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WEIGHTED SHIFT OPERATORS ON lp SPACES

Lucas Jédar

ABSTRACT

The analytic-spectral structure of the commu-
tant of a weighted shift operator defined on
a % space (1<p<w) is studied. The cases unt

lateral, bilateral and quasinilpotent are tre
ated. We apply the results to study certain
questions related to unicellularity, strictly
eyelicity and the existence of hyperinvariant
subspaces.

1. Introduction.

For 1 < p < » let Qp(Z) be the Banach space of all abso-
lutely p-summablie sequences of complex numbers x={xn}n ez with
the norm N '

1/p
= = p
Il |IXIIp { z lxnl }

nez

where Z is the set of all integers. For the case p=® let %, (z)

be the Banach space of all bounded sequences of complex numbefts
x={xn}n ez With the norm
Ixll = il _= sup [x_|
® nez n

29
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An analogous definition is given for the spaces & (N), where N
is the set of all positive integers and 1 < p <. In the follo
wing we will denote the spaces lp(l) where the set | will be the
set Z or N.

I f {wn}n €l is a bounded sequence of nonzero complex num-

bers, then the operator T, defined on zp(l) by the expression

Te = woe (nel) (1.1)

where {e,} is the natural basis of lp(l), is called a weigh

nel
ted shift operator on zp(l). If I=N, T is said to be an unilate
ral weighted shift operator on £ (N), and T is said to be a bi-
lateral weigthed shift on Ep(Z), when |=Z. We may assume without

loss of generality that for all n€ |, w ? 0, [ro]. Let{B(n)}nsI

a sequence of positive numbers with B(0)=1, then we define the -

spaces

nez’ (f(n)B (n))n ez is absolutely p-summable},

Lp(B)={(f(n))

1 < p< =

Lw(3)={(f("))n € (fF(n)B (n))n is bounded}

z’

Hp(B)={(F(n))n eN’ (f(n)B (n))n eN |S absolutely p-summablel,

1 <p <.
Hm(B)={(f(n))n eN’ (f(n)B (n))n ey |5 bounded}
we shall use the notation
f(z) = ¢ f(n)z2" (2.1)

n el

where the series can be convergent or not for any complex value

of z. These spaces are Banach spaces with the norm

paypy’P
HH%={n%||fUM Bln)¥"} , 1 gp<=

Ifll = sup [F(n)] B(n), p=w
n el

(3.1)
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Let fk(n)=5nk; in the notation of equation (2.1) we have fk&)=zk.

Then {fk}kez is a basis of LP(B)’ and {fk}k en |s a basis of
Hp(B), and from (3.1) it follows that
el = B (k) (4.1)

Now we consider the linear transformation MZ of multiplication
by z on the spaces LP(B) and Hp(B):

n+1

(sz)(z)= I f(n)z (5.1)

nel
If X is a Banach space we denote by L(X) the set of all bounded
linear operators defined on X with the operator norm, [5]. If T
lTies in L(X), its spectrum will be denoted by O(T). We recall
that an operator T in L(X) is quasi-nilpotent if o(T)={0}. An
eperator T in L(X) is said to be unicellular if its lattice of
invariant subspaces represents a bounded linear operator on a

Banach space.

The commutant of an operator is the set of all those opera
tors that commute with him. In section 2, by using Banach alge-
bras and analytic function theory, the analytic spectral struc-
ture of the commutant of an invertible bilateral weighted shift
operator on ﬂp(Z) is studied. We abply the results to obtain
spectral conditions for unicellularity of T. Known results of
[15], obtainedsfor the case p=2 are extended, and suffi;jent
conditions for the existence of hyperinvariant subspaces are gi
ven. We recall that a subspace M is said to be hyperinvariant
for T if M is an invariant subspace for every operator which com
mutes with T. Section 3 is concerned with the study of the analy
tic-spectral structure of the commutant of an unilateral weighted
shift operator on £ (N), 1 < p < o, Spectral conditions for uni-
cellularity are found. The case where T is a quasi-nilpotent ope
rator is studied separately. Weighted shift operators with mono-
tone weight sequence are analyzed in section 3, where results
about strictly cyclycity of operatQrs obtained in [ 9] for the ca

se p=2 are extended.
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2. On bilateral weighted shift operators on

zp spaces.

n"n€Z n+l1’
for all ne€Z. The following theorem will allow us to represent

An operator T is said to shift a basis {f_} if Tfn=f

an injective bilateral shift operator as an ordinary shift opera

tor on a Banach space of formal Laurent series.

Theorem 1. Let T be an operator on LP(Z), 1 <Sp <o, then it fo-
Ilows that:

(i) T is an injective bilateral weighted shift on lp(z) if and

only if T shifts some basis of lp(Z).

