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ABSTRACT

A characterization of regular lattices of Fu-
zzy Sets and their isomorphisms are given in
part I. A characterization of involutions on
regular lattices of Fuzzy Sets and the isomor
phisms of De Morgan Algebras of Fuzzy Sets are
given in Part II. Finally all classes of De
Morgan Algebras of Fuzzy Sets respect to iso-
morphisms are completely described.

Introduction.

The aim of this work is to characterize the classes of regu
lar De Morgan algebras of fuzzy sets with respect to isomorphisms,
which is useful both from the point of view of the structural
analysis of these algebrasand in order tocontinue the work about
the representation of De Morgan algebras by fuzzy sets ([31], [4]1,
[51 and [61]).

For these reasons we study in the first part regular latti-
ces of fuzzy sets and theirs isomorphisms from the results obtai
ned in [2] and [3]). On the other hand, the study of involutions

that may be defined in these lattices made in [9], allow to cha-
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racterize the isomophisms between De Morgan algebras of fuzzy
sets. The work conclude with a classification of these algebras
with respect to isomorphisms, by continuing the study begin in

[2] and [3].

We will denote by L(X) the lattice (E(X),ﬂ,U). by C the
classical complementation that endows P(X) of Boole algebra
structure and by A the complement by C of all A of P(X). We will
call singleton and we will denote by 62, the fuzzy set definite

by 62(a)=0 if a#x and Gg(x)=a (if a=1 we obtain the singletons
of P(X)). We will denote by 33 the fuzzy set definite by 3:(a)=1
if a#x and 33(x)=a. Finally; we will denote by K the set of all
subsets of the unit interval that contain {0,1}, that is

k={Jd; {0,1} €y C[0,1]}.

I. Isomorphisms of Regular lattices of Fuzzy Sets.

l-1. Regular Lattices of Fuzzy Sets.

Definition 1. A sublattice S of L(X) is regular if it contains

P(X). .
Given a family R={Jxe K; x€ X} if we denote by:

[}

PR(X) {Ae€ E(X); A(x) e Iy for all x € X}

and

L}

P}"(X) {AePR(X); A(x) ¢ {0,1} is finite ,

then PR(X) and P&(X) are both regular sublattices of L(X).

Regular sublattices of L(X) were characterize in [3] by the
following theorem.

Theorem 1. A sublattice S of L(X) is regular if, and only if,
there exists a family R={Jx €K,; x €X} such that P&(X) cscC PR(X).
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So, it is clear that PR(X) is the greatest sublattice with

values in R, we will call it sublattice R-maximal. On the other

hand it is easy to prove that the singletons of a regular subla-
ttice of L{(X) are the same that the singletons of the R-maximal

lattice that contains it.

1-2. Characteritation of Isomorphisms.

Proposition 1. Let H be an isomorphism between regular sublatti-

ces of L(X), H‘P(X) is an automorphism of P(X)m

So, if H is an isomorphism between regular sublattices of
L(x), H'P(X) will be of the form (H|P(X))(A)=A°o, where ¢ is a
permutation of X.

Proposition 2. Any isomorphism H between S and S' regular subla-

ttices of L(X) is univocally determined by the images of the sin-
gletons of S.

Proof. It is obvious as any isomorphism is morphism respect
to the infinite unions and intersections and for any A of S,
A= U 62()()-
x € X

As singletons of a regular sublattice are the same that the
singletons of R-maximal lattice that contain it, all isomorphism
between regular sublattices will be the restriction of an isomor
phisms between R-maximal lattices. It is for this reason that we

only study isomorphisms between R-maximals lattices.

Theorem 2, Let R={Jx; x € X} and R'={J;; x € X} be two families of
elements of K, then H is an isomophism between (PR(X),ﬁ,U) and
(PR,(X),D,U) if, and only if, there exists a permutation ¢ of X

. i , . . . . .

and a family {fx,Jx > Jc(x)' x € X} of increasing bijections such
£ (A(x))

that for any A of PR(X), H(A)= U Go(x)

x € X
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Proof. If H is an isomorphism between PR(X) and PR,(X) we
know that H'P(X) is an automorphism of P(X), then there exists o,
permutation of X, such that for any A of P(X), H(A)=A°Q; in parti
cular H(Gx) = Go(x)' If we define

If.dle:{A ePp(X);§ CACSE ]} and

[$,8 ] ={Ae€ PR,(X);f cAC Go(x)} it is clear

U(X) JlU(X)

that:

Hil$,8.1 ,) =104, ] (1)

N o(x)J!

o(x)

For any x € X we define fx:Jx - J! by

o(x)

fla) =8 if H(Y =5§<x)

All fx are increasing bijections as H is an isomorbhism and
(1) holds.

