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SOME PROPERTIES OF THE JACOBIAN sn z FUNCTION

Istvdn Fenyo

ABSTRACT

Using some results of the thecry of funciional
equations we deduce some propzriies of the Jaco
bran sn z function which seems to be new. Also
some functional equations had been found which
are fulfilled by the sn =z function which the
author did not found in the literature.

It is known that the Jacobian ellyptic sn z function satisf!
es some interesting functional equations (see e.g. [1] p. 389
and p. 415). In the present-paper wépédd to them some others
which seems to be new and found some unknown properties of the
Jacobian function.

Let k (0 < k2

< 1) be the parameter of the Jacobian ellyptic
sn z function and denote as usually in the literature, by LK and
2iK' the primitive periods. Its only singularities are at the

points 2m% + (2n+1)K'i (m,n = 0,%1,%2,...); this are simple poles

with the residues 1/k and -1/k respectively.
Consider the following function
z

Q(z) = f snlt dt
o
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where z # 2mK + (2n+1)K'i (m,n = 0,%1,%2,...) otherwise arbitra
ry and the pass of integration is,an arbitrary rectificable cur
ve in the complex plane joining the origin to z deviating all

the poles of sn z. By a well known theorem ([1]) p. LOk4) we see

immediately that Q(z) fulfills the following nonhomogeneous Cau-

chy functional equation

i

(1) f(Z]+22) - f(z]) - f(22)= sn z, sn z, sn(zl+zz)

for all z215 2, and z,+z, which are not in the set of poles. As

oz is the general analytic solution of the Cauchy functional
equation

g(zl+z2) - g(zl) ;'Q(zz) =0

where o is an arbitrary constant, therefore
Q(z) +o z
is the general analytic solution of (1).

1. Let now consider first the case in which z, and z, are

reals X, and Xy - In this case |sn x| <1 (x €R) and of behalf
of (1)

lQ(x +x,) = Qlxy) - @lx,) <1 (x;,x, €R).

By a theorem of D. H. Hyers [2] it exists one and only one (real)

constant o for which

[a(x) - ax| <1 (x€R) .

This means

x
Proposition 1. The curve of Q(x) = f snzt dt remains in the

[¢]
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strip

{ox-1,ax+1}.

As by the theorem of Hyers a is uniquelly defined, on the
other hand the Jacobian sn x function is uniquelly defined by
k, this means that to every value k € (0,1) corresponds exactly
one o, i.e. o is a function of k. It is easy to define this a.
By a theorem di Hyers [2]

n
X

n Z 2
a = Tlim (1/2°x) [ sn“t dt.
n->-c .0
This limit is independent of x. Obviously 0 < o < 1. snzt is pe-

riodic with the period 2K. Let us put x = K and by the periodici -

ty we get
n=-1(2K)
n-1 2 K 2
(2) o = lim (1/72° "(2K)) f sn“t dt = (1/K) [ sn”t dt.
n-»+co o o
But by a well known theoremi[1] p. 402) we conclude

K m/2
J snlt de=(K/k?) - (1/k?) [0 - KIsinZe) /2 g
o o

therefore

m/2
(3) w = (1/k2) = (/%) [ (1 - kZsin?) /2 gt

o
In this way we have expressed a by the comlete ellyptic integral
of the second kind.

On the other side it is known ([ 1] p. 393) that
mn/2

K= [ (1 - k%sin2t)"1/2 g,
o

substituting this into (3), we get explicitly the expression of
a=a(k2):
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/2
f (1-kZsint) /2 q¢
B 2, 1 _ 1 o
) wm el - WO g 172
[ (1-k"sin“t) dt
)

Proposition 2. The number o defined in Proposition 1 is a func-

tion of kZ, its explicite form is given in (4) by means of com

plete ellyptic integrals of the first and second kind.

2. It is also interesting to see the limits of a(kz) as
k = 0 resp. k » 1. This limits will be used later on.

It is known ([1] p. 385) that if k - 0, then K - n/4% and
sn t + sin t uniformly in an enough little neigborholld of the

origin. On behalf of this we conclude by (2) that

/2 5

(5) a(0) = lim al(k?) = (2/7) { sin“t dt = 1/2.
ko o
Let us now see what happens if k > 1. In order to calculate
this Timit we rewrite the expression (4) in the following way:
T/2 _
f sinft (1-k%sine) 7172 4o
2y _ o
R 78 2 .2 . -1/2
[ (1-k"sint) dt
o

Let us now consider an arbitrary number ¢6:0 < & < 1 and write

$

f sinZt (1-k? sin?e) /2 gt
a(k?) = o : .

