ON SYMMETRIES AND PARALLELOGRAM SPACES

M. Polonijo

ABSTRACT

The notion of a TST-space is introduced and its connection with a parallelogram space is given. The existence of a TST-space is equivalent to the existence of a parallelogram space, which is a new characterization of a parallelogram space. The structure of a TST-space is described in terms of an abelian group.

In their common paper [2], F. Ostermann and J. Schmidt introduced the notion of a parallelogram space and among other topics investigated its relationship with an abelian group. Recently, several characterizations of a parallelogram space were given in [1],[5],[4] and the paper presented here adds a new one. Namely, for a parallelogram space we give a "geometrically" obvious definition of a symmetry and prove that the symmetries are involutory mappings (including the identity or not) transitive on "the points" which satisfy the three symmetries theorem (TST). Hence we have a motivation to introduce the notion of a TST-space which is defined as an ordered pair of a nonvoid set and its mappings (symmetries) satisfying the above mentioned properties of symmetries in a parallelogram space. It will be proved that for every TST-space there is a parallelogram space in which the

symmetries coincide with the symmetries of the given TST-space. Moreover, every TST-space is a TST-space induced by an abelian group.

<u>Definition 1.</u> ([2]) A <u>parallelogram space</u> (Q,P) is a nonvoid set Q with a quaternary relation $P \subseteq Q^4$ such that the following conditions are satisfied:

- (P1) $(a,b,c,d) \in P$ implies $(a,c,b,d) \in P$, for all $a,b,c,d \in Q$
- (P2) $(a,b,c,d) \in P$ implies $(c,d,a,b) \in P$, for all $a,b,c,d \in Q$
- (P3) $(a,b,x,y),(x,y,c,d) \in P$ implies $(a,b,c,d) \in P$, for all $a,b,c,d,x,y \in P$;
- (P4) For any three a,b,c ϵ Q there is exactly one element d ϵ Q such that (a,b,c,d) ϵ P.

In the following lemma we prove some elementary properties of a parallelogram space which will be used afterwards.

Lemma 1. If (Q,P) is a parallelogram space, then

- 1° (a,b,c,d) ε P implies (b,a,d,c),(d,b,c,a) ε P, for all a,b,c,d ε Q;
- 2° (x,a,b,y),(x,c,d,y) ε P implies (a,c,d,b) ε P, for all a,b,c,d,x,y ε Q;
- 3° (a,x,y,b), (c,x,y,d) ε P implies (a,c,d,b) ε P, for all a,b,c,d,x,y ε Q;

Proof. 1° From (a,b,c,d) ε P, it follows (a,c,b,d) ε P by (P1), and therefore (b,d,a,c) ε P by (P2) which gives (b,a,d,c) ε P by (P1). Since (a,b,c,d) ε P implies (b,d,a,c) ε P, it follows (d,b,c,a) ε P by the just proved implication.

2° Let be (x,a,b,y),(x,c,d,y) ϵ P and define w ϵ Q by (a,y,c,w) ϵ P. Then (x,b,a,y),(a,y,c,w) ϵ P implies

(x,b,c,w) \in P by (P3) and we have (x,c,b,w) \in P. Now, from (b,w,x,c), (x,c,d,y) \in P it follows (b,w,d,y) \in P. i.e. (b,d,w,y) \in P. Since (a,c,y,w), (y,w,d,b) \in P we obtain (a,c,d,b) \in P.

3°. Let be (a,x,y,b), (c,x,y,d) ϵ P and hence (y,b,a,x), (y,d,c,x) ϵ P. It follows (b,d,c,a) ϵ P by 2° and therefore (a,c,d,b) ϵ P by 1°.

Let (Q,P) be a parallelogram space. For any $(a,b) \in Q^2$ we define a symmetry $f_{ab}:Q \to Q$ by the following equivalence

(*)
$$(\forall a,b,x,y \in Q)$$
 $f_{ab}(x) = y \Leftrightarrow (x,a,b,y) \in P.$

The mapping f_{ab} is well defined for all a,b ϵ Q because of (P4) and the set of all symmetries of a parallelogram space (Q,P) we denote by S(Q,P), briefly S.