On the other hand, for any A€ PR(X), H(A)= U H(Gﬁ(x))
. x € X
f_(A(x))
uUg X
xeyx ox)
£ (A(x)
Reciprocally, if we define H(A)= U so(x) , for any

x € X

A€ PR(X), where o is a permutation of X and {fx:Jx > Jé(x);xe X}
is a family of increasing bijections, it is immediate that H is
"one to one increasing maping, and a morphism with respect to the
union. Let us see that H is morphism with respect to the inter-

section.

f (A(x)) f (B(x)) L Jx(Ae) ()

H(A) N H(B) =( v GG(X) ) n (XLEJ XGO(X) 60()() =H(Aﬂ§)'

x € X X€E X
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In the particular case that any fo R is equal to J €K, we

will denote by PJ(X) the R-maximal sublattice of P(X).

Definition 2. For any permutation 0€ X the automorphism generated
by o, is the automorphism of PJ(X) defined by HO(A) = A o0, for
any A of PJ(X). We denote it by Ho'

Definition 3. We say that an isomorphism F from PJ(X) to PJ.(X)

is pontwise functionally expreseble (p.f.e.) if there exists a fa-

mily {fX:J + J'; x € X} of increasing bijections such that for any
A of PJ(X):(F(A))(x)=fX(A(x)).

Using the previous two definition we obtain the following:

Corollary 1. Any isomorphism between PJ(X) and PJ,(X) is obtained
by compositing an automcrphism generated by a permutation with

an isomorphism p.f.e.

Proof. If H is an isomorphism between PJ(X) and PJ,(X), be-

cause of the previous theorem we know that

F(Alx))
H(A)= U § , being 0 a permutation of X, and
X € X o(x)

{fx:J + J'; x€X} a family of increasing bijections. Let Hy be
the automorphism of PJ(X) generated by 0 and F the isomorphism
from PJ(X) to PJ,(X) p.f.e. by the family {fx:J + J'; x € X},

that is, (F(A))(x)=f (A(x)), for any A of P (X).

H0°F is an isomorphism from PJ(X) to PJ.(X) as it is a composi-

tion of isomorphisms.

Let us see that H=H00F. We only need to prove that H and
HgeF coincide over the singletons of PJ(X), and this is easy be-
cause for any x € X and a € J we have:

£ (o) £ (o)

(6. )= s

(H0°F)(62) = Hglox o(x)

a
= H(ax) ]

In the particular case J=J'=[0,1] we have again the characteriza-
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tion of isomorphisms of L(X) given in [2].

II. Isomorphisms of Regular De Morgan Algebras
of Fuzzy Sets.

11.1. Negations in Regular Lattices of Fuzzy Sets.

In this part, whenever we talk of sublattices of L(X), we

assume that they are regular sublattices of L(X).

Definition 4. Let S be a ordered set with element maximum and mi

nimum. A mapping n from S to S is a strong negation or involution

if it is a decreasing bijection, and n"=j, where j means the iden
tity in S.

In the case that Se K we call it strong negation function.

We know that a De Morgan algebra of fuzzy sets is a lattice
of fuzzy sets with a strong negation. In [13], they were studied
and characteraized all strong negations defined in lattices of

fuzzy sets. The following results were obtained.

Proposition 3. If n is a strong negation of S, sublattice of

L(X), n is extention of a strong negation of P(X).

It is known that all strong negations of P(X) are of the ty

pe C°Hc, where H_ is the automorphism generated by o, permuta-

o 2
tion of X such that og“=j.

