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HOW THE MAXIMUM OF GAUSSIAN RANDOM WALKS
AND FIELDS IS INFLUENCED BY CHANGES OF
THE VARIANCES
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ABSTRACT

. In this paper we present an analytical proof

of the faet that the maximum of gaussian ran-
dom walks. exceeas an arbitrary level Bwith a proba-

bility which is an increasing function of the
step variances. An analogous result for sto-
chastic integrals <s also obtained.
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1. Introduction.
In this note we consider a gaussian random walk:
r
S = I «c¢c.X. r=1,2,...,n

where the Xj‘s are independent, standard, normal r.v.'s and

cj's are non-negative constants.

OQur aim here is to prove that if

75

(1)

the
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c. > c. for any j (2)

and

r
S = I c.X, (3)
then this inequality holds:

Prob{max s, > B} < Prob{max gr > g} (4)
r r

The question arises because:

( max Sr > B) € (max gr > B )
r r

when the cj's are not proportionai to the cj's.

The reader can easily construct examples where changing the
weights of a sample path overpassing B gives a new trajectory
which does not exceed level B.

.

This is due to the fact that the new weights can increase

the relative importance of negative steps thus letting the total
displacement decrease below level B.

Although result (4) is an intuitively expected one, its
proof is by no means a trivial matter. We must also observe that
resorting to Slepian's lemma (see Marcus and Shepp (1970) or Maf .
cus and Shepp (1971)) is here fruitless since this classical re-
sult concerns the comparison of gaussian processes and fields
possessing equal variance.

This is clearly not the case and the question requires a com
pletly different approach.

The random walk (1) can equivalently be written:

r
S = L Y. r=1,2,...,n
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. . . 2
where the Yj's are zero-mean gaussian r.v.'s with variances cj’s.
Result (4) can therefore be interpreted in another way, namely
that the larger the variances of the steps Y., the larger the

probability that the random walk exceeds an arbitrary level B8.

2. The main result

For the random walks (1) and (3) the following inequality
holds:

Prob{max Sr > B} < Prob{max Sr > B}
r r
Proof. Let us first consider this probability:

R = Prob{max § > B}=
r r

3
N

"7 -1 n XI
=1 -f (2m) (c,...c) exp{- I — }dx c.edx
A ‘ " i=1 2 ! n
where:
n
= . 1
A {x €R PX <BLX X <B, o, X kX <B]

We must prove that the probability R is an increasing func-

tion of the arguments CysCoseesnC -

Therefore we must analyse the following derivative:

2

3R _ 7 -1 -1 1 iy -1 -1 nox
acj = IA(ZH) <, "'Cj-l(:f - :E)Cj+l"‘cn exp{—iz — fdx x|

J J i

Setting:
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X
+
x

I
=

...........

the above derivative can be converted into the following form:

2
B B B -3 (u,-u. )
9R ) 2 -1 -1 -2 j o j-1
= = Jdu,fdu,.. [du_ (2m) c, ..c., ,c. (1-—F——n—).
Bcj ]_w1f_wz I_mn i j=17] c%
J
-1 -1 o (“i'“i-1)2
Gty exp{- P } (7)

i=1 Zci

We now focus our attention on the inner part of the inte-

gral, namely on:

_(n-3)

8 B
- 2 -1 -1 -
1, -I duj+1.] dun (2m) cj+1"°n exp{ )
—o - i

[ o =
—~
c
]
c
!
—_
\_Y_/
—~
o«
-

Clearly 1. is a function of u,.
Jsn J

The integral with respect to un can be treated as follows:

_ 2
IB du 1 éxp{-(gﬂ_iﬂ:ll_.} = (9)
-o "M Y27e 2
n 2cn
u -u
_ (_p n-1 _ w )
Ch n
B-ulll 2
Cn 1 wn
= I-m /z?r— exp{- -—2'} de

The quantity (9) is a function of Ui which decreases from
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the value 1 to % as the argument runs over (-=,8).

Therefore the integral (9) is greater than or equal to %.

Repeating this argument we clédrly obtain that:

for any value of uj (10)
in (-°°1 6)

The meaning of inequality (10) is straightforward. In fact
it means that there is a positive probability that the random
walk does not overpass the threshold B in n-j steps, provided
that it starts from uj<s.