(ii) 1f T is an injective bilateral weighted shift on zp(z)

then T can be represented as the operator M, acting on L (B),

for a suitable sequence B. The relation between {wn}n €7 and B
is given by
B(n)=wow]...wn_1 (n>0)
B(0)=1 (1.2)
B(-n)=(w_...w_ )" (n<0)

wo=g(n+1) (B(n) ™1 (nez)

(iii) T=M_ on Lp(B) is bounded if and only if {wn} is boun-

ded, and in this case

n €Z

n
M Il = sup W W Y- n >0
k €Z
(iv) If T=M_ on LP(B), then T is invertible if and only if

{(B(j+1))-18(j)}j ¢z |s bounded. In this case

ML =sup_ B (k+n) (B(k)) ™' (n>0)
k eZ
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Proof. (i) If T shifts some basis {fn} then it follows that

Te

nez’

=w where
n"n€n+1’

_ -1 _ -1
e =f (LF DT w sllf 0 (F DT (ne2)

Conversely, let T be an injective bilateral shift operator defi
ned by the expression (1.1), where {en}

of EP(Z). Then T shifts the basis {fn}

nez is the natural basis

hez’ where fo=eo and

fn=(wow1...wn_])en

f o =(w

-n caWeney o eWoqle

-n
for all n = 0.

(ii) It is a consequence of {i). (iii) From the expression (1.1)

it follows that for all k €2Z,

n
Tre=lwewp g - Wgno) e
From here and (1.2) the result is deduced.

(iv) Since M_f =f we have M-lf =f for all meZ, where
z'm z 'm

m+1’ m-1"

-1 . . - . . . .
Mz is defined on finite linear combinations of basis vectors.

1

Thus the linear transformation M; shifts the basis {gn}

nez’

where gn=f_ for all n e€Z. Hence we represent T-1 as multipli-

n,
cation by z on LP(B'), where S'(n)="9n”=Hf_nH=B(-n), for all

nez. From (iii) M;! is bounded if and only if {B'(n+1)(8-(n))"}nsZ
is bounded, and the result is concluded from (iii) and the éxpre—

ssion which defines B'.

Now we consider the multiplication of formal Laurent series
h=fg

(z fmMz"M(z gmMzM=135 h(n)2" (2.2)
ne€z neéElz nez
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where
h(n)= % f(k)g(n-k) (3.2)
keZ

and the product (2.2) is defined only all the series (3.2) are

convergent. Let L:(s) the sef of formal Laurent series

¢(z)= T &(n)z" such that éL (B) C L (B). Note that if e L (B)
nez p P p
then o¢f is defined and lies in Lp(B) for all f in Lp(B). Since

l=foe LP(B) and ¢fo=¢ for all Laurent series ¢, we see that

L:(B) c LP(B). 1fde Lw(B) then the linear transformation of mul
tiplication by ¢ on Lp(B) will be denoted by M¢.

Theorem 2.

(i) If $€L”(8) then M, is a bounded linear transformation on

¢
Lo (8).

(ii)  If ¢,y €L:(B), then their product is defined and is an ele

ment of Lp(B) and M¢M¢= M¢w.

(iii) If B is an operator on LP(B) that commutes with MZ then
B=M¢, for some ¢ GL?(B)-

(iv) With the norm]lM]4|M&[, the space L:(B) is a commutative

Banach algebra with unit.

Proof. (i) Let {fk} be a basis of L (B) with fk(z)=zk, for all

k eZ. If we define P, by pn(g)=g(n), for all neZ, and g eLp(B),
then the n-th component of M¢fm= ¢fm with respect to the basis
{fk} satisfies

£7(of )= (n-m) (8(n)) %=p_(oF ) (4.2)

where {f;} denotes the dual basis of {fk}. In fact, it follows
that
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2™ (2)= T 6 (k)2"*M= I ¢ (k-m)z", me z (5.2)
ke Z kel

I f {ek} is the natural basis of lp(Z), the from theorem 1 it fol

lows that

fk=6 (k)ek

FE(F )=(8 (m)e ) (8 (n)e ) =B (m)B (n)6

* 2 ’
FE0F ) =(8 (m)

From (4.2), the matrix (ank) which represents the transformation
with respect to the basis {fk} is given by ank=¢(n—k),n,ke Z. We
note that the matrix is lower triangular, ank=0 for k>n. From

[3], this matrix transformation is bounded.

(ii) By (i), M¢ and are bounded operators, whose matrix
with respect to the basis {fk} have (i,j)-th entries ¢ (i-j) and
Y(i-j), respectively. Thus the product operator MgMy is represen
ted by the product of these two matrix. Otherwise, the series
that arise in the product matrix are all convergent and the

(i,j)-th entry in the product matrix is
2 o (i=n)y(n-j)=1IT ¢ (k)Y (i-j-k)
neéez k €2

which is precisely the formula for p(i_j)(¢w)=(¢¢)(i-j) by (2.2).
Thus it follows that M¢M¢=M¢w.

