A SHORT NOTE ON REPRESENTATION OF L-FUZZY SETS BY MOORE'S FAMILIES

Pedro J. Burillo López Ramón Fuentes González

Let E be a nonvoid set and (L,v,Λ) a lattice. An L-FUZZY SET A is any map $\mu_A: E \to L$ (Goguen [1]). The case L=[0,1] has the usual definition of a fuzzy set (Zadeh [2]). Let L(E,L) denote the class of all L-fuzzy sets over E. Being L a bounded lattice (with zero 0 and unit 1) a classical set can be interpreted as your characteristic function and can be considered $P(E) \subset L(E,L)$.

The operations v, Λ induce operations \cup and \cap in L(E,L). $(L(E,L),\cup,\cap)$ has the same structure as (L,v,Λ) .

For every L-fuzzy set A ε L(E,L) we shall consider the ordinary subsets of E, so called $\alpha\text{-cuts}$ of A,

$$A_{\alpha} = \{x \mid x \in E, \mu_{A}(x) \ge \alpha\} \in P(E)$$

$$A^{\beta} = \{x \mid x \in E, \mu_{A}(x) \leq \beta\} \in P(E)$$

and the families $F_A=\{A_\alpha\}$ $G_A=\{A^\beta\}$, with well known properties. Among them we shall emphasize that

a) F_{A} and G_{A} characterize the L-fuzzy set A, that is to say

$$\label{eq:ABB} \mbox{A_{α}} = \mbox{B_{α}} \mbox{ $\forall \alpha$ ε L $\Rightarrow A=B and $$A^{\beta}$=$B^{\beta}$ $$\forall \beta$ ε L $\Rightarrow A=B .$$

b) If L is a bounded lattice then $A_0 = A^1 = E \ \forall A \in L(E,L)$ and if L is a complete lattice and H is a nonvoid subset of L then

$$\bigcap_{\alpha \in H} A_{\alpha} = A_{\sup H'} \bigcap_{\beta \in H} A^{\beta} = A^{\inf H}.$$

Generally a family $F\subseteq F(E)$ is a Moore's Family (Dubreil, Dubreil-Jacotin [3]) if $E\in F$ and \bigcap $M\in F$ $\forall F'\subseteq F$. According $M\in F'$ to b), if L is a complete lattice (therefore a bounded lattice) then F_A and G_A are Moore's Families.

Let $A \in L(E,L)$ and $x \in E$. The ordinary subset $T_x = \{\alpha \in L \, \big| \, x \in A_\alpha \} = \{\alpha \in L \, \big| \, \mu_A(x) \geqslant \alpha \} = (\mu_A(x)) \subseteq L \text{ is the principal ideal of L generated by $\mu_A(x)$. It may then be}$

$$\mu_{A}(x) = \sup_{x} T_{x} \epsilon T_{x}$$
 (1)

Similarly $T^X = \{\beta \in L \, \big| \, x \in A^\beta \}$ is the dual ideal (filter) generated by $\mu_A(x)$ and

$$\mu_A(x) = \inf T^X \in T^X$$
 (1')

(1) and (1') are representations of the L-fuzzy set A. Being L a bounded lattice, the next lemma shows that (1) and (1') can be stated by means of the families $\{A_{\alpha}\}$ and $\{A^{\beta}\}$. $\beta \in L$

Lemma 1. If L is a bounded lattice and A $\in L(E,L)$ then

- 1) $T_x = \{\inf\{\alpha, f_{A_\alpha}(x)\} \mid \alpha \in L\}$ $\forall x \in E$, where f_{A_α} is the characteristic function of $A_\alpha \subseteq E$.
- 2) $T^{x}=\{\sup\{\beta,f\} (x)\} | \beta \in L\} \ \forall \ x \in E$, where f is the characteristic function of $(A^{\beta})^{c}$ (complement of A^{β}).

Proof 1) If $\alpha \in T_x$ then $x \in A_\alpha$ and $f_{A_\alpha}(x)=1$ and $\inf\{\alpha,\ f_{A_\alpha}(x)\}=\alpha \text{ showing that } T_x\subseteq \{\inf\{\alpha,\ f_{A_\alpha}(x)\} \mid \alpha \in L\}. \text{ If } \gamma \in L$

then $\inf\{\gamma, f_{A_{\gamma}}(x)\} \in \{0,\gamma\}$. If it is 0 then is belongs to the $id\underline{e}$ al T_{x} , if it is γ then $x \in A_{\gamma}$ showing that $\{\inf\{\alpha, f_{A_{\alpha}}(x)\} | \alpha \in L\} \subseteq T$

2) Using the duality principle we infer 2).

Now let α be the L-fuzzy set $\mu_{\alpha}(x) = \alpha \forall x \in E$, we have the

Corollary 1. If L is a bounded lattice and $A \in L(E,L)$ then

a)
$$A = \bigcup (\alpha \cap A_{\alpha})$$

b)
$$A = \cap(\beta \cup (A^{\beta})^{c})$$

where \mathbf{A}_{α} and $(\mathbf{A}^{\beta})^{\mathbf{C}}$, subsets of E, are viewed as L-fuzzy sets and U, \cap are operations in $L(\mathbf{E},\mathbf{L})$.

Proof. It is trivial from lemma 1.