Since (a,a,b,b) ϵ P holds for all a,b ϵ Q, because of (P2), (P3), it follows $f_{ab}(a) = b$.

<u>Proposition 1.</u> If (Q,P) is a parallelogram space and S the corresponding set of symmetries, then the following is valid:

- 1° $f^2 = 1$ for all $f \in S$, where 1 is the identity on Q;
- 2° For any two x,y ϵ Q, there is a symmetry f ϵ S such that f(x) = y.

Proof. Since $(x,a,b,y) \in P$ iff $(y,a,b,x) \in P$ by Lemma 1, it follows 1.° Further, since $(x,a,b,y) \in P$ iff $(b,y,x,a) \in P$ by (P2), it follows 2.°

<u>Proposition 2.</u> (The three symmetries theorem). Let (Q,P) be a parallelogram space and S the set of its symmetries. Then for any three symmetries $f_1, f_2, f_3 \in S$, their composition $f_1f_2f_3$ is a symmetry, i.e. $f_1f_2f_3 \in S$.

Proof. Let be $f_1 = f_{a_1 a_2}, f_2 = f_{b_1 b_2}, f_3 = f_{c_1 c_2}$ for some

Remark 1. For a fixed element o ϵ Q and any a ϵ Q, let the symmetry f_{ao} be denoted by f_a . Then the following equivalence is valid:

(**)
$$(\forall a,b,c,d \in Q) f_a(b) = f_c(d) \Leftrightarrow (a,b,c,d) \in P.$$

Indeed, let be $f_a(b) = u$ which is equivalent to $(b,a,o,u) \in P$, i.e. $(a,b,u,o) \in P$. Then $(a,b,c,d) \in P$ iff $(c,d,u,o) \in P$ iff $(d,c,o,u) \in P$ iff $f_c(d) = u$ and (**) is proved. Further, $f_a(0) = a$ for all $a \in Q$ and for any symmetry $f \in S$ there is exactly one element $a \in Q$ such that $f = f_a$. Namely, let be $f = f_a$ and define $a \in Q$ by f(o) = a, i.e. $(o,a_1,a_2,a) \in P$. Then, taking into account Lemma 1, $(x,a_1,a_2,y) \in P$ iff $(x,o,a,y) \in P$, i.e. f(x) = y iff $f_a(x) = y$ and hence $f = f_a$.

Propositions 1 and 2 give us a motivation to introduce a notion of a TST-space ("The three symmetries theorem" - space) for which we shall show that it is related to a parallelogram space.

<u>Definition 2.</u> A TST-space (Q,S) is a nonvoid set Q with a set S of its mappings which are called symmetries such that the follo

wing conditions are satisfied:

- (S1) $f^2 = 1$ for all $f \in S$, where 1 is the identity on Q;
- (S2) for any two x,y ϵ Q, there is a symmetry f ϵ S such that f(x) = y;
- (S3) $f_1 f_2 f_3 \in S$, for all $f_1, f_2, f_3 \in S$.

Hence, a TST-space is an ordered pair (Q,S) where Q is a nonvoid set and S a set of its involutory mappings (including the identity or not) which is transitive on Q and for which the three symmetries theorem holds.

As a direct consequence of the propositions 1. and 2. we obtain the following proposition.

<u>Proposition 3.</u> Let (Q,P) be a parallelogram space and S=S(Q,P) the set of its symmetries, i.e. the set of all mappings f_{ab} which are defined by (*). Then (Q,S) is a TST-space.

Our aim is to show that for every TST-space (Q,S) there is a parallelogram space (Q,P) such that S=S(Q,P) is valid.

Firstly, we shall prove the following two lemmas (cf. [3]).

Lemma 2. Let (Q,S) be a TST-space and $f_1, f_2, f_3, f_4 \in S$ any four symmetries.