(iii) Let ¢=Bf . Then by commutativity it follows that

_amke _yk ok
BF =BM f =MSBF =2"¢=0 f, (k =0)
-k -k
27 r)=m K Be, —pr =0 (k < 0)

By continuity of p_ and the convergence of g= I g(k)zk in LP(B)
k ez
it follows that
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= 3 f, )= I -
pn(Bg) ; eZg(k)pn(B k) ) ezg(k) (n-k)

which converges for all n €Z.

(iv) It is easy to prove that the commutant L:(B) is closed in
the weak operator topology of L(Lp(g)). From [ 5], p. 477, it fo
Iloys that CZ(B) is closed in the norm of L(Lp(B)) and thus it
is a Banach space.

In the following we identify the commutant of T with the

space L:(B). The following definition is concerned with the next
result.

Definition 1. Let T=M2 on LP(B) and let w#0 be a complex number;
Aw denotes the functional of evaluation at w, defined on Laurent
polynomials by Aw(p)=p(w); w is said to be a bounded point eva-
luation on L (B) if the functional Aw extends to a bounded linear
functional on LP(B). In this case f(w) will denote the complex

number Aw(f), for f in LP(B)-

Let K(L:(s)) be the structure space of L;(B), then the func-
tional p:K(L;(B)) +> C; p(A)=x(z), satisfies A(z)€o(T), [2], p.
233. Thus the only bounded points evaluation lie in o(T).

Theorem 3. Let T=M, be an invertible bilateral weighted shift on
Lp(B), with 1 < p <w, then if the symbol r(.) denotes the spectral
radius, [ 4], it follows that

(1) o(M=(z;e (1™ < |4 < (M.

F(k)zK,n,m >0 sa-

(ii) If f lies in LP(B), and Sn,m(f)= <

T
tisfies k

-n <
Sn m(f) converges to f, with respect the norm

’
of U;(B) when n,m > 4o, (6.2)

then g (f)={f(w);weo(T)}.
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(iii) If £ lies in U;(B) and condition (6.2) is satisfied, then
the Laurent series (2.1) defines a continuous function in O(T).
(iv) For p>1, w is a bounded point evaluation on Lp(B) if and

only if

£ (w9 (8(n)) %= (1/p + 1/p =1) (7.2)
n €Z

If p=1, w is a bounded point evaluation if and only if
n -1 .
{]w] (g(n)) }n ez 19 bounded (8.2)

(v) 1f p>1 and |w|=lTl or |wl= BT """, then w is not a boun-

ded point evaluation on LP(B).

(vi) If ¢ eLp(B) and g eLp(B), then Xw(¢g)=xw(¢)xw(g)-

Proof. (i) If c is a complex number with |c[= 1, then T is unita
rily equivalent to the operator cT, [ 10], and thus the spectrum
of T, 0(T) has circular symmetry. Let w be in the resolvent set
of T. From the series representation of the resolvent function
of T, [5], p. 567, it is clear that (T-w) "' commutes with T.
From theorem 2-(iii) there exists ¢ GL:(B) such that (T-w)-]=M¢.
Computing in the expression (z-w)¢(z)=1, it follows that
¢(-1)-wp (0)=1, and

W o (k)= (0), o (~k=1)=wSs(-1)  (k > 0) (9.2)

From (8.2) it follows that the n-th component of fm¢ in the natu
ral basis of LP(B) is given by

f:(fmd>)=<b(n=m)(e>(n))2 (m,nez) (10.2)

and
6 O] (BUm+k)) A< £ (M) | < M 18 (m) 8 (mek)
Hence
B (mek) (8(m)) ™1 < ] < Nmgl
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and from (1.2) and theorem 1-(iii), we obtain
k k
Ems < pw WM¢" (k >0) (11.2)

Taking k-th roots and letting k > », gives r(T) < |w|. By circu-
tar symmetry of O(T) it follows that |w] >r(T). As r(T—]) =
=r(T)—] it is deduced that |w| > r(T'l)-l and by circular sym-

metry again the result is concluded.

(ii) Firstly we prove that if ¢ ¢ L°;(B) then
[6 ()] <M1 (12.2)
for all weo(T). Let w be with |w|<r(T)=R. From (4.2) it follows

that |6 (n-m)|B (n) < My I8 (m) for all n,m >0. If we divide by

B(n), and let n=m+k, and take infimum on k, from theorem 1 it fo

ITows that
EXOIR N I A (13.2)
n 1/n
As r(T)=inf T , it follows that
n=o

1/k
< (quirm Tk (14.2)

Kopoky =1 -

wl N =winrky
The expressions (13.2) and (14.2) imply that ¢ converges in the
disc |wl<r(T). As‘r(T-1)=r(T)-],we obtain the convergence of ¢
in |w|>r(T-])-].

der the sequence {Aj}je N where Aj is the functional of evalua-

Now lTet w=r(T)exp(it), te [0,21]. Let us consj

tion at w.=(r(T)-j-1)exp(it). Note that ). is continuous on
L:(B) because ]¢(v)|<‘”M¢" when [v]<r(T). By compacity of the
structure space, [2], p.222, there exists a functional

A€ K(L;(B)) and a subsequence {Ank} which converges to A. Thus

A(z)=Li$Ank(z)=w. Thus A(z)=w and Aw(f)=ézg+w(sn,m(f))(w)=f(w).

