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A STOCHASTIC MODEL OF CHOICE

S. V. Ovchinnikov

ABSTRACT

An approach to chotce fFunction theory is sug-
gested which is probabilistic and non-determi
nistie. In the framework of this approach fuz
zy choice functions introduced and a number
of necessary and sufficient conditions on a
fuzzay choice function to be a fuzzy rational
choice function of a certain type are esta-
blished.

1. Introduction.

In general, choice function theory considers the following
model (see, for example, [1]). Let A be a fixed finite set of
alternatives. For each nonempty subset X € A a nonempty subset
Y € X is chosen in accordance with some rule. In such a manner a
choice function Y = C(X) is given, which associates with each
X €A its subset Y € X. There are two different methods to des-
cribe the "entire choice'" defined in this way. The first one
points out a mechanism of choice whereby part Y is found from X.

This method can be called an internal method. The second method

/
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indicates the set of all pairs (X.¥) and is called an external

method .
7
Mostly, classical choice mechanisms are '‘pair-dominant' anes.

‘This means that the choice of element y €éX is made as a result of
'éomparisons of this element with all x € X. Some given structure
on the set A is utilized to make these comparisons, for instance,
a binary relation. The choice function thus arised has various
‘attractive propertires. One of the main problems in choice theo-
‘'ry is a description of characteristic properties of choice func-
tions. These properties, known as ''choice axioms', separate the
functions which have an equivalent description in pair-dominance
optimization terms.

A framework of the choice function theory just described is
an algebraic or, better said, a non-probabilistic one. Moreover,
it is non-deterministic in the sense that a subset C(X) chosen

from X is assumed to be any subset, not necessarily a singleton.

There is another approach to choice theory which may be des
cribed as follows. Let P(x,X) be the probability of choosing an

slement x from a set X. It is supposed that P(x,X)>0, and

z P{x,X) = 1,
x € X
i.e.. P(x,X) defines a probability distribution on X. In practice,
;,the choice probabilities P{(x,X) are estimated by the relative fre
quences of choosing x. It is important to note that on each
trial one and only one alternative is chosen; this means determi~

nistic character of choice mechanism involved. A good deal of re-

- search has been done in the ares of probabilistic choice theory;

the reader is referred to Luce's survey [5] for further details
- ond references.

Inm this psper an approach to choice theory 15 suggested
which is probabilistic and non-deterministic, Empirically spea-
king, the non-deterministic character of this approach means that

the refative frequencies of choosing x from X are not alieady es~
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timations of a probability distribution on X. Let us consider,
for example, the following data, where 1 indicates that a given
alternative is chosen in a given trial, and 0 indicates that an

alternative is rejected.

Alternative

Trial 1 2 3 4 5

1 0 [¢] 1 1

2 0 1 0o 1

3 ¢] 0 1 1
Relative Frequency 0 1/3 2/3 1 0

Obviously, any data of this kind is not consistent with the
general probabilistic model described above: the relative frequen
cies do not from a probability distribution on X. Nevertheless,
we still have a nice probabilistic interpretation of these fre-
quencies: they are estimations of probabilities P(x € X) where X
is a certain random subset of X. Since there is a one-to-one co-
rrespondence between classes of random subsets and fuzzy sets
(see [6] and [L4] for details), one may regard relative frequen-
cies obtained from non-deterministic choice experiments as esti-"

mations of membership function values of a fuzzy subset of X.

Generalizing these observations, we study fuzzy choice func-
tions in this paper; these functions assign to each fuzzy set X a
fuzzy subset CX“E X. Note again that a membership function is es-
timated by relative frequencies obtained by averaging experimen-
tal data in non-deterministic choice experiments (for nonfuzzy
X's). Hence, fuzzy‘Eet theory is used here as a mathematical tool
providing consiﬁteﬁt representation of empirical data in a sto-

chastic model of choice.
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2. Best variant choice.
!

It was mentioned above that there are two alternative approa
ches to the algebraic theory of choice. The first one is concer-
ned with a mechanism of choice. In this paper only mechanisms ba
sed upon binary relations are considered. Let R be a binary rela
tion on the set A. We read xRy as ''x us preferred to or indiffe-
rent with y'", i.e. R is a preference relation. A choice function
based upon R is defined by

Y = C(X) = {x €X: xRy for all y eX}. (1)

This mechanism is based on comparisons in pairs of variants
(alternatives). Such "pair-dominance' mechanisms can be regarded
as abstract forms of classical optimization mechanisms based on
scalar and vector criteria. Various types of binary relations,
such as partial orderings, weak orderings, etc., define, by (1),
classes of choice functions possessing specific '"rational' .pro-

perties.

