CONSTRUCTION OF 0-1 MATRICES ASSOCIATED TO PERIOD-DOUBLING PROCESSES

J. P. Lampreia*

A. Rica da Silva**

J. Sousa Ramos^{*}

ABSTRACT

We elaborate a method allowing the determination of 0-1 matrices corresponding to dynamics of the interval having stable, 2^k -periodic orbits, $n \in \mathbb{N}$. By recorrence on the finite dimensional matrices, we establish the form of the infinite matrices $(k + \infty)$.

0. Introduction.

Let us denote by C [1], the set of all maps $f:[-1,1] \rightarrow [-1,1]$ such that:

- 1) f is of class C^1 in [-1,1] and of class C^3 in [-1,o[U]o,1].
- 2) f is even.
- 3) f(-1)=-1.
- 4) f'(-1) > 1.
- 5) $f'(x) \neq 0$ for all $x \neq 0$.
- 6) S(f)<0 on (-1,0)U(0,1) where we have denote by

$$S(f) = \frac{f^{11}}{f^{1}} - \frac{3}{2} (\frac{f^{11}}{f^{1}})^{2}$$

the Schwartzian derivative of f.

- 7) For every k \in N, f possesses a periodic point of period 2^k .
- 8) f has no other period points which are not multiples of 2.

This paper will focus mainly on the construction of a infinite 0-1 matrix which is equivalent to the dynamics on the interval defined by the iterates of a quadratic map satisfying the conditions above. This we will do upon accumulation of 0-1 matrices corresponding to stable, 2^k -periodic dynamics.

1. Notation.

For any map $f \in \mathcal{C}$, we will study the orbit of a critical point (c=o), $\{x_k\}_{k \in \mathbb{N}}$ where $x_k = f^k(c) = fo...o$ f(c). To this orbit, which completely characterizes the dynamic, we will associate a symbolic sequence

where:

$$S_0 = C$$

$$S_k = L \text{ if } f^k(c) < c$$

$$S_k = C \text{ if } f^k(c) = c$$

$$S_k = R \text{ if } f^k(c) > c$$

We introduce a order relation on the set of symbols (here R-parity) will mean parity of N_R , the number of times the iterates of c fall in the subinterval [c,1]):

 σ will stand for the shift-operation in the Σ -space, Σ ={L,C,R} $^{N_{O}}$

and $\sigma S = S' = \{S'_k\}_{k \in \mathbb{N}_O}$ where $S'_k = S_{k+1}$.

We shall define the Kneading sequence [2] as the truncation:

$$s^{(k)} = s_1 s_2 ... s_{k-1} c$$
 of the shift $\sigma(cs_1 s_2 ... s_{k-1} cs_1 s_2 ...)$

of the symbolic sequence determined by the itinerary of the critical point if the orbit has period K or, in case of a non-periodic orbit S, as the shift of the symbolic sequence $\sigma(S)$.

Given any Kneading sequence $S^{(k)} = S_1 S_2 ... S_k$ a *-product [3] is defined by:

$$S^{(k)} * R = S^{(k)}RS^{(k)}$$
 if N_R is even
 $S^{(k)} * R = S^{(k)}LS^{(k)}$ if N_R is odd.

2. Topological Markov Chain associated to a k-periodic orbit of the critical point.

In the following, we study a method of construction of a topological Markov chain [4] associated to any periodic orbit of the critical point.

Define:

$$X^{(k)} = \{x_i : x_i = f^i(c), i = 0, ..., k-1 \text{ and } f^k(c) = c\}$$

 $x^{(k)}$ is the orbit, of period k, of the critical point c. Associate to each x_i a symbolic sequence $\sigma^i(S) = \sigma o \dots \sigma(S)$.

i times

Also, denote the ordered sucession of the x, by:

$$Y^{(k)} = \{ y_j = x_{ij} = f^{ij}(c) : x_{ij} < x_{ij+1}, j \in \{0, ..., k-1\} \text{ and } i_j \in \{0, ..., k-1\},$$

and likewise, associate to each y, a symbolic sequence $\sigma^{ij}(S)$. $\gamma^{(k)}$ determines a partition, $P^{(k)}$, of the interval:

$$I = [f^{2}(c), f^{1}(c)] = [y_{0}, y_{k-1}] = [x_{2}, x_{1}].$$

$$P^{(k)} = \{I_{1} = [y_{0}, y_{1}], I_{2} = [y_{1}, y_{2}], \dots, I_{k-1} = [y_{k-2}, y_{k-1}]\}.$$