Moreover, if A], AZG K(L;(B)) satisfy A](z)=A2(z)=w, by continuj
ty Nl(f)=X2(f)=f(w). In consequence ¢ converges in |w|<r(T) and a
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fortiori in o(T). Moreover, since Lz(B) is a commutative Banach
algebra with unit, it follows that IIAJI= 1, for all we ag(T) and

for all Ae K(L:(B)) one has A(z)=w. Thus (12.2) is proved.

By [2], p.223, if fe L:(B) satisfies the hypothesis, it fo-
llows that

g(fF)={A(f)sre K(L;’(s))}= {f(w); we a(T)}

because A(f)=f(w) when A(z)=w and for all Xe€ K(L:(B)), A(z) e (T).

(iii) If fe L:(s) and (6.2) is verified, given €>0, let n, be a

positive integer such that

< € if m,n = N,

m
" £ F(k)TK
k=-n

From (12.2) it follows that

<€, if myn>=n

m k
sup l r f(k)w o

wealT) k=-n

Hence the result is proved.

(iv) If 1 < p <o then the conjugate space of Lp(b) is Lq(b) whe-~
re 1/p+1/q9=1, and for the case p=1, its conjugate space is the
space Lm(B) introduced in section 1. Let w be a complex number
wiih weo(T) and let {f. } be the natural basis of Lp(B) and let
{fn} be the natural basis in its conjugate space. From the ex-
pression Aw(fn)=wn, neZ, it follows that w is a bounded point eva
luation on Lp(B) if and only if there exists 9, eLq(B) such that

whoa, (F ) =g, ()7 (F)=g, (n) (B(n) %5 g, (n)=w"(B(n)) 2

where 1/p + 1/q = 1 if p>1, and q=e if p=1. Thus (iv) is proved.

(v) From theorem 1 it follows that "Tn” > B(n) for all nezZ. Mo
reover ITI" = 1T" and "T_llln =T for all n 2 0. From (iv)

the result is concluded.
(vi) It is clear that the Laurent series f, ¢ and ¢f converge
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absolutely at w to the values Xw(f),xw(¢) and Aw(¢f) respectively.
From the classical theorem of Mertens the result is concluded.

If p=1 the result of theorem 3-(v) is not true as is showed
in the following example.

ExamEle 1. Let T be defined on ,Q,l (z) by the expression 'l'en_een.'_1

for all n €Z. From theorem 1, it follows that = Th=0T" "=NTn
for all n €Z. Moreover, it is clear that the sequence (8.2) is
constant and w=1 is a bounded point evaluation from theorem
3-(iv).

If T is an unicellular operator then T has hyperiqvariant
subspace and every invariant subspace is hyperinvariaét, [71. NI
kolskii, [6], and more recently B.S. Yadav and S. Chatterjee,
[16], have found sufficient conditions for a weighted shift ope-
rator to be unicellular. In the following we prove that every
bounded point evaluation generates a lot of invariant subspaces
which are not linearly ordered by inclusion. We give neccesary
conditions for unicellularity of an invertible bilateral shift

on QP(Z).

Proposition 1. Let T be an invertible bilateral weighted shift
on RP(Z) with r(T_])-l <r(T), and let

- l/n

s, (T=lim sup (8(-n)) """, s (T)=1im inf (g(n))'/" (15.2)

N >0 N >0

then it follows

(i) If p>1 and s](T)<52(T) then T has bounded points evaluation

and T is not unicelular.

(ii) If p=1 and w lies in the annulus s](T) < |z]< sZ(T) then w

is a bounded point evaluation and T is not unicellular.

Proof. Let w be a bounded point evaluation on L _(g) for 1 < p<w,
and let S(w) be the set of all f in Lp(B) such that Aw(f)=f(w)=0.
As S(w)=Ker Aw’ it is closed. We prove that S{(w) is an invariant
subspace of T. Let f be in S(w), then Tf=MZf=zf lies in S(w) be
cause Aw(zf)=Aw(z)Aw(f) by theorem 3-(vi). Moreover, if Wi, oWy

are bounded points evaluation on Lp(B) where |w1|=]w2[and wi#w,,
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then the polynomials g;=z-w,, i=1,2 verify g ¢ S(wi)-S(wj), for
i#j, because

Awi(gj)=wj-wi (1 <i,j <2)

Thus the lattice of invariant subspaces of T is not linearly or
dered by inlcusion and T is not unicellular. (i) From theorem
3-(iv), w is a bounded point evaluation on LP(B) if p>1 and
Sl(T)<|w|<52(T). (ii) If p=1, then from (8.2), every point w
such that s](T) < |wl < SZ(T)’ is a bounded point evaluation.