Let us define two kinds of strong negations:

Definition 5. Let S be a sublattice of L(X) and n a strong nega-
tion of S, we say that:

n fulfil The Extension Principle (E.P.) if an(X)= o

n fulfil The Generalized Extension Principle (G.E.P.) if

an(X) = CeH  where o # j.
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Proposition 4. Any strong negation defined in a regular lattice

is restriction of a negation of the R-maximal lattice that conta
ins it.

Proof. Any strong negation defined in S, sublattice of L(X),
is univocally determined by the images of singletons of §, as all

strong negations fulfil the De Morgan laws.

The proposition is evident since the singletons of S and sin

gletons of the R-maximallattice that contain S, are the same. ®

For these reason we only study negations in R-maximals lat-

tices.

Definition 6. We say that a strong negation n of the R-maximal

lattice is pointwise functionally expressible (p.f.e.) if there

exist a family {nx:J > Jy3 x€X and J € R} of strong negations

X
functions, such that for all x €X and for all A ofPR(X), (nA) (x)

=n (A(x)) .

Theorem 3. A strong negation n GPR(X) fulfils the E.P. if, and
only if, n is p.f.e.

Definition 7. Let JI’ J2’ be two elements of K, we call strong

Galois correspondance of J,,Jz, to any pair of mappings (n12,n21)

n

12:J1 -+ J2 and n :J2 > J], satisfying:

21

i) n‘z,n21 decreasing and one-one mappings.

ii) Nyy © Nyy = J]J], and Nyp © Ny = J|J2.

Definition 8. A strong negation n of PR(X) is generated by a fami-

ly of strong Galois correspondances if there exist an involutive

permutation of X, denoted by S and a family of strong Galois co-

rrespondances {("xS(x)’nS(x)x); nxS(x):Jx - JS(x)' and

g (x)x' JS(x) + Jx’ for every x € X}, such that
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[nAl(x) )x(A(S(x))), for every A of PR(X).

Ms (x
Theorem 4. A strong negation n¢€ PR(X) satisfies the G.E.P. if,
and only if, n is generated by a family of strong Galois corres-

pondances.

In the particular case that Jx=JS(x)' then

Mxs(x) " "s(x)x’
what we have is a strong negation of Jx'

Corollary 2. A strong negation n of PJ(X) satisfies the G.E.P.

if, and only if, n=n'oHS, where Hs is the automorphism generated
by S, (an involutive permutation of X), and n' is a strong nega-
tion of PJ(X) generated by the family {nx:J'* J, x€ X} of strong

negation functions with the conditicn that n_=n .
x S(x)

As a consequence of this corollary we obtain the characteri-
zation of the strong negations of L(X) that fulfil the G.E.P. gi-
ven in [1].

Before facing the problem of isomorphisms between De Morgan
algebras of fuzzy sets, we need some results concerning to strong

negation functions and strong Galois correspondances.

Remember ([ 14]) that if J,T are two elements of K and f an
increasing one-one mapping from J to T, then n=f-10(1-j) of is a

strong negation function of J, and f is called an additive genera-

tor of n.

Proposition 5. A mapping n from J to J is a strong negation func-

tion if, and only if, n has an additive generator.

The other hand, in [ 7] next results are given:
Definition 9. Let n and n' be two strong negation functions of J
and J' respectively, n is eguivalent to n' if there exist, an in-

creasing one-one mapping f from J to J' such that fon = n'of.

Proposition 6. Two strong negation functions are equivalents if,
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and only if, there exist an increasing one-one mapping from J to

J' and n, n' have the same number of fixed points (one or none).

With respect to strong Galois correspondances, remember that
given JI’JZ and T, elements of K, f an increasing one-one mapping
from Jl to T and g an increasing one-one mapping from J2 to 1-T,
and if we define n12=g-]o(1—j) of and n21=f-‘o(1-j)og, then
(“12’"21) is a strong Galois correspondance between Jy and J,.
Then (f,g) is called the generator pair of the strong Galois co-

rrespondance (n12’n21)' In [12] the following characterisation

of Galois correspondance is given.

Proposition 7. A pair (n12'n21) of mappings from J, to J, and

from J2 to J1 respectivelly, is a strong Galois correspondance

if, and only if, (nIZ’nZl) has a generator pair.