and let $A=[a_{ij}]$ represent the transition matrix which f introduces, where

$$a_{ij} = \begin{cases} 1 & \text{if } I_j \subset f(I_i) \\ \\ \text{o otherwise} \end{cases}$$

$$\Sigma_{k-1} = \{ I_1, I_2, \dots, I_{k-1} \}^{N_0} = \{ 1, 2, \dots, k-1 \}^{N_0}$$
 will be

the space of symbolic sequences of "states" if $\omega \varepsilon \Sigma_{k-1}$, where $\omega = \{\omega_n^{}\}_{n \in \, N_{_{\textstyle O}}}$, define the $\tau\text{-shift}$ operation

$$\tau: \Sigma_{k-1} \to \Sigma_{k-1}$$
 where $\tau \omega = \omega'$ with $\omega' = \omega_{n+1}$

A symbolic dynamical system will be, by definition, the restriction $(\Sigma_{\rm A},\tau)$ of the $\tau\text{-shift}$ to a $\tau\text{-invariant}$ closed subset $\Sigma_{\rm A}\epsilon\,\Sigma_{\rm k-1}$, [4], [5].

Finally, if A is a (k-1)x(k-1) square matrix whose entries a_{ij} are zero or one only, define a topological Markov chain (Σ_{Δ},τ) where:

$$\Sigma_{A} = \{ \omega \in \Sigma_{k-1}, a_{\omega_{n}\omega_{n+1}} = 1, \forall n \in N_{o} \}$$

Construction of Markov Chains associated to period-doubling processes.

In this section we will apply some of the results of last section to study period-doubling processes [6] and build a succession of Markov chains associated to increasing 2^k -periodic orbits of the critical point.

It is known that, on a one-parameter family $f_a:I \to I$ of $e\underline{n}$ domorphisms of the interval, monotone variation of the parameter a is followed by a sequence of values a_2k for which the dynamics will only possess one super-stable periodic orbit $(f^{2k}(c)=c)$ of period 2^k , with $k=0,1,2,\ldots$, and such sequence will accumulate on a value a_2^{∞} . It must be noted that the "stability windows"—neighbourhoods of values a_2k where there exists a stable 2^k -peridic orbit — will define the same Markov transition matrix: in fact, you just have to overlook the transient movement and consider only the stable assymptotic orbit!.

In terms of the *-product these orbits are [3]:

corresponding to the kneading sequences $S^{(k)}$:

RC; RLRC; RLRRRLRC; RLRRRLRLRRRRLRC;...

and the following symbolic sequences $\sigma^{i}\left(S^{k}\right)$ refering to these:

{RC,CR}; {RLRC, LRCR, RCRL, CRLR};...

{RLRRRLRC, LRRRLRCR, RRRLRCRL, RRLRCRLR, RLRCRLRR.
LRCRLRRR, RCRLRRRL, CRLRRRLR);...

Also, as it was seen in §2, these correspond to the ordered sequences.

{CR,RC};{LRCR,CRLR,RCRL,RLRC};{LRRRLRCR,LRCRLRRR,
 CRLRRRLR,RRLRCRLR,RRRLRCRL,RCRLRRRL,RCRCRLRR,RLRRRLRC};

These will in turn introduce the partitions $p^{(k)}$ and the transition matrices (fig. 1 & fig. 2).

Fig. 1

$$A_{2^{1}-1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad A_{2^{2}-1} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad A_{2^{3}-1} = \begin{bmatrix} 0 & 100 \\ 0 & 11 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_{2^{4}-1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A_{2^{4}-1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Fig. 2

In this way, for each k; a matrix A_2k_{-1} is defined:

$$A_{2}^{k} = \begin{bmatrix} 0 & A_{2}^{k-1} & A_{2}^{k-1$$

$$C_{2k-1} = [11...1]$$

and
$$\hat{A}_{2k-1-1} = [\hat{a}_{m\ell}]$$
 with $\hat{a}_{m\ell} = a_{ij}$, $\ell = j$, $m = 2^{k-1} - i$

and
$$A_2^{k-1} = [a_{ij}]$$
.

To simplify the study of the accumulation $(k \rightarrow \infty)$ of these ma trices we shall redefine them by mere permutation of certain lines and columns. But let us first introduce the following notions:

A transitive "quasi-order" structure is introduced in the "state" space [5] by

i<j ⇔ There exists a chain of state,

$$i=i_0,i_1,\ldots,i_n=j$$
 such that $a_{i_0,i_1,\ldots,i_{n-1},i_n}>0$.