From here the result is established.

| f It ti= ITIl, or more generaly if r(T-I)_]=r(T). and p>1,
then proposition 1 is not sufficient to generate hyperinvariant
subspaces. In the following results sufficient conditions to ob
‘tain hyperinvariant subspaces in these cases are given. Without
loss of generality we suppose that |[T|l= 1.

Theorem 4. Let T=Mz on L _(B) an invertible bilateral weighted
shift operator with 1 < p<wo. If ||T||= 1 and T satisfies

I (1-w_ )< (16.2)
nez n

then T admits a nontrivial hyperinvariant subspace.

Proof. Let T  be the adjoint operator of T. It is clear that 7"
is defined on Lq(B) by the expression

T €n T Wpo1®n-

for all n €Z. Thus it follows that (T*)n(e°)=(w_1w_2...w Je_

-n n

for all n 2 o and

“(T*)n(eo)“= W_opeeew_o (n >0) (17.2)

Moreover it follows that
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Tn(e0)=(w°...wn_])en (n 20) (18.2)

T < 1 (h >0) (19.2)

From the hypothesis (16.2) and theorem 15.5, [13], it follows

that the infinite products

w_,>0 (20.2)

V=

II .
n=0 " n=o0

are convergent to positive limites. Thus we obtain

tim T"(e )40 , 1im(T7)" (e )#0 (21.2)

n-ro N>

From (19.2) and (21.2) and theorem 6.21, [12]; the result is con

cluded.

Corollary 1. Let T=MZ be an invertible bilateral weighted shift
operator on LP(S) which satisfies the condition HTH=HT_]U'I=I,

then T admits a nontrivial hyperinvariant subspace.

Proof. From the hypothesis IITll=1 it follows that w <1 for all

nez. The hypothesis I T =1, implies

TN = sup(w )=
nez
Thus we obtain wn=1 for all integer n. From theorem 4 the result
is proved.
The following example shows that there are operators which
satisfy the hypothesis of theorem 4 and they do not satisfy the
hypothesis of corollary 1.

Example 2. Let T=MZ on Lp(B) where 1 < p<o | w_,=1 for all n =1

and wn=1-(n+1)"2 for all n =20. Then it follows
that
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I Th=sup w =1 ; ||T']||=sup(wn)"‘=(_w])']=3/4
neZ ne Z

2

b (l-wn)= (n+1) "~

z
nel n=0
Thus T satisfies (16.2) and does not satisfy the condition of

corollary 1.

Corollary 2. Let T=Mz be an invertible bilateral weighted shift
on LP(B) with 1 < p <o .and wn=c>0 for all n€ Z. Then T admits

a nontrivial hyperinvariant subspace.

Proof. Let V be the operator V=T/||T|, then V is the bilateral

shift defined by Ve = for all nez. Now theorem 4 proves

e
n+1
the existence of hyperinvariant subspaces for V and a fortiori

for T.

Note that an operator which satisfies the hypothesis of co
rollary 2 verifies sl(T)=52(T). Moreover if p=1,from proposition
1-(ii) the circle |z|=s](T)=1 is a set of bounded points evalua-
tion and from theorem 3-(v), for the case p>1, these points are
not bounded points evaluation and thus the existence of hyperin

variant subspaces for T is not insured.

Theorem 5. Let T=MZ be an invertible bilateral weighted shift

operator on LP(B) where 1 < p<® | T|=1. Suppose that T satisfies
the following conditions

Won S W_(ne1)s foralln =1 (22.2)
I (1-w )<+ (23.2)
n>0 n
I (+n?) Mg u_y.eow_ ) T <e (24.2)
n >0 n

Then T admits a nontrivial hyperinvariant subspace.

Proof. From the hypothesis (23.2) and theorem 15.5, [13], it fo-
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1lows that

Tim [T"(e )li=Tim llw_...w__)e_ ll=Tim(w_...w._1)>0 (25.2)
Moo o oo o n-1 N e O n-1

)—]enH=(w_].. w_ )71 we prove

Let o=l (T7™) (e M=l (w_;...w_, _,

that the sequence {pn}n >0 verifies

Pn < Ppyyr (n=0) (26.2)
Pmen <PpP»(n =0, m>o0) (27.2)
2,-1 :
L (14n%) ‘logp <+ (28.2)
n>0 n *

From the expression W, <|ITl=1, it follows that
pn=(w_]...w ) < (w_]...w_n_])-]=pn+l

Thus (26.2) is verified. The hypothesis (22.2) implies (27.2).
In fact, it follows that '

)-1<(w_]...w_m)-](wq.. w__)=P P

_ -1
o -(w_]...w_m) (I Yon/"'m'n

< W_onon
The hypothesis (28.2) and the corollary of theorem 2, [1], besi
des of conditions (25.2)-(28.2) imply the existence of hyperin-

variant (nontrivial) subspaces for T.