1’72271

(512,521) strong Galois correspondances between J],J

Definition 10. Let J,,J.,T ’TZ be elements of K, and (nlz,n21),

2 and T],T2

respectivelly. We say that (n12,n21) i (n12'n21) are equnyalent

if there exist two increasing one-one mappings f from J1 to Tl’
and g from J2 to T,, such that gon12=n12°f.

Next properties are deduce immediately from the definition.

1 - All strong Galois correspondances between J] and J2 are equi_

valents. In fact, if (nIZ’nZI) and (nIZ’nZI) are two strong

Galois correspondances between J1 and J2 by taking f = jIJ

and g = on, . . 1

M2°"21

2 - If then exist an increasing one-one mapping f from J1 to Tl'
any strong Galois correspondence between J] and J2 is equiva-

lent to any strong Galois correspondence between Tl and TZ.

In fact, let (n12'n21) and (n12,n21) be two strong Galois
correspondences between J], J2 and T,,T2 respectivelly. If we
define g=n12°fen21 it is evident that gon12=n]2°f.
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11.2. Characterisation of Isomorphisms.

Let R={Jx, x € X} and R' ={J;, x € X} be two families of ele-
ments of K, in all this part we consider the sublattices of
L(x), PR(X) and PR,(X).

Given, two De Morgan algebras (PR(X),n,U,n) and (m,(X)ILU,ﬁL
‘the problem is reduced to find which isomoprphisms between the
lattices (PR(X),n,U) and (PR,(X),n,U) are morphisms with respect

to negations n and n.

Theorem 5. Let n and n be two strong negations of PR(X) and
PR,(X) respectivelly that fulfil the E.P. Let {nx,xe X} and
{n;,xe X} be the families of strong negation functions that defi-

ne n and n.

(PR(X),n) is isomorphic to (PR.(X),E) if, and only if, the-
re exist o, permutation of X, such that for any x € X, we have
that:

i) There exist an increasing one-one mapping between Jx and
Yo (x)

.. . . .
ii) " and nc(x) have the same number of fixed points.

Proof. Given an isomorphism H from (PR(X),n) to (PR.(X),E),
from Theorem 2 we know that there exist ¢, permutation of X and
a family of increasing one-one mappings {fx:Jx -+ Jé(x),'xe X}

b that H(A)= f (A(x))
such that A)-x :uso(x)

Otherwise for all x€ X and a € Jx.H(n(Gg))=;(H(63)), which is

Fn (@) ag ) (F (@)

equivalent to Sc(x) Go(x) , from where

f =- 3 . . . -
LN no(x)°fx’ that implies (Proposition 6) that " and no(x)
have the same number of fixed points.

Reciprocally, if the condition of theorem is fulfiled then

proposition 6 say that, for all x of X, we may choose fx, increa
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. - H ] =n'
sing one-one mapping from Jx to Jo(x)' such that fxonX no(x)°fx
(1).
, | . £ (AG)
We define, for all A of PR(X), H(A)= U Go(x) . Because

x € X
of Theorem 2 we know that H is an isomorphism between the latti-

ces PR(X) and PR'(X)' Then, for all A of PR(X), we have

(A
H(n(A)) = H( N n(si(x))) = N H(anx (X)))

x € X x € X

faln, (A(x)))

=N O(X)

x € X

(for (1))
) (F (AGx)) or

x € X

_"é(

6o(x))(

6fx(A(x))
o(x)

=E(
x € X

) = n(H(A)) =

If S = {Sx,x €X} is a family of elements of K, symmetrical
respect to 1/2 (Sx = I-Sx) and N is the strong negation of
PS(X) p.f.e. by the family of strong negation functions

{1-j: Sx - Sx’ x € X}, then:

Corollary 3. All De Morgan algebra defined in a R-maximal latti-
ce from a strong negation which fulfils the E.P. is isomorphic to
an algebra of the kind (PS(X),N).

Proof. We consider (PR(X),n) a De Morgan algebra where n is
the negation p.f.e. by the family of strong negation functions
{nx:Jx + dy x € X}.