An alternative approach to choice theory considers ''charac-
teristic properties' of choice functions and the main problem is
to describe combinations of characteristic properties which sepa
rate exactly the same classes as given by pair-dominant choice

mechanisms.

Following [ 1] we define main characteristic properties as

follows:
1. Heritage (H): if X' C X, the

C(X') 2 c(x) x'.

N

Strict heritage (K): if X' C X, and X' N c(x) #, @,
then C(X') = c(X) N x'.

3. Concordance (C): if X = X' U X", then
C(x) 2 c(x') Nnc(x).
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L. 1ndependence (1): if C(X) € X' C X, then
then C(X') = C(X).

Most works concerned with choice theory unanimously declare
these properties as clearly representing the idea of what s

""better'.

The following proposition represents main classical state-
ments on correspondence between pair-dominant mechanisms and

choice functions.

Proposition 1. [1] For a choice function to be generated by choi
ce mechanism (l) of i) an arbitrary binary relation, ii) a weak
ordering, and iii) a quasi-transitive binary relation it is nece
ssary and sufficient that it satisfies a respective condition

i) HeC, ii) K, and iii) HeCe&O0.

This proposition is extended on fuzzy choice function theo-

ry in this paper.

3. Fuzzy preferences.

Recall that a fuzzy binary relation R on a set A is a fuzzy
set with universe AxA and is defined by its membership function
R(x,y).

Definition 1. A fuzzy binary relation R is said to be

reflexive if R(x,x) = 1 for all x €A;

antireflexive if R(x,x) = 0 for all x €A;

symmetric if R(x,y) = R{y,x) for all x,y eA;

antisymmetric if R(x,y)>0 implies R(y,x) = 0 for all x # y;
complete if R(x,y) = 0 implies R(y,x)>0 for all x,y €A;

acyclic if R(xi’xi+l)>0 for i=1,...,k-1, implies R(xk,x])=0 for

any sequence X, ,...,x -
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o
o

transitive if R(x,y)>0 and R(y,z)>0 imply R(x,z)>0 for all
X,Y,Z €A,

It should be noted that our definition of transitivity is
different from standard ones (see [9]). Fuzzy set theory admits
various definitions of transitivity [3]. Transitivity as defi-

ned above may be regarded as a weak one.

The notion of a strict preference plays a significant role

in choice theory.

Definition 2. Let R be a fuzzy binary relation (a preference).

A fuzzy binary relation P_ defined by

R

R(x,y), if R(y,x) = 0.

Prlxsy) =
0, otherwise

is said to be a strict preference.

In choice theory aPRb if and only if not bRa, i.e.
1

-1 -1 - .
PR=R N R where R is a complement of the converse relation

R_1 considered as a subset of AxA. Definition 2 is based upon

the intuitionistic negation [8] for which we have

-1

o
i
o
o]
>

Definition 3. A fuzzy binary relation is said to be

1) a partiel ordering if it is reflexive, antisymmetric, and

transitive;
2) a chain if it is a complete partial ordering;
3) an ordering if it is reflexive, complete, and transitive;

4) a quasi-transitive relation if it is reflexive and complete,

and PR is a transitive relation.

The following structural properties of fuzzy binary rela-

tions are used in the paper:
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Proposition 2. Let R be an ordering. Then

1) R is a quasi-transitive relation, and
2) PR(x,y) > 0 and R(y,z) > 0 imply PR(x,z) > 0, and

R(x,y) > 0 and PR(y,z) > 0 imply PR(x,z) > 0.
We omit proofs of these statements which are similar to the
crisp ones.
4. Fuzzy pair-dominant choice functions.
The following definition is an immediate extension of defi
nition (1) and is in accordande with a general approach to a fu

zzy decision-making developed by Beliman and Zadeh in [2].

Definition 4. A pair-dominant choice function based on a fuzzy

binary relation R'is a mapping which, to each fuzzy set X,

assigns a fuzzy subset with a membership function

Cl;((x) = A R(x,y)aX(x) : (2)
y € X

(We write y eX iff X(y) > 0.)

One can also compare (2) with the definition of a fuzzy

upper bound due to Zadeh [9]. Note that if R and X are crisp
sets then (2) is equivalent-to (1).

Lemma 1-3 establish general properties of fuzzy pair-domi-
nant mechanisms. We define the carrier carX of X by carX =
{xeA: x(x) > 0}.