There are operators which satisfy r(T)=r(T71) and the hypo
thesis of theorem 5 and do not verify the hypothesis of theorem

i

Example 3. Let T=M_ on LP(B), 1 < p<wdefined by the weight se-
quence {wn}n ¢z where w =1 for all n =0 and w_n=1-(n+1)-] if

n = 1. Then it follows that

n -n -1
IT I =sup(w, ...w _)=15 T "lh=sup(w,...w _1) =n+l.
K ez k k+n-1 ke 2 k k+n-1
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Thus r(T)=1, r(T )=tim(n+1)/P=1. As w_ SW_(neq) for all n >

n
n+w
by construction and (w_]...w_n)_]=n+l, it follows that
Io(1-w )=0, I (l-w)= I (1-w_ )= I (n+1) =4
n >0 n nez n =1 n>1

L (14n2) Nlog(n+1) <+
n 20

Thus T satisfies the hypothesis of theorem 5 but it does not sa
tisfy the hypothesis of theorem 4.

3. Analytic-spectral structure of the commutant
of unilateral weighted shifts.

Let T be an injective unilateral weighted shift operator
defined by (1.1), where | is the set of positive integers, I=N,
and {en}n ey 'S the natural basis of ZP(N). In analogous way to
the proof of theorem 1 and 2, in section 2, the follwing is easily

established and we omit its proof.

Theorem 6. Let T be an operator on gp(N) defined by (1.1) with
I=N, then

(i) T is an injective unilateral weighted shift on Qp(N) if
and only if T shifts some basis of xp(N), 1 < p<w.

(ii) Every injective unilateral weighted shift operator T on
zp(N) can be represented as the operator M, acting on
Hp(B), for a suitable 8. The relation between {wn}n>0
and B is given by the equations

BO)=1, B(n)=wo...w (n >0)

n-1

w,=8(n+1)/8(n)

(iii) Mz is bounded if and only if {wn}n>0 is bounded, and in
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this case

M2 = sup B(n+k) /B (k) (n>0)
k=0
Moreover the spectrum of T is the disc |z| <r(T).

The commutant of T will be represented by a certain algebra
of formal power series, in the same way to the representation of
the commutant of a bilateral weighted shift on lp(Z). Let us con

sider the multiplication of formal ‘power series, h=fg

5 n ny_ n
(nzof(n)z )(n; g(n)z") nZ?Oh(n)z

where

n
h(n)= £ f(k)g(n-k)
k=0
For p fixed, with 1 Sp<eo, let HP(B) be the space defined in the
introduction, and let H:(B) be the set of formal power series
¢(z)= I ¢(n)z", such that

n =

¢ HP(B) C HP(S)

If ¢ EH:(B) then the product ¢ f is deiined and lies in HP(B)
for all f in HP(B). It is clear that H (B) C H (B). If ¢eH:(m
‘then the linear transformation of multiplication by ¢ on H(RB)
will be denoted by Mg. The following results allow us to identji
fy the commutant of T as H;(B). We omit its proof because it is

analogous to the proof of [15], when p=2.

Proposition 2.

(i) If ¢ lies in H:(B) then M¢ is a bounded linear transfor-

mation on Hp(g).

(ii) I1f ¢, Y belong to H:(B), then the product ¢y is defined
and is an element of H:(B) and M¢M¢= M¢W'
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(iii) If B is an operator on HP(B) which commutes with M, then

B=M¢, for some¢ in H:(B).

oo
(iv) With the norm llgll=iM I, the space Hp(B) is a commutative

Banach algebra with unit.

In the following we identify the commutant of T with HP(B)’

and all operators which arise will be bounded.

Definition 2. If w is a complex number then Aw denotes the func
tional of evaluation at w defined on polynomials by Aw(p)=p(w);
w is said to be a bounded point evaluation on HP(S) if the func

tional Ay extends to a bounded linear functional on Hp(m.

Given an injective unilateral weighted shift operator T on
QP(N), 1 < p<w and represented by M, on the space Hp(B), we de
note

s(T)=1im(g(n)) /"

n —»>oo

(1.3)

We denote by K(H (B)) the structure space of the commutative Ba-
nach algebra H:(B). The following theorem shows the analytic -

spectral structure of the commutant H:(B).