For every x e X let fx be an additive generator of nes hence
_ =1 s = 1- . -
n, = fx o (1 j)ofx and fx(Jx) 1 fx(Jx). We write S fx(Jx), and
(PR(X),n) is isomorph to (PS(X),N), because if we take o=j it
is immediate that conditions i) and ii) of previous Theorem are
fulfiled. =
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Theorem 6. We consider n and n two strong negations of PR(X) and
PR.(X) respectivally, that fulfil the G.E.P. Let

{(nxr(x)’nr(x)x); x € X} and {(nxs(x)' ns(x)x)’ x € X} to the
families of strong Galois correspondences which define at n and

n.

(PR(X),n) is isomorph at (PR,(X),E) if, and only if, there
exist 0, permutation of X, that fulfils:

i) Qol = So@.

ii) For all xe€ X, there exist an increasing one-one mapping

]
between Jx and Jc(x)'

Proof. If H is an isomorphism from (PR(X),n) to (PR,(X),E),

fx(A(x))
we know for theorem 2 that H(A)= U
x € X o(x)

PR(X), where 0 is a permutation of X and fx is an increasing one-
. ' . . _
one mapping from Jx to J o(x)’ for all xe€ X. As H is an isomor

phism of algebras we have that for all x of X, H(n(GX))=E(H(6x)),

for all A of

which is equivalent to sc(r(x))=ss(o(x)) hence we obtain ger=seg.

Reciprocally, if condition (i) is fulfiled then any strong
Galois correspondence between Jx and Jr(x) is equivalent to any
strong Galois correspondence between Jé(x) and J;(o(x))' So, for
any pair we know that there exist two one-one mappings fx'fr(x)

] 1 H
from Jx to Jc(x) and from Jr(x) to Js(o(x)) respectively, such
that

fr(x) ° Mxr(x) ;O(x)s(o(x)) o fy (1.

We define H, isomorphism from the lattice PR(X) to the latti
ce PR.(X) in the following form:

£ (A(x))

H(A) = U éo(x)

, for all A EPR(X).
x € X

To see that H is morphism with respect to the negations, it

is only necessary to prove that H(n(ﬁz))=ﬁ(H(6i)) for all xe X
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and all a€J .
X

n (@)  _f_, .\ (n (a))
Hin(850) = W31 = F Ty
(for i), (1))
- (f (o))
_ —nc(x)s(c(x)) x
s(o(x))
. f (o) -
=8 (8574 ) = AlH(sh)) =

I £ S={Sx,x€ X} is a family of elements of K with the proper
ty that there exists t, permutation of X such that tot=j, such
that St(x) = I-Sx, for all x of X; and N the negation of PS(X)
generated by the family of Galois correspondences

{(1-_;,1-_1):5x - St(x); x € X}, then:

Corollary 4. Any De Morgan algebra defined in a R-maximal lattice
from a negation which fulfil the G.E.P. is isomorphic to an alge-
bra of the kind (PS(X),N).

Proof. We consider an De Morgan algebra (PR(X),n) where n is
the negation generated by the family of strong Galois correspon-

dences {(n ), xe X}. For any Galois correspondence of

xs(x)’ Ms(x)x
the family we choose a generator pait (fx’fs(x))' That means

-1 . -1 .
nxs(x)=fs(x) ° (1-J)°fx’ ns(x)x=fx o (1-3) ofs(x) and

=1~ ‘ H =f
fx(Jx) 1 fs(x)(Js(x))’ If we define, for all x of X, Sy x(Jx)
and t=s, and if we take o=j, it is clear that (PR(X).n) and
(PS(X),N) are isomorphs, since it is immediate to see that the

conditions i) and ii) of theorem 6 are fulfiled. ®
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I11. Classes of De Morgan Algebras of Fuzzy Sets.

In this part our aim is to study classes of De Morgan alge-
bras of fuzzy sets with respect to isomorphisms. We could have
considered first classes of R-maximals lattices, but Theorem 2
says that these classes only depend on the respective families R
of possible values. It is for that reason that here we treat di-
rectely the problem of classification of algebras where negation

which gives the algebra will play a basic role.

Proposition 8. If two lattices of fuzzy sets are isomorphics any

negation in one of them defines a negation in the other,such

that the corresponding De Morgan algebras are equivalents.

