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INTEGRAL EQUATIONS AND TIME VARYING LINEAR SYSTEMS

Lucas Jédar

ABSTRACT

In this paper we study the resolution problem
of ar integral equation with operator valued
kernel. We prove the equivalence between this
equation and certain time varying linear
operator system. Sufficient conditions for
solving the problem and explicit expressions
of the eolutions are given.

0. Introduction.

Let L(X,Y) be the linear space of all bounded linear opera-
tors from the Banach space X into the Banach space Y and let
L(X)=L(X,X). When we endow this space with the strong operator
topology we obtain a topological vector space which will by
denoted by LS(X,Y), [14]. For the sake of clarity in the presen-
tation we recall some concepts and properties concerning the

evolution equation

(d/dt)u(t)=v(t)u(t), t elo,T] (0.1)

where u:[0,T]---X, and V(t)e L(X). Given the equation (0.1), let
us consider the triangle A={(t,s); 0 < s <t < T} , we say that

Uy:a > L(X), is a fundamental operator generated by V(t) if the
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following properties are verified:

(i) U, is strongly continuous jointly in t,s.
v gly

(ii) The partial derivative SUV(t,s)/ dt , exists in the strong
topology of L(X), belongs to L(X) for 0 < s <t <T, and is

strongly continuous in t for (t,s)eA

(iii) BUV(t,s)/8t=V(t)UV(t,s),(t,s)eA, and UV(t,t)=I, where |

denotes the identity operator on X.

(iv) Uv(t,s)U (s,u)=UV(t,u), for 0 Su<s <t <T

v

I f Uv(t,s) is invertible on A, then U may be extended to

\"
the rectangle [O,T]Z, in the following way

Uy(s,t)=(Uy(e,s)) 7", 0<s <e<T

In this case, the condition (iv) is also verified for
0 <t<s <y <T, and

1

Uy (s, ) /0t == (U (t,5)) T V(U (t,8) (U, (t,)) 7 =-u (s, ) (t),

v
0< s <t < T,

see [21], for details. For the finite-dimensional case Uv(t,s)
coincides with the transition state matrix generated by V(t),
[5]. Even for the infinite-dimensional case, when V(t)=V, one

gets U, (t,s)=exp((t-s)V). For the infinite-dimensional case,

there Zre several known conditions for the existence of a funda-
mental operator UV' Roughly ‘speaking, there are two important
cases to be distinguished: the hyperbolic and the parabolic. For
the hyperbolic case V(t) is for each t, the infinitesimal gene-
rator of a contraction semigroup, see [13] for the hyperbolic

case, and [16] chap. 3, for the parabolic case.

In the following, integrability is always meant in the sen-
se of Bochner (cf. [16,18]). A function f:[0,T] =+ X, is

uniformly Holder continuous on this interval if
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Ie(e)-f(s)ll < c|t-s|a; O<a<l, 0 <t, s < T

where ¢ and a are positive constants independent of t and s.
In the following, P denotes a bounded projection on the Banach
space X, CeL(X,Y), A(t)eL(X) and B(t)eL(Y,X), for te[0,T], and
we will suppose that t >~ A(t), is a continuous L(X)-valued
operator function which generates an invertible fundamental

operator UA(t,s); B(-) will be continuous on the interval [0,T].

This paper is concerned with the resolution problem of an

integral equation of the type

T
Y(t)=f(t)+S K(t,s) ¥(s)ds, O< t<T (0.2)
o
where f and ¥ are (possibly infinite-dimensional) vector

functions and K is an operator valued kernel given by

o UA(t,s) (1-P)B(s) ; t>s

K(t,s)= (0.3)

CUp(s.t)) 7P B(s) ;5 t<s

In section 1, the equivalence between the problem (0.2)-(0.3)
and a time varying linear system is proved. We give conditions
in order to obtain explicit expressions for solutions of the
"equation (0.2). Section 2 connects this problem with the resolu-
tion problem of certain operator differential equation of
Riccati type. Conditions for solving (0.2) in terms of solutions

of Riccati differential equations are given.

