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DECOMPOSITION OF OPERATORS WITH COUNTABLE SPECTRUM (*)

Lucas Jodar

ABSTRACT

Sufficient spectral conditions for the existence
of a spectral decomposition of an operator T
defined on a Banach space X, with countable
spectrum agre given. We apply the results to
obtain the West decomposition of certain Riesz
operators.

1. Introduction.

If T is an operator on a Banach space X and T has a thin
spectrum then certain growth conditions on the resolvent function
RZ(T)-(z-T)-] are sufficient to ensure invariant subspaces for
T, [11 , [6), [9] and [14] . In order to obtain a spectral

theory of T, a reasonable and easy to verify condition is
IR (DI < (d(z,0(T))", 2z ¢ o(T) (1.1)

where d(z,0(T)) denotes the distance of z to the spectrum o(T)
of T, [10] . An operator which satisfies the property (1.1) is
said to be a (G1)-operator. If we extend condition (1.1) by

IR, (T < K(d(z,0(T))™", 2z ¢o(T) (1.2)

(*) Thls paper has been partially supported by a grant from the
Conselleria de Cultura,Educacid i Ciencia,de la Generalitat Va-
lencidna, .
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then T is said to be a (G, )-operator. It is well known that on

K
a Hilbert space, every hyponormal operator is a (G1)-operator,

moreover the following results are known:

(a) 1f T is a (G])-operator on a Hilbert space X, then T is
isoloid, that is, every isolated point of o(T) is an eigenvalue

of T, [11]

(b) If X is a Hilbert space, every operator T similar to a nor-

mal operator, is a (G, )-operator, [10]

K
(c) If T is a (Gl)-operator on a Hilbert space X and o(T) is
finite, in particular, if X is finite-dimensional, then T must

be normal, [7]

(d) In [5] , it is proved that if o(T) is countable and has the
property that for any z ¢ o(T) there exists some w ¢ o(T) for

which |z-wl|=d(w,0(T)), then, in general T need not be normal.

(e) Any (G1)-operator having a countable spectrum has a normal
part, [5]

We denote L(X) the algebra of all bounded linear operators
on the complex Banach space X. For T in L(X) we denote F(T) the
familly of all functions f which are analytic on some
neighbourhood of 0(T), where the neighbourhood can depend on
feF(T). We recall that an isolated point A of o(T) is called
a pole of T, if the resolvent function RZ(T) has a pole at X.
By the order of a pole is meant the order of A as a pole of
RZ(T) (see [3] , chapter VII). If A is an isolated point of
0(T) we denote E(A) the spectral projection associated with the

point A.

If T is an operator defined on a finite-dimensional space
X with poles of order one and spectrum O(T)={A1,...,Xn}, then
by [ 31, p. 561, for all f in F(T) one obtain
n

fF(T)= L F(Ai)E(Ai)
i=1
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We recall that T in L(X) is a Riesz operator if satisfies

the following properties:

(i) The non zero points of o(T) consist of eigenvalues of T
with zero as the only possible point of accumulation.

For every complex non zero A:
(ii) Al-T has finite ascent and finite descent.

(iii) For every k=1,2,..., the operator (AI-T)k has closed range
with finite codimension, and its kernel is finite-dimensional

(see [2] , chapter 3 for details).

If C is a compéct operator and Q is quasinilpotent,
o(Q)={o0} , then clearly C+Q is a Riesz operator. Given an ope-
rator T, it is said that T admits a West decomposition if there
exist operators C and Q, being C compact and Q quasinilpotent,
such that T=C+Q. If X is a Hilbert space, then every Riesz ope-
rator admits a West decomposition, (see [12] ; [2] p. 51). The
general problem is still unsettled for Riesz operators on

Banach spaces, [ 2], p.50.

In [ 4], it is proved that a sufficient condition for the
existence of a West decomposition of a Riesz operator defined

on a Banach space X, is the convergence of the series I n|An|,
n >1
where {An;n=1,2,...}, is the set of its eigenvalues. In this

paper we give different sufficient conditions on T for the
existence of a West decomposition, being T a Riesz operator

with poles of order one, defined on a Banach space X. Moreover,
if V is an operator with countable spectrum of the type

o(v)={0} U{Xn, n=1,2,...}, with lim kn=0, and f belongs to o(V),

n--co
sufficient conditions for the existence of a decomposition of

the form

is given.
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2. Decomposition of operators with countable spectrum.

