}) - f(\lambda_k) |,$$

Hence, the operator series (2.5) is convergent in L(X). From (2.4) there exists the limit

$$Q = \lim_{n \to \infty} \phi_n f(z) R_z(T) dz,$$

From (2.4), taking limits when $n \rightarrow \infty$, the result is concluded.

Taking f(z)=z in the last result, we obtain the following corollary about the decomposition of (G_K) -operators with poles of order one which satisfy a spectral condition more general than $\sum_{n \leq 1} |\lambda_n| n < +\infty$, given in [4].

Corollary 1. Let T be an operator in L(X), X Banach, and let $\sigma(T) = \{0\} \cup \{\lambda_i; i \ge 1\}$, where λ_i is a pole of order one of T, and arranged so that $|\lambda_{i+1}| \le |\lambda_i|$ for every i=1, and

$$\sum_{n \geq 1} |\lambda_{n+1} - \lambda_n|_{n < +\infty}$$
 (2.7)

If T satisfies the condition (1.2), then there exists an operator Q in L(X) such that

$$T = Q + \sum_{n \ge 1} \lambda_n E(\lambda_n)$$
 (2.8)

<u>Proof.</u> The result is a consequence of the theorem 1, taking f(z)=z.

Theorem 2. Let T an operator defined on a Banach space X, which satisfies a (G_K) -condition of the type (1.2). Suppose that the spectrum $\sigma(T)$ has the form of theorem 1, and f is a fucntion of the class F(T), which satisfies the properties (2.2). If T is

a Riesz operator, then f(T) admits a West decomposition of the form

$$f(T) = Q + \sum_{n=1}^{\infty} f(\lambda_n) E(\lambda_n)$$

where Q is quasinilpotent and C= $\sum_{n \ge 1} f(\lambda_n) E(\lambda_n)$ is compact.

<u>Proof.</u> From the hypothesis of theorem 1, it follows that the operator series $\sum_{n \geq 1} f(\lambda_n) E(\lambda_n)$, is convergent in L(X). As T is a Riesz operator, and from the properties of Riesz operators, (see [2], chapter 3), for every integer $n \geq 1$, the spectral projection $E(\lambda_n)$ is a finite-range operator and thus C is compact. Moreover the operator Q=C-f(T) is quasinilpotent. In fact, if Q were not quasinilpotent, as Q is a Riesz operator, there would exist an eigenvalue $\lambda \neq 0$, with eigenvector $x \neq 0$. Let Y be the closed space generated by CX, we prove that $x \notin Y$. If we suppose that $x \in Y$, as $QY \subseteq Y$ and $Q_1 = Q_1 \cap Y$ is a Riesz operator on Y, and for all $n \geq 1$, $Q_1 = E(\lambda_n) \cap X = Q_1 \cap X$

Let p be the ascent of $\mathbb{Q}_1^-\lambda$, then $Y=R((\mathbb{Q}_1^-\lambda)^p)\oplus N((\mathbb{Q}_1^-\lambda)^p)$, where $R((\mathbb{Q}_1^-\lambda)^p)$ and $N((\mathbb{Q}_1^-\lambda)^p)$, denote the range and the nullspace of $(\mathbb{Q}_1^-\lambda)^p$. From the invertibility of $(\mathbb{Q}_1^-\lambda)^p_{|Y}$, it follows that $E(\lambda_n^-)Y\subseteq R((\mathbb{Q}_1^-\lambda)^p)$, for all $n\geqslant 1$, and in consequence $Y\subseteq R((\mathbb{Q}_1^-\lambda)^p)$.

Let Y $_1$ be the span of x and Y; it is clear that f(T)Y $_1$ $^{\subset}$ Y $_1$ and

$$(f(T) - \lambda) Y_1 = ((Q_1 - \lambda) + C) Y_1 \subseteq Y$$

From here, $\lambda\epsilon\sigma(f(T)_{|Y|})$, and thus $\lambda\epsilon\sigma(f(T))$. Let q be the ascent of the Riesz operator on Y_1 , $f_1(T)=f(T)_{|Y|}$, then

$$f_1(T) = R((f_1(T) - \lambda)^q) \oplus N((f_1(T) - \lambda)^q)$$

As $R(f_1(T)-\lambda)^q) \subset Y$, the subspace $N((f_1(T)-\lambda)^q)$, is not contained in Y, and thus $(Y_1 \sim Y) \cap N((f(T)-\lambda)^q) \neq 0$, in contradiction with the fact $N((f(T)-\lambda)^q) \subset Y$.

Taking f(z)=z, in theorem 2, it follows the West decomposition of the Riesz operator T, when $\sigma(T)$ satisfies the properties of corollary 1.

Corollary 2. Let T be a (G_K) -Riesz operator on a Banach space X, and suppose that the spectrum $\sigma(T)$ satisfies the hypothesis of corollary 1, then T admits a West decomposition T=Q+C, of the type (2.8), where $C = \sum_{n=1}^{\infty} \lambda_n E(\lambda_n)$ is compact and Q is quasinilpotent.

Proof. This is a consequence of theorem 2 and corollary 1.

References.

- [1] R.G. BARTLE, Spectral localization of operators in Banach spaces, Math. Ann. 153 (1964), 261-269.
- [2] S.R. CARADUS, W.E. PFAFFENBERG, and B. YOOD, Calkin algebras of operators on Banach spaces (Marcel DEkker, Inc., New York, 1974).
- [3] N. DUNFORD and J. SCHWARTZ, Linear Operators, Vol. I, (Interscience, New York, 1958).
- [4] C. LAURIE and H. RADJAVI, On the West decomposition of Riesz operators, Bull. London Math. Soc., 12 (1980), 130-132.
- [5] G.R. LUECKE, Operators satisfying condition (G_1) locally, Pacific J. Math., 40 (1972), 629-637.
- [6] V.I. MACAEV, On a class of completely continuous operators, Dokl. Akad. Nauk, SSSR 139(1961), 548-551=Soviet Math.Dokl. 2 (1961), 972-975.

[7] C.R. PUTNAM, Operators satysfying a (G_1) condition, Pacific J. Math., 84 (1979), 413-426.

- [8] S. SAKS and A. ZYGMUND, Analytic functions, (Elsevier, Amsterdam, 1971).
- [9] J. SCHWARTZ, Subdiagonalization of operators in Hilbert space with compact imaginary part, Comm. Pure Appl. Math. 15 (1962), 159-172.
- [10] J.G. STAMPFLI, A local spectral theory for operators III:

 Resolvents, spectral sets and similarity, Trans. Amer. Math.

 Soc. 168 (1972), 159-172.
- [11] J.G. STAMPFLI, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117 (1965), 469-476.
- [12] T.T. WEST, The decomposition of Riesz operators, Proc. London Math. Soc. (3), 16(1966), 737-752.
- [13] A. WILANSKY, Topology for Analysis, (Ginn A. Xerox Co, Waltham, 1972).
- [14] F. WOLF, Operators in Banach space which admit a generalized spectral decomposition, Nederl. Akad. Wetensch. Proc. Ser. A 60=Indag. Math. 19 (1957), 302-311.

Manuscript received in November 8, 1985.

Department of Mathematics, E.T.S.I.I., Polytechnical University P.O. Box 22.012 Valencia (SPAIN).