1. Integral equations and linear systems.

In the following we consider the integral equation (0.2)
where T is a positive fixed number, f and V¥ are uniformly HGlder
continuous functions when A=A(t) and B=B(t), for all t, and we
suppose that f and ¥ are simply Bochner integrable for the time-

independent case. For the time-varying case, we will assume that
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A(-) and B(-) are continuous functions on the interval [o,T]1.

Theorem 1.1. Let us consider the equation (0.2) whose kernel K
is given by (0.3) and let us suppose that {A(t)} is generator of
a fundamental operator UA(t,s), such that

(i) UA(t,s) is invertible for all (t,s)eA,

(i) P U (t,s)=U,(t,s)P, (t,s)eh,

then the equation (0.2) and the linear system

x(t)=A(t)x(t)+B(t)u(t)
y(t)=-Cx(t)+u(t) (1.1)
(1-P)x(0)=0, Px(T)=0

0 St <s<T

are equivalent in the following sense., If Y is a solution of
(0.2), then the system (1.1) with input u=Y has output y=f.
Conversely, if the system (1.1) with input u=Y , has output y=f,
then ¥ is a solution of (0.2).

Proof. Assume ¥ is a solution of (0.2). Define x: [0,T] -- X by
the expression
t T
x(t) = U, (t,s)(1 - P)B(s)¥ (s) ds -/ Up(t,s)PB(s)¥(s)ds, (1.2)
o t
Then x is absolutely continuous, almost differentiable and from
the properties of an invertible fundamental operator, it follows
that

t
>'<(t)=A(t)UA(t,0)fOUA(O,s)(I-P)B(S)W(S)dS+UA(0,t)UA(O.t)(I-P)B(t)‘i‘(t)-

T
(t,0) /U
t

-A(t)uA A(O,s)PB(s)‘l’(s)ds+UA(t,0)UA(O,t)PB(t)‘P(t)=A(t)x(t)+B(t)‘Y(t)

As ¥ is a solution of (0.2), it follows that
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f(t) = ¥(t) - € x (t) (1.3)

and as P2 = P one gets that

t T
(1-P)x(0)=-(1-P) s UA(o,s)PB(s)W(sMs=—fUA(OJ)(PP)PBB)W(ﬂds
(o] o
T T
Px(T)=P/S UA(T,s)(l-P)B(s)W(s)ds=f UA(T,s)P(I-P)B(S)T(s)ds=0
(o) o]

Thus system (1.1) with input u=y has output y=f.

Conversely, if x:[0.T]---> X, is a solution of system (1.1),
with input u=y and output y=f, then (1.3) is verified. As
x(t)=A(t)x(t)+B(t)¥(t),([ 141, p.19), it follows the existence of
some x€e€X, such that

t

X(t)=UA(t,0)Z+f UA(t,s)B(s)W(s)ds (1.4)
o

From the boundary conditions of (1.1), it follows that z=Pz and

T
Px(T)=0=PUA(T,0)z + [ PUA(T,s)B(s)w(s)ds
o)

and from here
T

T
S Up(T,s)PB(s)¥(s)ds= -/ U,(0,s)PB(s)¥(s)ds
e} o

2=Pz= - (U, (T,0)) "
Substituting the last expression of z in (1.4), we obtain (1.2).

From here it follows that is a solution of (0.2)

Example 1. If X and Y are finite-dimensional Banach spaces, and
P is a projection on X such that PA(t)=A(t)P, for all t, then
UA(t,s) is the transition states matrix of the system
x(t)=A(t)x(t).

From the Peano-Baker's expression of UA(t,s), [5]1.p.22, the
commutativity between UA(t,s) and A(t) is satisfied. Obviously,

UA(t,s) is invertible for all (t,s)eA. Thus the hypotheses of

theorem 1.1 are satisfied.
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Example 2. If X and Y are infinite-dimensional Banach spaces
with A(t)=A for all t in [0,T], then it is clear that
UA(t,s)=exp((t-s)A). Furthermore, if we suppose that AP=PA, then
it follows that PUA(t,s)=UA(t,s)P, for all s,t in [0,T] . From

here, theorem 3.1 in [4], is a particular case of theorem 1.1.