1°. If $f_1(x) = f_2(x)$ for some $x \in Q$, then it follows $f_1 = f_2$;

2°. If $f_1f_2(x) = f_3f_4(x)$ for some $x \in \mathbb{Q}$, then it follows $f_1f_2=f_3f_4$.

Proof. 1.° Let be $f_1(x) = f_2(x)$ for some $x \in Q$ and $f_1, f_2 \in S$. For an arbitrary element $y \in Q$, let f be the symmetry for which f(x) = y. Applying the equality $g_1g_2g_3=g_3g_2g_1$, which holds for all $g_1, g_2, g_3 \in S$ because of (S3), (S1), it follows

$$f_1(y) = f_1f(x) = f_1ff_2f_1(x) = f_1f_1f_2f(x) = f_1f(x) = f_2(y)$$

and therefore $f_1 = f_2$.

2°. Let be $f_1f_2(x) = f_3f_4(x)$ for some $x \in \mathbb{Q}$ and $f_1, f_2, f_3, f_4 \in \mathbb{S}$. Then $ff_1f_2(x) = ff_3f_4(x)$ holds for any $f \in \mathbb{S}$. Since $ff_1f_2, ff_3f_4 \in \mathbb{S} \text{ it follows } ff_1f_2 = ff_3f_4 \text{ by } 1^\circ \text{.} \text{ Hence } f_1f_2 = f_3f_4.$

Remark 2. Because of the previous lemma, for any two x,y ϵ Q there is a unique symmetry f ϵ S such that f(x) = y.

<u>Lemma 3.</u> Let (Q,S) be a TST-space and for any two a,b ϵ Q let f_{ab} denote a uniquely determined symmetry in S which maps a to b. Then

1° $f_{ab} = f_{ba}$, for all a,b ϵ Q;

2° $f_{ax} = f_{cy}$ and $f_{by} = f_{dx}$ implies $f_{ab} = f_{cd}$ for all $a,b,c,d,x,y \in Q$.

Proof. Since f(a) = b implies f(b) = a, the statement 1° is valid. Now, if $f_{ax} = f_{cy}$ and $f_{by} = f_{dx}$, then

$$f_{cd}(a) = f_{cd}f_{ax}(x) = f_{cd}f_{ax}f_{dx}(d) = f_{dx}f_{ax}f_{cd}(d) = f_{dx}f_{ax}(c) =$$

$$= f_{by}f_{cy}(c) = b$$

and therefore $f_{cd} = f_{ab}$.

If we define f_{ab} as it was done in the previous lemma, then we can construct a parallelogram space starting from a TST-space. So we obtain an additional characterization of a parallelogram space (cf. [2],[1],[5],[4]).

<u>Proposition 4.</u> Let (Q,S) be a TST-space and $P \subseteq Q^4$ a quaternary relation defined by (*) where f_{ab} denotes the symmetry which maps a to b. Then (Q,P) is a parallelogram space.

Proof. Let be (a,b,c,d) ϵ P i.e. $f_{bc}(a)$ = d. Then it follows $f_{c,b}(a)$ = d by Lemma 3, i.e. (P1) holds. Moreover, (a,b,c,d) ϵ P

implies $f_{bc} = f_{ad}$ and therefore $f_{da}(c) = f_{bc}(c) = b$, i.e. $(c.d,a,b) \in P$. Now, let be $(a,b,x,y),(x,y,c,d) \in P$ i.e. $f_{bx}(a) = y$, $f_{yc}(x) = d$ and therefore $f_{ay} = f_{bx}, f_{dx} = f_{cy}$ which implies $f_{ad} = f_{bc}$. Hence $f_{bc}(a) = d$, i.e. $(a,b,c,d) \in P$.

The condition (P4) is evidently satisfied and the proposition is proved.