A state i will be called recurrent if i<i and non-recurrent otherwise. Recurrent states are classified in equivalence classes:

Each such class defines a topological Markov sub-chain $(\Sigma_{\Delta(R)}, \sigma^{(R)})$ with:

$$\Sigma_{A}(R) = \{\omega \in \Sigma^{(R)}; a_{\omega_{n}\omega_{n+1}} = 1, \forall n \in N_{o}\}; \sigma^{(R)} = \sigma|_{\Sigma}(R)$$

$$\Sigma^{(R)} = \{i_{1}, \dots, i_{j}\}^{N_{o}} \subset \Sigma_{k-1}, j \leq k-1.$$

A equivalence class will be said final if there is no path that connects it to any other. A basic class is one for which the maximum eigenvalue $\lambda(A)$ (spectral radii) of A is equal to the one of $A^{\left(R\right)}$, $\lambda(A^{\left(R\right)})$, and a non-basic class will occur if $\lambda(A)>\lambda(A^{\left(R\right)})$, [9].

The T.M.C. (Σ_A,σ) and the corresponding A matrice will be said indecomposable or irreducible if all states are recurrent and form a final basic equivalence class.

The T.M.C. (Σ_A, σ) will be a primitive one if there is a n such that all entries in the matrix A^n are positive. It is known that a T.M.C. is topologically transitive (ergodic) if and only if it is indecomposable or irreducible and it is topologically mixing if and only if it is primitive.

Finally, one also, knows that a reducible non-negative matrix A has a permutation matrix P that allows one to reduce A to upper triangular form with block matrices $A^{(1)}$, $A^{(2)}$,..., $A^{(R)}$ [9] in the principal diagonal.

The transition matrices given as in fig. 2 will now appear as: (fig. 3).

FIG. 3

where $W^{(k)}$ represents a $(2^{k-1}-1)\times 2^{k-1}$ matrix that, under the dynamic perspective, represents a part of the transient movement.

In this way, for each k one will have a matrix $\bar{\boldsymbol{A}}_2\boldsymbol{k}_{-1}$ given by:

$$\bar{A}_{2^{k}-1} = \begin{bmatrix} \bar{A}_{2^{k-1}-1} & W^{(k)} \\ 0 & A^{(k)} \end{bmatrix}$$

 $A^{(k)} = \begin{bmatrix} 0 & \hat{A}^{(k-1)} \\ \vdots & \vdots & \vdots \\ B_{2^{k-2}} & 0 \end{bmatrix}$

With $\hat{A}^{(k-1)} = [\hat{a}_{m\ell}]$, $\hat{a}_{m\ell} = a_{ij}$, $\ell = j$, $m = 2^{k-2} + 1 - i$ and $A^{(k-1)} = [a_{ij}]$. Also, the $W^{(k)}$ are of the form:

Where the $U_i = [11...1]$, $1 \le i \le k-2$, are $1 \times 2^{k-} (i+2)$ matrices and $U_{k-1} = [1]$. Also $Z_i = [z_{\ell(i),j(i)}] = [0]$, $3 \le i \le k-2$, are $2^{i-2} \times 2^{k-(i+2)}$ matrices and $Z_{k-1} = [0]$ is a $2^{k-3} \times 1$ matrix.

The following result stems from the above construction.

<u>Proposition.</u> The \bar{A}_2^∞ matrix corresponds to the R kneading sequence (except for permutations on the intervals in P $^{(\infty)}$).

Remark 1. By inspection on the matrix \bar{A}_2k_{-1} , one realizes that it decomposes in Sub-matrices $(A^{(1)}, \ldots A^{(k)}, W^{(2)}, \ldots W^{(k)})$ where $A^{(i)}$ corresponds to the 2^{i-1} -periodic part and the $W^{(i)}$ correspond to the erratic part of the dynamics.

In the limit $k_{\ensuremath{\rightarrow}\infty}$ one obtains a Markov subchain by considering only the final component

$$A^{(\infty)} = \lim_{k \to \infty} A^{(k)}$$

<u>Lemma.</u> If fe C , there exists a set S \subseteq I such that f $|_{S}$ is topologically conjugate to

$$(\Sigma_{\Delta^{(\infty)}}, \tau_{\Delta^{(\infty)}})$$
.