Example 3. Even for the infinite-dimensional case, if A(t) satis

fies the property

t t
A(t) (S A(s)ds) = (S A(s)ds)A(t)
[e] o

At )A(t,)) = A(ty)A(t,)

for all t’tl’tz’ in [0,T] (see [10], p.600 for details), then

it is easy to show that

t-s
UA(t.S)=exp( /' A(u)du), 0< s<t <T
0

is an invertible fundamental operator generated by {A(t)}.

It is clear that if PA(t)=A(t)P, then P and UA(t,s) commute. This
situation appears, for instance, when AP=PA, and we consider
A(t)=A+h(t)1, h being an analytic function of real variable t in
[-7,71.

By interchanging the roles of input and output, is obtained

the inverse system of (1.1)

x(t)=A, (t)x(t) + B(t)y(t)
u(t)=cx(t) + y(t) (1.5)
(1-P)x(0)=0,Px(T)=0

te[0,T]

where AI(t)=A(t)+B(t)C, it is easy to show that systems (1.1)
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and (1.5) are equivalent in the sense that they have the same
solutions. So solving the integral equation (0.2) comes down to

finding the output of (1.5) with imput y=f.

We shall now employ these connections to obtain the solu-
tions of (0.2) through system (1.1). In the following we denote
A (t)=A(t)+B(t)C.

Theorem 2.1. Let us consider equation (0.2) with kernel given
by (0.3). Under the conditions of theorem 1.1 and the following

additional one
(iii) {A](t)} is a generator of a fundamental operator UA (t,s).
1

Then the equation (0.2) is solvable if and only if, there exists

zeX such that

(1-P)z=0

T

(1T,0)z + [ Ua (t,s)B(s)f(s)ds)=0 (1.6)
1 o 1

P(UA

In that case the general solution of equation (0.2) is given by

Y(t)=Ff(t) + CUA1(t,0)z +f: CUA](t,s)B(s)f(s)ds (1.7)
Proof. Assume that V¥ is a solution of the equation (0,2).
From theorem 1.1, system (1.1) with input u=¥ has output y=f.
From the equivalence between system (1.1) and (1.5), taking y=f,
from the first equation of (1.5) one gets i(t)=A1(t)x(t)+B(ﬂf(tL
From here and [14], p.19, it follows that there exists some zeX
such that

t

x(t)=U, (t.o)z + [ U, (t,s)B(s)f(s)ds (1.8)
Ay o M

As x(t) satisfies the boundary conditions of (1.5), we obtain
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(1-P)x(o)=(1-P)u, (0,0)z=(1-P)z=0

1

-
Px(T)=0=P(UA (1,0)z+ f Up (T,s)B(s)f(s)ds)
1 o 1

A

Thus conditions (1.6) are verified. Otherwise, we have
y(t)=Cx(t)+f(t), that is, ¥ is given by (1.7).

Conversely, assume that ¥ is given by (1.7), where z satis-
fies (1.6). If we define x(t) by (1.8) for te[0.T], then x is
absolutely continuous, almost everywhere differentiable (every-
where differentiable for the time varying case from the conti-
nuity of B(.) and the Holder continuity of f(t)), and
k(t)=A1(t)x(t)+B(t)f(t). As ¥ is given by (1.7) we have
Y(t)=Cx(t)+f(t). It is clear that from the hypothesis (1.6) on
vector z implies that x satisfies the boundary conditions of
(1.5). Thus, from the equivalence between (1.1) and (1.5) and

theorem 1.1, it follows that Y is a solution of (0.2).