We begin showing that for operators T defined on a Banach
space X, with spectrum U(T)%O}U{An; n=1,2,...}, the (G¢)-condi-
tion (1.2) ensures a certain boundness condition related with

the spectral projections of T.

Lemma 1. Let T be an operator on a Banach space X, with
spectrum o(T)={01} U(ki;i = 1}, Suppose that T satisfies the
condition (1.2). If we denote o the set {Xi; 1 <i <nl}, then

the spectral projection E(Gn) satisfies |E (Gn)” < Kn, for every
n =1,

Proof. Let n be a positive integer, and let {Vi}?=1 be a family
of neighbourhoods such that )\iEVi and Vif\Vj=¢, (O(T)“Un)ﬁvi=¢

for 1<i,j<n, i#j. Let V be a neighbourhood of o(T)~on, with
v rNi=ﬂ, 1<i<n, and let Y, be Yi(t)=A]+riexp(it), where

telo,2m], and r; is chosen such that the image Y? of Y,, satis-
fies Y}‘C Vi for 1 <i<n,

n
Let 2 the open set (iq'Vi)U V, and let h, the characteristic
i=1 ‘ n
function of the set Vi (defined on Q), and let h= I hl' defined
i=1
on . By application of the Riesz-Dunford functional calculus ,

[3], p. 576, one obtain

L o b |

E(cn)= SIE(AJ)=(I/2ni)

; ! hj(z)Rz(T)dz (2.1)

1 .
J YJ

From (2.1) and the (GK)-hypothesis(1.2), it follows that

WECo DI = W(1/2mi) J 0 h(z)R,(T)dzll < (1/2m)f IR, (T)ld|z]|<
: oY,
J
j=1 j=1

<n sup  ( sup d(z,A )R (T)I) <K n
1<j<n zsy3 J
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Hence , the result is concluded.

Let T be an operator on X, and let A be a pole of order one

of T and feF(T), then considering the Laurent expansion of the

resolvent function R (T) in the neighbourhood 0<|z-A]|<e, one

obtain
bt n
RZ(T)= b An(k-z) ,
n=-1
with
A_.=-E())

(see [3), p. 573). Therefore, if we consider the Taylor expansion
of f in 0<|z-A|<e, it follows that

Fl2)R (M=) F() (z=0) 7T+ £ ¢ (z-0)",

n> "
for certain operators C_and for z in 0<|z-A[<e. If we consider
the circuit y(t)=A+rexp(it), te[0,2n], and r<e, then it follows
that
fo(z)Rz(T)dz = f(A)E(A),
because the operator series I C (z-A)n, is analytic in a

n=o %
neighbourhood which contains the image of the circuit y .

Theorem 1. Let T be an operator on a Banach space X. Suppose that

its spectrum o(T) is of the form o(T)={0}U {Ai; i=1,2,...}, where
A, is a pole of order one of T, and arranged so that |xi+1|<|xi[
for every i 2 1. If T satisfies a (GK)-condition of the type

(1.2) and f is a function of the class F(T) which satisfies the

properties

£(0)=0; 1im nf(X )=0; I [f()
>

n->o n=1

net) " FO) [n<se (2.2)
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Then there exists an operator QeglL(X) such that

fF(T)=Q + T f(AD)E(X)) (2.3)
n =1 n n
Proof. From lemma 14.1.3, p. 301, [13], there exists sequence

of neighbourhoods {v_} - ., such that Yj(t)=Aj+rjexp(|t),

telo,2m], satisfies YJ CV,5 V; is a neighbourhood of Aj» with

v.n Vj=ﬂ, if i#j. Clearly we can choose {Vn} such that for every
j 21, there is a neighbourhood wj of o(T)~{Ai;1 <i< j}, whose

boundary ¢j is a positively oriented Jordan curve,with diameter

d. satisfying 1lim d.=0. Of course we can take r, with lim r.=0.
J oo . J oo
Let Fn be the cycle Fn = ¢nv ] Yj’ then by application of
j=1
the Riesz-Dunford functional calculus, [3], p. 576, it follows
that

F(T)=(1/72m1) (£, F(2)R (T)dz+ J

n

f(z)RZ(T)dz)

Y

¢

LI >l }

j

n
=(1/2ﬂ|)(f¢nf(z)RZ(T)dz+j£] ijf(z)Rz(T)dz)

From the previous observation to the theorem, the last expression

takes the form

f(T)=(1/zni)(f¢ f(z)R,(T)dz)+

n
z
n J=

]f(xj)E(Aj) (2.4)