Ve must now evaluate the integral with respect to the j-th

variable, i.e. we must determine:

2 2
B - (u;mu. ) (u.-u._.)
f cjz A - I ey 7T du = ()
me YZm 2 ’e
J
B_uj-l ,
uotuL - , 1 .
= (- = w,) =c f J (1-w$) —— exp{- —i}dw =
j ’ e 3y 2 J
B. B-u. _

Y- Wl .2 _E_i_l_

= c—l[f Cj exp{- —4idw.+ w, " exp{- _A} J .
j <o /ﬁ 2 V/H : 2 -
B-u,
_J-1 2
c. 1 w.
-/ — exp{- -4} dw.] =
- V2T 2 J
- 2
- B-u (B-u._.)
= (—4 1)exp{- —J-1 }
Y2me, c. 2¢c.
J J j

When j=1, combining (10) and (11) we clearly obtain that:
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aR

LR
3c1 0

As far as the general case in concerned a further integra-

tion is necessary. Carrying out an integration w.r.t. uj_] we

obtain:
2 2
B (B-u. ) (u. ,-u._.)
1 1 -1 -1 -2
— J (B-u._1)exp{- Jz - . 2J }du 1 = (12)
21 ¢ - J 2¢” 2¢4
J i
= (B-uj_] =w) =
11 w2 (B-w-u._z)2
= Z_T" 7 I w exp\{- —2 - —-—E-l—-—-— }dw > 0.
"¢ o Uo2¢% 2c¢?
J Jj j-1

This suffices to prove that 22 > 0, since integrating (12)

J
with respect to the remaining variables a positive quantity is

clearly obtained.

With this at hand it is now a simple matter to conclude the

proof of the theorem.

If:

-~

S; = c1X‘+c2X2+...+chr r=1,...,n

the previous analysis authorizes us to write:

Prob{max s, > B} <Prob{max S; > B}
r r

Analogously if:

S? = c1x1+c2X2+c3X3+...+chr

we have:
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Prob{max Sl'_ > B} < Prob{max S'I‘I > B}
r r

Repeating successively this argument we prove inequality (4).

Corollary. If {Xh h=tooong k=1,...,n} are independent, zero-
mean, normal variates, Ch Kk > 0 are positive constants and:
’
r s
S = I I c X
r,s h=1 k=1 h,k™h,k
then, if
€h,k > h,k for any (h,k)
and
A r S ~
S = I I ¢ X
r,s he1 k=1 h,k"™h,k
the following is true:
Prob{max § > B} < Prob {max § > B} (13)
r,s r,s
r,s r,s

Proof., Ascertaining that (13) holds implies minor adjust-

ments with respect to the proof of theorem 1.

3. The continuous counterpart.

Clearly the continuous counterpart of (1) is the stochastic
integral:

: t
Y(t) = [ g(s) dw(s) (14)

(o]

where g is a real-valued, bounded, deterministic function.
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In this case it is possible to obtain a result similar to

that presented in theorem 1 with little effort.

Theorem 2. If g(s) = g(s) for s€[0,t], then the following re-
sult holds:

z
Prob{ max [ g(s)dw(s)> B} <
osz<t o
Z A
< Prob{ max [ g(s)dW(s)> B} (15)
0<z<t o

Proof. This can be shown in many ways. The simplest one is
perhaps to point out that (14) is equivalent in distribution to

a rescaled brownian motion.

We write this as follows:

t o
vy(t) = B(J g¢g“(s)ds)
]

B(.) being the standard brownian motion.
Therefore:
z

Prob{max [ g(s)dW(s)>g}
z o

(16)

L}

z
= Prob{max B([ gz(s)ds)>8}
z o

t t A
= 2Prob{B(f gz(s)ds) > B}<2Prob{B(f gz(s)ds)>8}
o o

t A
Prob{max B(/ gz(s)ds)> Bl=
z o '

z
Prob{max [ g(s)dW(s) > B}
z o
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Remark. The reason that the proof of (15) is quite straightfor-
ward while that of (4) requires a considerable amount of calcu-
lations is that stochastic integrals are path continuous proces

ses displaying the Markov property.

The reflection principle then quickly implies the claimed
result. Its discrete-time version, namely the random walk (1),

does not permit us to employ the reflection principle because of

jumps in the sample paths.

We finally observe that inequality (15) holds under a weaker
assumption, that is if g(s) and g(s) are such that:

t t
. ’ / az(s)ds > f gz(s)ds
o o

then (15) continues to be valid.

This appears clearly in the central steps of (16). Thus in
the continuous case inequality (15) can hold also when the weight

function g(s) is not throughout dominated by g(s).
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