The following corollary yields explicit expression for the

general solution of (0.2) in the homogeneous case,

Corollary 1.3. Under the hypothesis of theorem 1.2, and for the

case f=0, the general solution of (0.1) is given by

W(t)=CUA (t,0)z, 0 <t <T (1.9)

1

where z is a vector from X satisfying

(1-p)z=0, PU, (1,0)z=0 (1.10)
1

For the time-invariant case, that is A(t)=A and B(t)=B for all t
in [0,T] the result of theorem 1.2, and corollary 1.3, generali-
ze theorem 3.2 and corollary 3.3 of 4, respectively. About the
hypothesis (iii) of theorem 1.2, several conditions can be impo-
sed on a generator {A(t)} of a fundamental operator UA(t,s), in

order that A1(t)=A(t)+B(t)C will be generator of a fundamental
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operator. (See [11], [12]), [13], [14], and [16]). In particular
if {B(t)C} is uniformly bounded and {A(t)} is generator of
certain type, then A1(t)=A(t)+B(t)C, is also generator of a
fundamental operator, see the appendix of [6] for details.
Otherwise, it is obvious that for the finite-dimensional case
and for the time invariant case, no problem exists about this

matter.

2. Integral equations and Riccati operator equations.

Let X1 and X, be complex Banach spaces and let us consider

2
the generalized operator Riccati differential equation

(d/dt)u(t)=A(t)+B(t)U(t)-u(t)c(t)-u(t)Dp(t)u(t)

(2.1)
u(o)=F

where B(t)eL(X,,X,),A(t)eL(X. ,X.),D(t)eL(X

1771 2’71 1’ 2)
and FEL(XZ,X‘), U(t)sL(Xz,X]). Locally, in a open neigbourhood

X2),C(t)€L(X2,X

of 0, problem (2.1) is always uniquely solvable [14]. The next
theorem deals with the global solution of (2.1) in [0.T]. In the

following we denote X=X, ® X and we represent W(t)el(X,X) by

2 k]
the operator

B(t) A(t)
W(t)= (2.2)
D(t) c¢(t)
Theorem 2.1, Let us consider problem (2.1) where {W(t)} is
generator of an invertible fundamental operator Uw(t,s)
Uy, (t,s) U, (t,s)
Uw(t,s)= (2.2)
) UZ](t,s) U22(t’s)

Then problem (2.1) is solvable in [0,T] , if and only if
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S(t)=U2](t,O)F +U22(t,0),is invertible on{ 0,T] " (2.3)

In this case, the unique solution of (2.1) is given by

F -1
(s(e))™" =

u(t)=[l,0]Uw(t,O) [
I

= (U, (6,00 Fru 5 (£,0)) (Uy, (£,0) F+U,,(t,00) 7' (2.4)

H(

Proof. Suppose that S(t) is invertible for all t in [0,T].
As s(t)EL(xz,xz),s(t)=[0,|luw(t,o){ff, by differentiation in the

expression (2.4), it follows that

F F
(d/dt)u(e)=l1,01{(d/dt)uy (t,0)} |’ (s())"'+1,0 '.i d/de(s(1)) =

F F -
=(1,0] w(t)Uw(t,O)‘ll(S(t))-1-[l,0]Uw(t,0)l|.(S(t))-1{(d/dt)(S(t)ﬂ(S(t))l

F F F -1
=[|,01w(t)uw(t,o)H(s(t))"-{|,o]uw(t,o)ll‘(s(t))"(o,l]w(t)uw(t,o)H(s(t))=

1

F F
=[B(t),A(t)]Uw(t,0)‘ll(S(t))' -U(t)[O,l]w(t)Uw(t,O)\l\(S(t))-‘=

= B(t) U(t)+A(t)-u(t)c(e)-u(e)D(t)u(t).

Thus, U(t) is a solution of (2.1) on [0,T], since U(0)=F.

Conversely, let us assume that U(t)EL(Xz,Xl) is a solution
F
of (2.1) on [0,T]. If we define L(t)=U(t)[0,1 U, (t,0) [, )

F
-[1,0] Uw(t,o) [IJ’ for all t in[0,T]., It is clear that

(d/dt) L(t)=[B(t)-u(t)D(t)]IL(t), for all t on [0,T], and L(0)=0.
From here, L(t)=0,te[0,T].