Now, we prove the convergence of the operator series

™8

I FOEN) (2.5)

From the Abel transformation, [8], p. 128, it follows that

n-1
]f(Ak)E(Ak)=f(An)E(0n)-kZ]E(ok) (F ) -Fx)) (2.6)

[ g Riea §

k
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where 0k={xi; i=1,...,k}. By the lemma 1, and the hypothesis

(2.2) one obtain that the sequence {f(An)E(on)} converges to O

in L(X), when n>®, and the convergence of the series

™8

IIE(ok)ll [ £(A

1 )-f(Ak)l,

K k+1

Hence, the operator series (2.5) is convergent in L(X). From

(2.4) there exists the limit

Q= limf, f(z)R, (T)dz,

n>o Tn
From (2.4), taking limits when now, the result is concluded,

Taking f(z)=z in the last result, we obtain the following
corollary about the decomposition of (GK)-operators with poles
of order one which satisfy a spectral condition more general
than I |Xx |n<+o, given in [4].

n<t "

Corollary 1. Let T be an operator in L(X), X Banach, and let
o(T)={0} kJ{Ai; i 21}, where Xi is a pole of order one of T, and

arranged so that lki | < IAi] for every i=1, and

+1

D DY

n =1 n+1- knln e (2.7)

If T satisfies the condition (1.2), then there exists an opera-

tor Q in L(X) such that

2 A E(M) (2.8)
n=1 " n

Proof. The result is a consequence of the theorem 1, taking
f(z)=z.

Theorem 2. Let T an operator defined on a Banach space X, which
satisfies a (GK)-condition of the type (1.2). Suppose that the
spectrum o(T) has the form of theorem 1, and f is a fucntion of

the class F(T), which satisfies the properties (2.2). If T is
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a Riesz operator, then f(T) admits a West decomposition of the
form

[

F(T)=Q+ T F(2)E(N)
n=1

where Q is quasinilpotent and C= & f(An)E(An) is compact.
n= 1
Proof. From the hypothesis of theorem 1, it follows that the

operator series 7§ f(xn)E(An), is convergent in L(X).
n 21
As T is a Riesz operator, and from the properties of Riesz

operators, (see [2], chapter 3), for every integer n = 1, the
spectral projection E(An)is a finite-range operator and thus C
is compact. Moreover the operator Q=C-f(T) is quasinilpotent.

In fact, if Q were not quasinilpotent, as Q is a Riesz operator,
there would exist an eigenvalue A#0, with eigenvector x#0. Let

Y be the closed space generated by CX, we prove that x £ Y. |If
we suppose that x€Y, as QY C Y and Q]=Q| y is a Riesz operator

on Y, and for all n=21, QIE(X )X=Q1|E(l )Y? it follows that
n n

Q1|E(An)Y is nilpotent and (QI-A)|E(An)Y is invertible.

Let p be the ascent of Q,-X, then Y=R((Q]-A)p)0N((Q]-A)p),
where R((Q1-A)p) and N((QI-A)p), denote the range and the
nullspace of (Q‘-A)p. From the invertibility of (Q]-A)p|y, it
follows that E(An)YCZR((Q]-A)p), for all n 21, and in consequence
Y CR((Q,-0)P).

Let Y, be the span of x and Y; it is clear that f(T)Y]C Y

1 1

and
(F(T)-2) v, =((Q,-2)+C)Y,C ¥

From here, Aeo(f(T)lY ), and thus Aec(f(T)). Let q be the ascent
of the Riesz operatorlon Y],fl(T)=f(T)|Y , then
1
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fT=ROCF(T)-0)9) 8 NC(F(T)-0)9)

As R(f](T)-A)q) C Y, the subspace N((fl(T)-A)q), is not contai-
ned in Y, and thus (YI~Y)F\N((f(T)-X)q)#O, in contradiction with
the fact N((f(T)-2)9)C Y.

Taking f(z)=z, in theorem 2, it follows the West decomposi-
tion of the Riesz operator T, when o(T) satisfies the properties

of corollary 1.

Corollary 2. Let T be a (GK)-Riesz operator on a Banach space X,
and suppose that the spectrum O(T) satisfies the hypothesis of
corollary 1, then T admits a West decomposition T=Q+C, of the
type (2.8), where C= b XnE(Xn) is compact and Q is quasinilpo-

n=1
tent.

Proof. This is a consequence of theorem 2 and corollary 1.
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