Remark 3. If $o \in Q$ is a fixed element in a TST-space (Q,S) and f_a denotes the symmetry f_{ao} , for all $a \in Q$, then the equivalence (**) is valid. Indeed, if $f_a(b) = f_c(d)$ i.e. $f_{ao}(b) = f_{co}(d)$ then

$$f_{bc}(a) = f_{bc}f_{a0}f_{c0}(c) = f_{c0}f_{a0}f_{bc}(c) = f_{c0}f_{a0}(b) = d$$

i.e. (a,b,c,d) ϵ P. Conversely, if (a,b,c,d) ϵ P, i.e. $f_{bc}(a)$ =d then

$$f_{ao}(b) = f_{ao}f_{bc}f_{co}(o) = f_{co}f_{bc}f_{ao}(o) = f_{co}(d)$$

i.e. $f_a(b) = f_c(d)$.

Now, let (Q,+) be an abelian group. For every a ϵ Q, define a mapping $f_a\colon Q\to Q$ by $f_a(x)=a-x$, for all $x\in Q$. If S_+ denotes the set of all so define f_a then it is easy to verify that (Q,S_+) is a TST-space. In the following proposition we shall show that any TST-space is of that form, i.e. for every TST-space (Q,S) there is an abelian group (Q,+) such that $S=S_+$.

<u>Proposition 5.</u> Let (Q,S) be a TST-space, o ϵ Q a fixed element and f_a denotes uniquely determined symmetry which maps o to a, a ϵ Q. If + is a binary operation on Q defined by the equality

$$f_{a+b} = f_a f_o f_b$$

for all a,b ϵ Q, then (Q,+) is an abelian group, o its unity and

$$f_a(x) = a-x$$

for all $a, x \in Q$.

Proof. Let be underlined that for all a ϵ Q, a symmetry f_a is uniquely determined by (S2) and that for all f ϵ S there is a unique a ϵ Q such that $f=f_a$. Since $f_af_bf_b$ is a symmetry, for all a,b ϵ Q, it follows that (Q,+) is a groupoid and it is commutative because of $f_af_bf_b=f_bf_af_a$, which holds by (S1). Obviously, (Q,+) is an associative quasigroup, hence, an abelian group. The element o is the unity in (Q,+) and -a the inverse of a, a ϵ Q, is given by $f_{-a}=f_0f_af_o$. Hence, for all a,x ϵ Q

$$f_a(x) = f_a f_x(o) = f_a f_o f_o f_o(o) = f_{a-x}(o) = a-x.$$

Corollary 2 If (Q,P) is a parallelogram space then there is an abelian group (Q,+) such that

(***)
$$(\forall a,b,c,d \in Q) (a,b,c,d) \in P \Leftrightarrow a-b = c-d.$$

Proof. The statement follows immediately from Proposition ${\bf 3}$ and Remark 1.

Remark 4. Of course, if (Q,+) is an abelian group and the quaternary relation P on Q is defined by (***), then (Q,P) is a parallelogram space.

Remark 5. If (Q,S) is a TST-space, then it is easy to prove that the group generated by the compositions of even number of symmetries is abelian and isomorphic to an abelian group (Q,+) defined in the Proposition 5 (every composition of an even number of symmetries can be written as $f_a f_b$, for some a,b ϵ Q, and $f_a f_b \rightarrow a-b$ determinates an isomorphism).

References

- [1] J. DUDA, A functional characterization of parallelogram spaces, Arch. Mat. (Brno), 18 (1982), 129-132.
- [2] F. OSTERMANN and J. SCHMIDT, Begründung der Vektorrechnung aus parallelogrammengenschaften, Math.-Phys. Semesterberichte (Götingen), 10/1 (1963), 47-64.
- [3] M. POLONIJO, Totally symmetric n-quasigroups which satisfy three symmetries theorem, Glas. Mat. Ser. III 18(38)(1983), 71-76.
- [4] M.POLONIJO, A note on parallelogram spaces and subtractive groupoids, to appear.
- [5] V. VOLENEC, A characterization of parallelogram spaces, Arch. Math. (Brno), to appear.

Manuscript received in June 12, 1985.

Department of Mathematics University of Zagreb p.o. box 187 41001 Zagreb, Yugoslavia.