/ (1-k2sin?t) V2 g¢

o)

/2

2 b -
sin t (I-kzsinzt) 1/2 dt

5 .
(I-kzsinzt) 1/2 dt

=

O o —"
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Obviously
/2 _
[sin?e (1-k2 sinZe) "2 gy
1> fz >
Tr -
f (1-k%sin?e) V2 g¢
o .
“22(1-k25in2t)"/2 dt
. 2
sin”§ w72 =
5(1-kzsin25)'”2+ f (l-kzsinzt)'”2 dt
8
.2
sinzd 1 > sgn §
—é(l—kzsinzé)-]/2 +1 K.coss T !
Kg §
where
/2 _
Ke= | (1-k%sin?e) 7172 qr.
[
Let us fix the value of § and consider
/2
Ke= | (1-kZsinZe)71/2 g¢ >.ﬂl§_)_]_§_2£ :
8 (1-k%)

We see at once from this that KG + o for k - 1. Let us now chose

k near enough to 1 in order to get

0< S <1,
chos [
then
1 [
21 - —
, s Kacos [}
Kscos §

Because this

.2
1 =2 a(kz) = sinZG- §sind

K6cos §

This inequality shows that for k =+ 1
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| > 1im a(Kk?) > sin?s.
k oo
x /

But S is a number arbitrary close to w/2, therefore

(7) lim o(k2) = 1
K*1..-

holds.

3. Let us now return to the functional equation (1) and let
consider again real values for z, and z,- As Q(x) is a solution
cf (1), i.e. the solvability if (1) is obvious, we can apply a
theorem of Jessen-Karpf-Thorup [4] which gives a necessary and
sufficient condition in crder to garantee the solvability of a
functional equation of the type (1) in the case that the right
hand side is a symmetric function. In our case this last condi-
tion is fulfilled. By appiying the theorem quoted the following
relation holds:

(8) sn(z1+22+23)[sn z, sn(zl+z3) - sn oz, sn(zz+z3)]=
sn 23[sn z, sn(22+z3) - sn oz, sn(z]+z3)] (q,ZZJBGRL
if we introduce the new variables u,v,w as follows
U T Vos oz ub v Wo= Z5 W os w2
then (8) takes the following form
(9) sn u sn(u+v-w) sn(w-v) - sn u sn v sn(u-v) =
sn v sn{w-u) sn(u+v-w) - sn(w-u) sn{u-v)sn(w-v)(u,v,weR).

As sn z is an analytic function the relations (8) and (9) keeps

their validity by the princip of analytic continuation also for
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all complex variables supposed that 21,22,23,z]+23, zy%23,21+2)%23

resp. u,v,w,u-v,v-w,u+v-w are not poles of sn z.

Proposition 3. The Jacobian sn z function fulfills the functio-

nal equation (8) resp.. (9).

They are other well known functional equations for sn z.
E. g. ([1] p. k15).

(10) sn(v+w) sn{v-w) + sn(w+u) sen(w-u)+sn(u+v) sn(u-v)+

2

k“ sn(v+w) sn(v-w) sn(w+u) sn(w-u) sn(u+v)sn(u-v) = 0

or an other ([1] p. 389):

(11) sn(u+v) sr(u-v) [1 - k2 sn2y snzv] = sn?u - snlv.

I1f we compare (10) and (11) with (8) (resp. (9)) we see that (10)
and (11) containes explicitely the parameter k while (8) (and so
(9)) not. This means (10) and (11) are fulfilled only by those

sn z function which parameter occur in the functional equation,
while (8) (resp. (9)) do not contain k, which means that (8) is
fulfilled by all lacobian sn z function independently of its pa-
rameter. Very probably (8) can be satisfied also by other analy-
tic functions not only by the sn z function, but can also (10)

and (11) satisfied by other analytic function?. For the time being

this problems seems to be open.

4. Let us now apply the explicite expression of the solu-
tion of the functional equation (1) which is given in the paper

[3). In this way we get the following integrofunctional equation
for sn x

X )
(12) f sn?t dt = a(k?)x- £ 27" T (sn 2"x)2 sn 2™k (xeR).
o n=

If k > 0 we get by (5)
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% 2 ® _-n-1_. 2.n n+1
(13) [ sin“t dt = x/2- £ 27" 'sin“2"xsin 277 'x,
o n=o0
or equivalently
> 1 2 1
(14) sin 2x = £ 2 "1 5in%2"x sin 2™ % (x€R).
n=o0 N

In order to get this last relation we have taken in (12)
the limit term by term for k = 0. This step is legal as the se-

ries (14) is uniformly convergent.

For k - 1 as it is known sn x = th x, this yields by (7)
and (12)

* 2 ® _-n-1_.2.n n+1
(15) [ th®t dt = x- £ 2 th“2 x th 27 'x,
) n=o
or equivalently
S -n-1,.2 1
(16) th x = £ 2 " "th“2"x th 2""'x  (x eR).
n=o
The formula {12) is also valid for all complex valued z for
which z ¥ n?I K + zqle'i (p,q = 0,%1,%2,...; n=0,1,2,...). This

2 2
follows by the principe of analytic continuation. By this reason

obviously (14) holds for every complex number z and (16) for all

T (r = #1,%2,...5 n=0,1,2,...).

complex z different of ey
2
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