Note that the known formula of the membership function of a fuzzy set A (where L=[0,1]) is a particular case of the corollary 1 a). Observe however that in corollary 1, L need not be a complete lattice. The formulas (1) and (1') are representations of an L-fuzzy set A using the families $F_{\rm A}$ and $G_{\rm A}$. Now we shall analyse the next question, to establish L-fuzzy sets using certain families of subsets.

Theorem 1. Let θ be verifying

- 1) $\theta: L \rightarrow F(E)$
- 2) $\theta(\alpha) \cap \theta(\beta) = \theta(\alpha \vee \beta) \quad \forall (\alpha, \beta) \in L \times L$
- 3) For all $x \in E$ the subset $R_{X} = \{\alpha \mid \alpha \in L, x \in \theta(\alpha)\}$ has ma-

Then R is an ideal and $\mu_A(x)=\max R_x \quad \forall x \in E$ is an L-fuzzy set A with $A_\alpha=\theta(\alpha) \quad \forall \alpha \in L$.

Proof. $R_{\chi} \neq \emptyset$ by 2). If $\alpha, \beta \in R_{\chi}$ and $\gamma \in L$ then $x \in \theta(\alpha)$ and $x \in \theta(\beta)$ and so $x \in \theta(\alpha) \cap \theta(\beta) = \theta(\alpha \vee \beta)$ that is $\alpha \vee \beta \in R_{\chi}$. Since

 $\begin{array}{lll} \alpha = \alpha v \, (\alpha_\Lambda \gamma) & \text{we conclude that} & \theta(\alpha) = \theta(\alpha) \, \cap \, \theta(\alpha_\Lambda \gamma) \,, & \text{that is} \\ \theta(\alpha) & \subseteq \, \theta(\alpha_\Lambda \gamma) & \text{proving that} & \alpha_\Lambda \gamma \in R_\chi \,. & \text{We conclude that} & R_\chi & \text{is an} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{array}$

Let A be the L-fuzzy set $\mu_A(x)=\max R_x$ $\forall x \in E$ and let A_α be the subset $A_\alpha=\{x\,|\,\mu_A(x)\geqslant\alpha\}$. If $x\in A_\alpha$ then $\alpha\in R_x$, because R_x is an ideal and $\mu_A(x)\in R_x$, and we conclude that $x\in \theta(\alpha)$. Conversely if $x\in \theta(\alpha)$ then $\alpha\in R_x$, that is $\mu_A(x)\geqslant\alpha$ proving that $x\in A_\alpha$.

The theorem 1 has the following dual statement

Theorem 1'. Let θ verifying

- 1) θ : L \rightarrow P(E)
- 2) $\theta(\alpha) \cap \theta(\beta) = \theta(\alpha \wedge \beta) \quad \forall (\alpha, \beta) \in L \times L$.
- 3) For all $x \in E$ the subset $R^{X} = \{\beta \mid \beta \in E, x \in \theta(\beta)\}$ has $m\underline{i}$ nimum.

The R X is a dual ideal (filter) and $\mu_A(x) = \min \ R^X \quad \forall x \in E$ is an L-fuzzy set A with A $^\beta = \theta(\beta) \quad \forall \beta \in L$.

The next example shows that it can not be generally inferred from theorem 1 that $\bigcap_{\alpha \in A} \theta(\alpha) = \theta(\sup_{\alpha \in A} H) \quad \forall H \subseteq L$, $H \neq \emptyset$.

Example 1. Let E be the interval $[3,\pi)\subset \mathbb{R}$ and L the sequence of rational numbers $(a_n)=(3,3.1,3.14,3.141,3.1415,\ldots)$ i.e. $a_n=\frac{10^n\pi}{10^n}$ where $n=0,1,2,\ldots$ and [x] is the entire part of x. L is not a complete lattice $(\sqrt[3]{}$ sup L). We shall consider $\theta(\alpha)=[\alpha,\pi)$ $\forall \alpha \in L$. θ satisfies 1) 2) and 3) of the theorem 1. Observe that $\theta(\sup L)$ lacks any meaning and $\bigcap \theta(\alpha)=\emptyset$. $\alpha \in L$

In this way, if L is a complete lattice, theorem 1 can be stated as follows.

<u>Theorem 2.</u> Let L be a complete lattice and let θ be a Moore's Family in E, θ :L \rightarrow P(E) verifying

$$\bigcap_{\alpha \in H} \theta(\alpha) = \theta(\sup_{\alpha \in H} H) \quad \forall H \subseteq L, \quad H \neq \emptyset$$

then $\mu_A(x) = \sup\{\alpha \mid \alpha \in L, x \in \theta(\alpha)\}$ is an L-fuzzy set $A \in L(E,L)$ whit $A_\alpha = \theta(\alpha) \quad \forall \alpha \in L$.

Proof. It suffices to show that $\mu_A(x) \in R_x$. From $\bigcap_{\alpha \in R_+} \theta(\alpha) = \theta(\sup_{x} R_x) = \theta(\mu_A(x)) \text{ it is obvious that } \mu_A(x) \in R_x.$

Similarly, the theorem 2 has a dual statement.

Bibliografy

- [1] GOGUEN, J. A., "L-fuzzy sets" Journal of Mathematical Anal. and appl. 18 (1967) 145-147.
- [2] ZADEH, L. A., "Fuzzy sets" Inf. Control 8 (1965) 338-353.
- [3] DUBREIL, P.,

DUBREIL JACOTIN, M.L., "Lecciones de Algebra Moderna" Ed. Reverté 1965.

Departamento Matemáticas. Universidad de Alcalá de Henares. Madrid.