Theorem 7. Let T=MZ on HP(B) where 1 < p<wo and r(T) >0, then it
follows that

(i) 1f |w|<r(T) and ¢er(B) then the power series ¢ converges at

w and

fo ()| < limyl (2.3)

. © o k
(ii) If f belongs to Hp(B) and Sn(f)=k§0f(k)z , then {Sn(f)}n;ﬂ
is pointwise convergent to the function which defines f,

in 6(T). Moreover, f is continuous in g(T) and analytic in
|z|<r(T).

(iii) If f belongs to H;(B) and {Sn(f)}n>0 converges to f in
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HP(B), then

o (F)={f(w); |w] <r(T)} (3.3)

Proof. (i) In analogous way to the proof of theorem 3-(ii), it

follows that

k =1
Lo GOT< M T N (4.3)
From the properties of the spectral radius, L4 , one has
1/n
r(T)=inf T . Thus, if w is a complex number which satis-

n>0
fies |w|<r(T) it follows that

pwpaTkiTt) < (upr(my Thk (5.3)

From (4.3) and (5.3) it results that ¢ converges in the disc
(=]

|w|<r(T). Moreover since HP(B) is a commutative Banach algebra

with unit, and the functional of evaluation at w has norm one,

”AWH=1, we obtain

I (0) [=lo(w) ] < IIM¢|I

(i) From (i), f defines an analytic function in the disc
|z] < r(T) and from Gel'fand's theorem, [2], p.223, f is a con-
tinuous function in o(T)={z;|z| < r(T)}.

(iii) 1t is analogous to the proof of theorem 3-(ii).

The following result continues the study of the analytic

structure of H?(B).

Theorem 8. Let T=M, on Hp(B) where 1 < p<w, then it follows that

(i) If wis a complex number |w|<s(T), then w is a bounded point
evaluation on Hp(g).

(ii) Let f er(B). If w is a bounded point evaluation on Hp(B)»



49
Wwighted shift operators on Rp spaces

then the power series which defines f converges absolutely

at w and A (f)= 2 f(n)wn. Moreover if w is a bounded point
w n>0 -
evaluation on HP(B),¢ GHP(B) and f € Hp(B), then Aw(¢f) =

= 2,001 (F).

Proof. (i) Let {fn} be the natural basis of Hp(B) ?nd let {fﬁ}
be the natural basis in its conjugate space Hq(B), where
1/p+1/q=1 if p>1, and g= » if p=1. From the expression &Afn)=w",
it follows that w is a bounded point evaluation on HP(B) if and

only if there exists g GHq(B) such that
n _ _ * _ 2 _.n 2
W= A (F ) =g, (M) FR(F =g, () (B(n)) %, g, (n)=u"(B(n)]
Thus w is a bounded point evaluation if and only if

T lw| "B (n)) Ycwe, if p>1 (6.3)
n>0

{|w|n(B(n))_1}n > is bounded, when p=1 (7.3)

The result is a consequence of the expressions (6.3), (7.3) and
(1.3).

L. n k

(ii) Let Sn(f)=k£0f(k)z , and let f GHP(B). As {Sn(f)}n>0 con-

verges to f in H_(B) with respect to ““P and A is bounded on
Hb(B), it follows that Aw(f)=lim Xw(Sn(f)). Moreover from the
A n->oo

expression p(w)=Xw(p) for polynomials we obtain

n
A (F)=lim £ FU)wK= 2 fF(n)w" (8.3)
w e k=0 n#
By circular symmetry of the spectrum, we have convergence at w
for all f in HP(B), and as fer(B) if and only if [f| et (B),
where |f| is the power series |f(n)[zn, it follows that the
=0

series (8.3) is absolutely convergent. From the expression (2.3),

the power series f, ¢ and ¢f converge absolutely at w to the
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values Aw(f), A, () and ) (¢f), respectively. Thus it follows
that 3 (¢f)=x, (f)x, (o).

Remark 1. If p>1 and ]w|=HTH, then w is not a bounded point eva
luation on H_(g) because [T|" > T"| >8(n), for all n >0 and
thus IlTlln(s(rF:))_1 > 1 for all n =>0.. From the proof of theorem
2-(i) it follows that w is not a bounded point evaluation on
Hp(B). Lf p=1 and |w|=[|T||, then w can be a bounded point evalua
tion on H](B). For example if w =c>0 for all n > 0 then
B(n)="T”n = c", for all n > 0. From (7.3) it follows that w is

a boundgd point evaluation on H](B).

It is well known that the only operators which are unicelg
lar in finite-dimensional spaces have a spectrum reduced to a
point. C. Foias and J.P. Williams [8], have given an example of

an unicellular operator with more than one point in its spectrum.
In the context of weighted shift operators several authors, [11],

and [16], have found sufficient conditions for unicellularity.

We omit the proof of the following corollary because it is

easy from the proof of the proposition 1.