/ -
R

R
L 1. C .
=emma . cX - CCarX

Proof follows immediately from (2).
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Lemma 2. Ci satisfies the heritage property (H):

¥, -
X' Cx implies ct, D¢t nx'.
=" = “x

X|
Proof. CR,(x) = A R(x,y)aXx(x) >
—_— X '

y €X

A OR(x,y)AX' (x)AX(x) = C;(X)AX'(X).
\/6

Lemma 3. C, satisfies the concordance property (C):

x> X

Proof. Ci(x)Acs(x) =

[ A R{x,u)aX(x)1A[l A R(x,v)aY(x)] =

u € X vey
A R(x,y)aX{x)ay(x) <
yex Uy
R
A Rix,y = .
Jex Uy (x,y)a(X(x)vY(x)) CX U Y(x)

Two last lemmas show that a fuzzy pair-dominant choice func
tion satisfies the same properties as a crisp one (cf. Proposi-
tion 1). In addition to these properties, it satisfies very im-
portant property (3) which has no crisp analog. The role of this
property will be ciarified in the last section of the paper. Ve
only note here that (3) has a quite clear interpretation: if x
is chosen from a fuzzy set X then it should be chosen from the
carrier of X and the degree of its belongness to CX does not ex-
ceed that to CcarX'

Lemma 4 gives some properties of fuzzy pair-dominant choice

mechanisms following from main properties of fuzzy preferences.

Lemma 4. 1) Let R be a reflexive relation. Then
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R
C{x}‘: {X} (L')

2) Let R be a reflexive and complete relation. Then

r Rix,y), ifu
}(Uj = R(y,x), if u

o, otherwise.

Xy

Y

R
Cix,y

3) Let R be reflexive, complete relation and PR an acyclic rela

tion. Then

Ci # @ for any X # @. (5)

Proof. 1) and 2) follow immediately from (2). 3) The proof is

quite similar to the crisp one.

Corollary. Ci # @ for aby nonempty X if R is an ordering or qua

si-transitive relation.

The main properties of fuzzy pair-dominant choice functions

based on particular types of fuzzy binary relations are given

below.

Lemma 5. Let R be an ordering. Then X' C X and C§ N X' # @ imply

together
carCi, = carci N carX'. (6)

Proof. By lemma 2 it is sufficient to prove that

R R
C N !
carCXI < carCX carX'.

Let x ecarci. and x ¢ carci N carX', i.e. x ¢ carci.
Then there is y such that R(x,y)=0, i.e. PR(y,x)>0. On the other
hand, x belongs to carCR which implies y € carX\carX'. Since

X'
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Ci N X' £ @ there is z such that z € carX' and z ecarci. Hence,

R(x,z) > 0. By Proposition 2, we have PR(y,z) > 0, which implies
R(z,y) = 0. But z Ecarci which implies R(z,y) > 0. This contra-

diction completes the proof.

Lemma 6. Let R be a quasi-transitive relation. Then
C, CX' C X implies carc® = varch. (7)
X = = i X! X

Proof. By lemma 2 it is sufficient to prove that carci.sparci.
Let us suppose that x €carci.
in X such that PR(y],x) > 0. We have y, ¢ carci, implying

and x ¢ carci. Then there is Y4

R(x,y) >0 for all yeX'. Since Y ecarci there is y, such that

PR(YZ’YI) > 0, which implies PR(yz,x) > 0, by transitivity of
PR' I Y, does not belong to CQ,, then there is y3 different
from Y1 and \2) such that P(y3,x) > 0 and so on. By finiteness
R
X
and y €carX', i.e. R{(x,y) > 0 which contradicts PR(y,x) > 0.

But x ecarcil

of A we find y such that PR(y,x) >0 -and y ecarC
Note that any fuzzy pair-dominant choice function fulfills
properties (H) and (C). On the other hand, properties (6) and
(7) are weaker than (K) and (0), respectively, although for
crisp sets and preferences they coincide. Simple examples demons
trate that there are fuzzy orderings and quasi-transitive rela-
tions which do not satisfy (K) and (0). It is mentioned in [7],
that this fact is stipulated by pair-dominance choice function
structure (2), "since this function considers not only the ties
between alternatives but also their 'powe}'. Having excluded
certain alternatives from consideration, we have naturally in-
creased the degree of membership to the fuzzy set Cy for other

alternatives."
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5. Characterizations of fuzzy choice functions.

In this section characteristic properties of fuzzy choice
functions are introduced. Various conjunctions of these proper-
ties define classes of choice functions based upon pair-dominant
choice mechanisms.