Thus one gets

F F]
| =[ud%um)LJ;tﬂmﬂ (2.5)

u(t) lo,1l v, (t,0)
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By using Uw(O,t) = (Uw(t,O))-], for t in [0,T] it follows

Uie)

u(t)

(0,17 u,(0,t) o

i
Uw(t,O) V1=

and from (2.5) the last expression coincides with

10 F

F
(o,11u,(0,¢t) lO I}Uw(t,o)!|

||= 'x

=[0,1] .
2
Thus S(t) is left invertible for all t in [0,T] . For t=0, we

obtain S(0)=IX and since t + S(t) is continuous, it follows
2

that S(t) is invertible for all t in [0,T] , and (S(t))-] is
given by

u(t)
(s(e)™" =l0,11u,(0,1)

Example 4. If X1 and X2 are finite-dimensional Banach spaces,
taking Uw(t,s) the transition states matrix of the linear system
with coefficient matrix W(t), the result of theorem 2.1 coincides
with theorem 1 of [17].

Example 5. |f we consider the time-invariant case, A=A(t),B=B(t),

C=C(t) and D=D(t), for all t in [0,T] then exp((t-s)W), is an
invertible fundamental operator generated by w=|g é,, and

theorem 2.1 coincides with lemma 8.1 of [4]

The following application of theorem 2.1 is an infinite-
dimensional time-varying generalization of th.2 of [9] and results
of [15] concerned with the resolution problem of two point
boundary value problems for time-varyingRiccati operator diffe-

rential equations.

Corollary 2.2. Let us consider the problem

(d/dt)u(t)=A(t)+B(t)-u(t)c(t)-u(t)D(t)u(t) }

(2.6)
tel 0,71 PU(T) - U(0)Q = G
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Where P€L(X1,X]), QEL(XZ,XZ) and GEL(XZ,X]). Under the hypothesis
of th. 2.1 the problem (2.6) is solvable if and only if, the

algebraic operator equation
R +S8Z-2T-2V2Z=0 (2.7)
is solvable, where

R = PU]Z(T,O) - GU,, (t,0), S=PU1](T,0)-GU21(T,0) 28
2.

-~
]

Q U,,(T,0) V= U, (T,0)

Proof. Assume that U(.) is a solution of (2.6)., From the boundary

condition one gets

-1 . _ro
P{U]](T,O)F+U12(T,0)}{U2](T,O)F+U22(T,0)} -FQ = G; U(0)=F=Z
and postmultiplying by UZI(T,O)F+U22(T,0), it follows
(PUIZ(T,O)-GUZZ(T,O))+(PU1](T,O)-GUZ{T,OHZ-ZQUZZHQO)-ZQUZIU}O)Z=0

that is, equation (2.7) is solvable and Z=U(0) is a solution.

Conversely, if Z is a solution of (2,7), taking U(0)=F=2Z
and by application of theorem 2.1 we obtain U(.), which satisfies
(2.1) and (2.6).

About the resolution problem of the algebraic Riccati
operator equation (2.7) there are several known results, see for
instance, [7],[21, p.118; [8].

The following theorem is related to theorem 1 of [1] and
theorem 4.1 of [4] . 1ts is interested in finding sufficient
conditions for the existence of a solution (unique) of equation
(0.2), as well as to find explicit expressions of the solution
and the resolvent kernel of (0.2).
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Theorem 2.3. Consider equation (0.2) where K is given by (0.3)
in such a way that {A(t)} and {A,(t)} , with A, (t)=A(t)+B(t)C,
are generators of invertible fundamental operators UA(t,s) and

Up (t,s), such that UA(t,s) conmutes with P, for all s, t in
1

[0,T],s<t. Let S. be the operator

T
S1=PUL(T,0)U, (T.0) :Im P > Im P (2.9)
1 Im P
I f ST is invertible then (0.2) has only one HSlder continuous

solution for each Holder continuous function f. In this case, the

unique solution of the equation (0.2) can be written as

, T
¥(t)=Ff(t) + S R
(o]