Proof. Misiurewicz defines a set S such that $S=\Omega \setminus Per(f)$ where Ω stands for the set of non-erratic points and Per(f) is the set of periodic points of f.

We need to show that in the commutative diagram

π is a homeomorfism.

To each X ϵ S corresponds one and only one $\omega\epsilon\Sigma_{A}^{(\infty)}$ (evident). To show that to each $\omega\epsilon$ $\Sigma_{A}^{(\infty)}$ corresponds inversely one and only one x ϵ S we start by noticing that a x ϵ I such that $\pi(x)=\omega$ alloways exists by definition of Σ_{A} . But such x belongs to S because otherwise it would have been erratic (x ϵ W) or periodic (x ϵ Per(f)) and in that case W(x) wouldn't belong to $\Sigma_{A}^{(\infty)}$. Finally, if we suppose that there are two points x,y ϵ S such that x \neq y and $\omega(x)=\omega(y)$, then, owing to the fact that $\omega(x)=\{\omega_{n}^{(x)}\}_{n\in\mathbb{N}_{O}}$ and $\omega(y)=\{\omega_{n}^{(y)}\}_{n\in\mathbb{N}_{O}}$ and that S is a Cantor set, we should conclude that $\omega_{O}^{(x)}$ and $\omega_{O}^{(y)}$ define two distinct point set intervals $\Sigma_{X}=\{x\}$ and $\Sigma_{Y}=\{y\}$, and that conclude the proof.

Corollary. The dynamic (S,f $|_S$), f $\in C$ is ergodic but non-weakly mixing.

Proof. It is well known [1] that this dynamic is ergodic and has null topological entropy $(h_T=0)$. On the other hand, we have constructed, via the lemma in last section, a infinite Markov process topologicaly equivalent to that dynamic.

From the stand point of ergodic theory, weakly mixing Markov chains are k-systems. [11]. As $h_T = \sup h_m$, where $h_m = metric$ entropy, we conclude that $h_m = 0$, $\forall m$. The result follows from the fact that the entropy of a k-system is strictly positive.

Remark 2. This result could also have been achieved through the existing isomorphism between $(S,f|_S)$ and the "adding Machine", using known results of ergodic theory [1],[13] or [12].

ACKNOWLEDGMENTS. We thank to Prof. Parry for his kindly remarks.

References

- [1] MISIUREWICZ, M.: Structure of mappings of an interval with zero entropy. Pub. Math. n. 53, I.H.E.S. (1981).
- [2] MILNOR, J.; THURSTON, W.: On iterated maps of the interval preprint.
- [3] DERRIDA, B.; GERVOIS, A.; POMEAU, Y.: Iteration of endomorphisms on the Real axis and representation of numbers Ann.
 Inst. Henri Poincaré A XXIX (1978), 305-356.
- [4] PARRY, W.: Symbolic Dynamics and Transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1964), 368-378.
- [5] ALEKSEEV, V. M.; YAKOBSON, M. V.: Symbolic dynamics and Hyperbolic Dynamics Systems. Phys. Reports 75, N° 5 (1981), 287-325.
- [6] FEIGENBAUM, M.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19 (1978), 25-52; 21 (1979), 669-706.
- [7] ŠARKOVSKII, A. N.: Coexistence of cycles of a continuous map of a line into itself (Russian), UKR. Mat. Z. 16, (1964), 61-71.
- [8] MYRBERG, P. J.: Sur l'itération des polynomes réels quadratique J. Maths. Pures et Appliquées 9 (1962), 339.
- [9] BERMAN, A.; PLEMMONS, R. J-: Nonnegative matrices in the Mathematical Sciences. Academic Press, 1979.
- [10] JONKER, L.; RAND, D. A.: Bifurcations in one dimension, I: Invent. math. 62 (1981) 347-365.
- [11] WALTERS, P.: An Introduction to Ergodic Theory. G.T.M., 79 Springer, 1982.

- [12] PARRY, W.: Self-generation of self-replicating maps of an interval. Ergod. Th. & Bynam. Sys. 1 (1981), 197-208.
- [13] MISIUREWICZ, M.: Invariant measures for continuous transformations of [0,1] with zero topological entropy. Lect. Notes in Math. n° . 729, 144-152 (1979).

Manuscript received in November, 1983.

* Dep. Mat. da Univ. Nova de Lisboa.

** Dep. Fís. do Inst. Sup.Técnico.

*** Dep. Mat. da Univ. de Lisboa.