Corollary 3. Let T=M, on H (B), where 1 < po. If s(T)>0 then T
is not unicelular. P

If T is an injective unilateral weighted shift operator on QP(N),
where 1 < p<o and r(T)=0, that is, T is quainilpotent, then the
analytic-spectral structure of the commutant Hw(s) obtained in
theorems 7, 8 and the corollary 3 where r(T)>Q is not available.

In the following result this question is studied.

Theorem 9. Let T=M_ on HP(B) an injective unilateral weighted
shift operator where 1 < p<w, and let us suposse that r(T)=0.
Then it follows that

(i) If f(z)= Zof(n)zn is a power series with radius of conver-
n=

gence r>0, then fe¢ H:(B) and Sn(f) + f with respect to the
norm of H;(B).
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(ii) There exists a power series f(z)= L°* f(n)z" with radius
n/

of convergence r=0 and f GH:(B).
(iii) If f EH:(B) and S (F)> £ in H (), then o(f)={f(0)]}.

(iv) There exists a power series f(z)= Z f(n)z", with radius
n =
of convergence r=0 and f GHS(B).

Proof. (i) Let f(z)= X f(n)z", with rletim sup|f(n)|1/n<+w,
n=0 n->o

then the operator A= I f(n)T" is bounded because the series
=0
T |f(n) Tl is convergent
=0

Tim sup{|f(n)|II T" m]/n=lim sup|f(n)l]/n‘im“TW|‘/n=0

n->oo n-> oo N->co

As AT=TA, from proposition 2-(iii) there exists geH™(B) such

' n n
that A=M_ on H_(B), where g(z)=A(f0)(z)=r>Z0 f(n)szO(z)=réof(n)z

It is clear from the convergence of (n)|HTnchat f=1im Sn(f)

n-—>oo

in Hp(B). This proves (i).
(ii) Let f be f(z)= I (B(n)) ' 2", then as s(T) < r(T)=0, it fo-

. n=>0
llows that this power series has radius of convergence r=0. Mo-

reover f ¢ Hp(s) because

1M |PB(M)IP= 3 1= + =
>0 =0

n=z
(iii) The proof of theorem 3-(ii).

(iv) Let k be a real number with 0<k<1, f(n)=k"/T™, for n>o0,

then f e H:(B) because the operator z f(n) T" is well defined
n>0

and commutes with T. Moreover the power series which defines f

has radius of convergence r=0 because

lim suplf(n)ll/n

=k lim supHTn”-1/n=+m
n>e n>®

Let T=M_ on HP(B), for 1<p<w, we recall that T is called strict-
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ly cyclic if there exists a vector fe Hp(B), such that (H?(B))f
=H_(B).
P( )

I f {wn}n >0 is monotonically non-increasing and néﬂ(g(n))_q<m,

for 1<p<o then the operator Ten=wnen+

strictly cyclic as proved D.A. Herrero, [7],'and H. Salas, [14].

1sn =20 on lp(N) can be non-

The following theorem gives sufficient conditions for strictly
cyclicity of such operators. Results of [9], obtained when p=2

are extended.

Theorem 10. Let T=M, on Hp(g), an injective weighted shift ope-
rator on lp(N) where 1<p<e and suppose that

Wit < w o, (n>0) and Iig w =1 (9.3)
n
ngo(s(n))'q«’o, p-1+q_]=l (10.3)
sup {B(Zn)}<m (11.3)
n=0 g(n)

Then T is strictly cyclic.

Sw, for n >0, from [10]), T is strictly cyclic
n+1 n

if and only if,

Proof. As w

n
sup L (—B8(n) ,q (12.3)
n>0 k=0 g (k)g (n-k)

The condition (12.3) will be satisfied if the sequences

{s and {52 are bounded, where

2n! =0 n+1}

S.-7 (—BU) ya (j >0 )
J k=08 (k)g (j-k)

For n2 0 it follows that

2n n
S,n=(2n))% £ (B (KB (2n-k)) "9 <2(8(2n))% 1 (8 (k)g (2n-k)) 9
n k=0 k=0
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As W <1 for all j 20, and (B(2n-k)) 9 <(B(n))79, for
k=0,1,...,n, it follows that

n
s,,< 2820y 5 (g(k))7a (13.3)
g (n) k=0
Analogously for n = 0 it follows that
2n+1 _ B (2n+1) n _
Syne1=(B(2n+1))F T (B (K)B(2n+1-k)) TIS 2 (=209 1 (8(k) A
k=0 B(n+1) k=0

(14.3)

Moreover as S(2n+n)=w2n+18 (2n+1), from (14.3) it follows that

=2 (g(z—n.‘.zl)q(w
B(n+1)

(B(k))™9 (15.3)

™3

-q
S2n+1 2n+l)

k=0

From (9.3) the sequence {(w2n+1)_q}n > is bounded and from
(11.3) the sequence {g(2n)/g(n)}, >0 is bounded. From here and
the expressions (10.3), (13.3) and (15.3), the result is proved.
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