Proof. Let H be an isomorphism of lattices from
(PR(X),ﬁ,U) to (PR,(X),O,UZ an n flstrong negation of PR(X)' It
is immediatly proved that n=HeneH is a strong negation of
PR'(X) such that H is an isomophism between (PR(X),n) and
(Pps(X),7) =

The previous proposition says that fixed a family R in all
classes of algebras defined in lattices R isomorphic to
(PR(X),ﬂ,U) there is an algebra of the kind (PR(X),n). Then we
are enabled to find the classes of algebras defined in lattices
isomorphics by fixing a family R and by studying the classes of
algebras of the kind (PR(X),n).

On the other hand, any isomorphism between algebras trans-
form Boole algebras in Boole algebras and we have seen that HlP(M
it has be anautomorphism of lattice P(X). Then, it is immediatly
proved that if n and n are two negations of PR(X) that fulfil the
E.P. and the E.G.P. respectivally, (PR(X).n) and (PR(X).E) can
not be equivalent since the first contain the classical sets
as Boole subalgebra and the second does not. So we will divide

the study of the classes of algebras by distinguishing two cases.
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a) Classes of De Morgan algebras (Pp(X),n) where n fulfils the

E.P.

Theorem 5 and the Corollary 3 say that

al)

I PR(X)=P(X), any De Morgan Algebra is isomorphic to
(P(X),N), where N is defined by [N(A)] (x)=1-A(x). We have,
then, only one classe of equivalence that will have as 'ca

nonic'" element (E(X),N)-

I f PR(X) = PJ(X), then we will have as classes of equiva-
lence (PJ(X),n) as possibles partitions of XI no-equipo-
tents to X could be considered in two subsets Xl’xl; whe-
re Xl={xe X, Ny has a fixed point} and i‘={xe X, Ny has
not fixed point}. Every class of equivalence has ''canonic!

elements of the kind (PS(X)’ le) where:

i) s is a family Sx; x € X of sets symmetrics respect to
1/2 such that 1/2¢€ Sx for x eX] and 1/2 ¢ Sx for
x eil.

ii) NIS is the negation defined by

{ (NIS)(A)] (x) = 1-A(x)

We remark that if in J we can only define negations
with the same number of fixed points, then we have on

ly one class of algebras.

a3) In the general case in order to have (PR(X),n) and PR(X),nﬂ

isomorphics, it is necessary the existence of a permuta-
tion 0 of X such that N and né(x) have the same number of
fixed points, and the existence of an increasing one-one
mapping between Jx and J In this case, every class
will have '"canonic'" elements of kind the (PS(X), N(S)

where:

i) s ={Sx€ K; x€ X} is a family of symmetry sets with
respect to 1/2, such that 1/2¢ S, if, and only if,
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nx has fixed point.

ii) le is the negation defined by [(N[S)(A)](x)=I-A(x).

b) Classes of De Morgan algebras (P_(X),n), where n fulfils the
G.E.P.

In order to give the classification, a part from results of

Theorem 6 and Corollary 4, we need remember that the conjuga-

1

tion class of a permutation t of X is the set {cgeted ', 0 is a

permutation of X}.

b]) I f PR(X)=P(X), there are as equivalence classes as conjuga

b

b

)

tion classes of involutives permutations of X. Every class
will has "canonic' elements of the kind (P(X),Ht°N), where
t is a permutation of X and HieN is the negation defined
by

[(HeN)(A)] (x) = 1-A(t(x)).

I f PR(X)=PJ(X), then for any class of conjugations of invo
lutive permutations of X there are as equivalence classes
as partitions of X in two subsets no-equipotents X1,§1 de-
fined like in az). Every class will has ''canonic' elements
of the kind (PS(X),HtoN), where S is a family {Sx]x € X}
with the same conditions that in a? and HtoN is the nega-
tion defined by [(HtoN)(A)](x) = 1-A(t(x)).

If J only admit negations with same number of fixed points
then the equivalence classes coincide with the classes of

involutive permutations of X.

In the general case, classes depent on both the conjugations
classes of involutive permutations and on the possible per-
mutations 0 of X in the way that for any x € X, Iy and Jo(x)
are increasintly bijectable, such a combination is dificult
to express together, that is why we believe that the best

explanation is the result already given in Corolary 4.
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