T(t,s)f(s)ds, 0<t< T (2.10)

where

cu, (t,0)n.u, (0,s)B(s), <t
Ay A ) (2.11)

-CUAl(t,O)(I-HT)UA](O,S)B(S), s>t

RT(t,s)=

and HT is the projection of X along Im P, defined by

-1
HTZ =z - §5; P UA(T,O)UA](T,O), zeX (2.12)

Proof. From the conmutativity between P and U,(t,s), and the

Al
invertibility of this fundamental operator, it is a straightfor-
ward matter to show that condition (1.6) of th.2.1 can be written

as

T
zelmP, S;z=-PU,(T,0) UAI(T,S)B(s)f(s)ds (2.13)
(o)

and the condition (1.10) of corollary 1.3, is equivalent to the
condition zeKer ST. I f ST is injective, then the condition (1.10)
implies that z=0. From corollary 1.3 the homogeneous equation
associated with (0.2) has only the trivial solution. Hence, if

(0.2) is solvable, this equation has only one Holder continuous
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solution. Furthermore, if ST is a surjective and

f is Holder continuous, it is clear the existence of some zelmP,

satisfying the condition (2.13). From th. 2.1 the fucntion ¥
given by (1.7) is a solution of (0.2). Thus the first part of

the

for

theorem is proved,
From the definition, it is clear that HT satisfies HTZ=0

all z €imP, and HT(HTz)=HTz - HT(S}]ST2)=HTZ, for all zeX.

So HT is a projection. Moreover HTZ=0 implies z€Im P, hence

Iy

is a projection along Im P,

If f is a Holder continuous function on [0,T], and we take

T
Z='(|-HT) S u
o

A (0,s)B(s)f(s)ds, (2.14)
1

then (2.13) is satisfied. From th., 2.1, the function defined on

[0,T], by the expression

T

¥(t)=f(t)-Cu, (£,0) (1-Tp) S UAl(O,s)B(s)f(s)ds +

and

1 o
t
+/ CU

(t,s)B(s)f(s)ds =
o ‘1

A

t
(t,0)rs (I-HT)UA](0,s)-UA](0,s)B(s)f(s)ds -
1 o

-ftc uA1(t,o)(|-nT)uA1(o,s)B(s)f(s)ds

thus (2.10) is verified.

The following proposition provides a characterization of the

invertibility of the operator S, given by (2.9), in terms of the

global solvability of certain Riccati operator differential

equation. Let us consider the equation (0.2) with kernel K given

by

(0.2). Put X,=Ker P and X,=Im P. With respect to the decompo-

sition X=X, & X,, we write the operator Al(t)=A(t)+B(t)C as
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A (e) A, (t)

AL (t)= X,8X, >~ X 80X, (2.15)

Apz(t) Ay, (e)

Proposition 2.4, Let us assume that {A1(t)} is generator of an

invertible fundamental operator UA](t,s), 0 <Ss<t<T, and {A(t)}
is generator of a fundamental operator UA(t,s), 0<s< t<T. Then
the operator ST given by (2.9) is invertible, if and only if,
UA(T,O) is invertible and the Riccati operator differential
equation

(d/dt)u(t)=A 2(v;)+A”(t)U(t)-U(t)AM(t)-U(t)AB(t)U(t)

1

teg[0,T] ,u(0)=0

(2.16)
is solvable on [0,T].

Proof. From th, 2.1, the problem (2.16) is solvable on [0,T], if
and only if, H(t)=[0,1] Un (t,O)[?j, is invertible on [0,T]. If
1 .

we consider the operator function H(-) defined on 0,T , by the

expression
H()=[0,11 U, (t,0) |%|:x,--- x
£ A] ’ |'2 2
then it follows that
S_=[0,1] U,(T,0) {OJH(T)
T ’ At Rl

From the invertibility of UA(T,O) and the hypothesis, the
proposition is proved.

The results obtained in this section may be regarded as a
generalization of those obtained for the scalar in [1], [20], and

theorem 8.4 in [4] where the time invariant operator case is
studied.,
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