Definition 5. The following properties of fuzzy choice functions

are said to be characteristic properties:

1) Boundedness (B): Cy < Cearx’

2) Heritage (H): X' € X implies CXI 2 cXﬂ X'

3) Concordance (C): X = X' U X'' implies CX 2 CX‘ N CX..;

4) Fuzzy strict heritage (FK): if X' C X and CX N X' # @, then

carCX‘=carCX N carX';

5) Fuzzy independence (F0): €, € X' C X implies carC

X =carC,;

X! X

6) Singleton law (S): C{x}={x};

7) Nonvoidness (N): X # @ implies C, # 0.

X
Note that properties (B), (K), (0), (S), and (N) are the same as
(3), (6), (7), (4), and (5), respectively.

Lemma 7. Conjunction (B) & (H) implies

CX = CcarX nx (8)
/

-

Proof. We have Cy 2 C__ v M X, by (H), and Cy - Cearx N X, by (B
Theorem 1. A fuzzy choice function C, is a fuzzy pair-dominant

X
choice function for some fuzzy prefrence R iff CX satisfies pro-

perties (B), (H) and (C).
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Proof. Necessity follows from lemmas 1-3. To prove sufficiency

let us define R by R(x,y) = Cix y}(x)-

By (H),andf(a), X N {x,y} € X implies
n N C = n N
CX X {X,Y} = CX N {X,Y} C{X,y} X {X,y}
or Cy N {£y} € C{x,y} N x.

Hence,

CX(X) < C{X,y}(X)AX(X)’
which implies
Cu(x) < A ¢ L)AX(x) = A R(x,y)aX(x)=cR(x).
X y € X {x,y3 y € X X

On the other hand,

X = U [x n {X,Y}],
y € X
which implies, by (8) and (C),

N
y € X

o
u

=N N n
Cy Nix,y} yex[c{x’y} {x .y} X1

c,(x) = A [¢c (x)ax(x)] = c_(x).
X v € X {x,y} X
One can compare the statement of this theorem with statement (1)

of proposition 1.

By theorem 1 the mapping F:R =~ C§ is a surjection of the
set of all fuzzy binary relations onto the set of all fuzzy choi
ce functions satisfying properties (B), (H) and (C). This mapping
is not a bijection since there are binary relations with the sa-
me image under F. Let us define R; ~ R, is and only if C§]=CX2.

Then ~ is an equivalence relation on the set of all fuzzy prefe-
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rences. Each fuzzy choice function, satisfying (B), (H) and (C),
is an image of some class of the relation ~ under the mapping

F. Theorem 2 describes all fuzzy preferences R eF-l(CX)ffor a
given CX. -

Theorem 2. Let us define Rc for any given R by
Rc(x,y) = R{x,y) A~ R(x,x).
Then R~R_, and R'~R'' iff R =R .
c c ¢
Proof. We have

R
Cxc(x) = A [R_(x,y)ax(x) ] =
veX

A LROGXIAR(x,y)aX(x) 1= A [ROx,y)AX(x) 1 = cR(x),
y € X y € X
i.e R~R_ . Let R' = R"; then R'~R'=R".R which implies R'~R, by
[= c c [ C

RI= cRII

X X Then

transitivity of ~. Let R'.R", i.e. C

RLGy) = R GGy)AR! (%) = ()

RII

C{x,y}(x) = R"(x,y)aR"(x,x) = R:(x,y).

One can consider Rc as a ''canonical representative' in the

class of ~ containing R. These canonical representative are com-
pletely characterized by the property

Rc(x,y) < Rc(x,x).

Note that this condition is always satisfied for reflexive

tinary relations. We heave the following

Corollary. The mapping F is a bijection of the set of all refle-

xive fuzzy binary relations ontc the set of all fuzzy choice
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functions satisfying properties (B), (H), (C) and (S).

. R
.In general, it is possible for CX to be an empty set for
some nonempty X. |t was mentioned already that acyclicity impli
es nonvoidness of a choice from nonempty sets. The converse is

also true.

Theorem 3. Let R be a reflexive and complete fuzzy binary rela-
tion. Then CQ is a nonempty fuzzy set for all nonempty X iff PR
is an acyclic fuzzy binary relation.
Proof, The necessity follows from lemma 4. Let C§ # @#. Suppose
that PR is not an acycle relation. Ther there is a sequence
X,s.0.,X_ such that
1 n
Prixix;

41)%0, for i =11,...,n-1, and PR(xn’Xl) 0. (9)

By definition 4 we have

n

. o
Cixyrnx p () = AR x;)
n 1=

for x e{x],...,xn}.
We have R(xi+l’xi)=0’ for i=1,...,n-1, and R(x1,xn)=0, by (9).
R . . .
Hence, C{ ¥ @. This contradiction completes the proof.
X1 *Xn
We will now study conditions determining the class of fuzzy
choice functions having an equivalent description in terms of a

pair-dominant choice mechanism based on a quasi-transitive fuz-

zy binary relation.

~Theorem 4. A fuzzy function CX is a pair-dominant choice func-

tion C based on a fuzzy quasi-transitive relation R iff it satis
fies conditions (B), (H), (C), (FO), (N) and (S).

Proof. The necessity follows from lemmas 1-4 and 6. Let Cy satis

fy the conditions listed in the theorem. By theorem 1 we have
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CX = C§ for some R. By (S) and (N) R is a reflexive complete
fuzzy binary relation. It is sufficient now to prove that PR is
a transitive relation. Let X = {x,y,z}. Then

Ci(t) = R(t,x) ~» R(t,y)an R(t,z) for t €X. Hence,

R

Cy(x) = R(x,y) » R(y,z),
Rly) = 0, if P (x,y)>

CX y) = 0, i PR x,y)>0, and
cR( ) =0, if P.( )>0

xlz) =20, i rlys2 .

By (N), Ci(x)>0, which implies R(x,z)>0, and carci ={x}. Let

X' ={x,z}. Then C§|(t) = R(t,x) A R(t,z), for te{x,z}. Hence,

R
X

implies carC§l = carC§ ={x}, which implies R(z,x) = 0. Hence,
PR(x,z) > 0. .

Ci.(t) = R(x,z) and CQ,(Z) = R(z,x). Now, by (FO), C, C X' CX

As it follows from proposition 1t in the crisp case the property
(K) is a very strong one. The power of this property shows it-

self very clearly in the fuzzy case, too. Llet CX fulfill condi-
tions (K) and (S). Let X be a crisp set and x €Cy. Then

{x} S XxandcyNx# 9.

By (K) we have Cint™ Cx N {x}, or Cx(x) =1, by (5), i.e. Cy is
a crisp set. From (K) it also follows immediately that

P

= C n x. (10)

X carX

Hence, CX is, essentially, a crisp choice function which coinci

des with CX for some crisp orde%ing R, by proposition 1 and (10}
On the other hand it was proved in lemma 5 that fuzzy orde-
rings satisfy the condition (FK) which coincides with (K) for

crisp sets and orderings.
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We complete this section by the following

7
Theorem 5. A fuzzy choice function CX is a pair-dominant choice

function based on a fuzzy ordering iff it satisfies conditions
(8), (H), (c), (FK), (N), and (S).

Proof. The necessity follows from lemmas 1-5. By (B), (H), (C),
(N), and (S) we have CX=C§ where R is fuzzy reflexive complete

relation. Let us prove that R is a transitive relation, i.e..

that R(x,y)>0 and R(y,z)>0 imply R(x,2z)>0. Let X ={x,y,z} . Then
R , R
Cy(x) = Rx,y) A Rix,2), Cyly) = R(y,x) A R(y,z), and

ci(z) = R(z,x) a R(z,y).

Let now X' = {x,y}. Then C;,(x) = R(x,y) and'Cg,(y) = R(y,x).
1f el onoxe

X =0, i.e. carci ={z}, then R(x,z) = R(y,x) = 0. By
(N), Ci(z) > 0, which implies R(z,x) > 0 and R(z,y) > 0.
Let X" = {y,z}. We have Cin(y) = R(y,z) > 0, and C§H(Z)=R(z,y)>0.

Since cR n xo # @ then, by (FK), carck

X X = carC§ N {y,z}.

But carCiu = X', which contradicts carcg ={z}. Hence,
c§ N X' # @. Then, by (FK), carC§,=carC§ N X'. We have x €carlys,
since R(x,y)>0. Hence, xe¢ carc® which implies R(x,z)>0.

X

6. Conclusion.

The fuzzy choice theory described above has some characte-
ristic features which distinguishes it from the crisp one. The
difference is mainly stipulated by the purely fuzzy property
(B). For instance, there are many 'pathological' fuzzy choice

functions which satisfy (H) and (C) and do not satisfy (B).

From the fuzzy set theory point of view there is a signifi-
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cant difference between classical properties (H), (C), (0) and

(K). The properties (H) and (C) play the same role in both fuzzy
and crisp cases. |t seems that various transitivity properties 7
which play a great role in classical choice theory are not so im

portant in general fuzzy choice theory.

Only pair-dominant mechanisms based on fuzzy preferences
are considered in this paper. It is an interesting problem to
study different mechanisms of choice based, for example, upon
fuzzy utility functions. We leave this study for further publi-
cations.
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