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ON MEASURES OF CONCORDANCE*

Marco Scarsini

ABSTRACT

We give a general definition of concordance
and a set of axioms for measures of concordan
ce. We then consider a family of measures sa-
tisfying these axioms. We compare our results
with known results, in the discrete case.

0. Introduction.

The intuitive idea that underlies the concept of concordan-
ce is this: Two random variables (r.v.'s) X and Y are concordant
when large values of X go with large values of Y. Some attempts
have been made to formulate this concept precisely, but only un-
der the condition that the joint distribution fuction (d.f) has
fixed marginals (Tchen (1980), Consonni and Scarsini (1982)). A
general definition of concordance is given here for r.v.'s with
continuous marginals, using the concept of a copula (Skiar (1959)
This definition is then generalized to any r.v.'s. The definition
proves to be consistent with the idea that concordance is inva-
riant with respect to monotone increasing transformations of the

random variables.

* Partially supported by GNAFA-CNR.
KEYWORDS: Concordance, copula. Fréchet class.
AMS 1970 subject classification: 62H99.
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In addition the problem of finding some measures of concor-
dance consistent with the definition just given is examined. Some
axioms for measures of concordance are proposed, and a class of
measures satisfying them is provided. Some of the usual measures
of concordance such as Spearman's p and Kendall's T are examined
in detail. In particular, in the case of discrete distributions,
their usual expressions, and the ones obtained in terms of copu-

las are compared.

1. Definition of concordance.

Consider the d.f.'s H(x,y) having fixed marginals F(x) and
G(y), viz. the d.f.'s belonging to the Fréchet class I'(F,G) (Fré-
chet (1951)). If a point (xo,yo)eR2 is fixed, it is possible to
determine four subsets of RZ:

2

Q1(x0,y0) = (e R <Xy <40
0, (x%,v%) = Tlx,y)e R%ix < 50,y > y0)
Q3(x0,y0) = {(x,y)e Rz;x > %%y > y%)
Qh(xo,yo) = {(x,y)e RZ:x > xo,y < yo}.

On the quadrant Q, (Q3) small (large) values of X go with
small (large) values of Y. On the quadrant Q2 (Qh) small (large)

values of X go with large (small) values of Y.

Definition 1. (Consonni and Scarsini (1982)). Let H, H'e T(F,G).

H is more concordant than H' if, for all (x,y)e Rz,

Pr{(x,v) elQ(x,y) v Q3(x,y)]|H}

ZPrilX.¥)e [Q;(x,y) U ag(x,y)1[H'}.
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In this definition (and in the following ones, as well) "mo-
re concordant" is to be interpreted as an abbreviation of '"not

less concordant''.
The following result is immediate:

Proposition 1. Let H, H'e T'(F,G). H is more concordant than H' if

2
and only if H(x,y) = H'(x,y) for all (x,y)e R".

Tchen (1980) gave the following definition of concordance for
distributions that concentrate their mass on finitely many atoms:
“"H is more concordant than H' if H can be obtained from H' by a
finite number of repairings which add mass € at (x,y) and (x',y'),
while subtracting mass € at (x',y) and (x,y'), where x'>x and
y'>y'". Tchen's definition is consistent with Definition 1 for dis
crete distributions with finitely many atoms. It is relevant that,
according to Definition 1, concordance is a matter of stochastic
dominance. This is true ;nly for d.f.'s belonging to the same Fré
chet class, as the following counter-example shows: Let H be the
d.f. which distributes its mass uniformly on the unit square
[0,1]2, and H' the d.f. which distributes its mass uniformly on
the square [],2]2. Then H stochastically dominates H' (i.e.,
Hix,y) = H'(x,y) for all (x,y)e R2) but it is not reasonable to
regard H as more concordant than H' since each is obtained from

the other by means of a translation along their common diagonal.

It is desirable to have a definition of concordance which re-
gards situations such as the one in the above counter-example as
equivalent. More precisely, it is desirable to have a definition
according to which H and H' are equivalent if each may be obtained
form the other by strictly increasing monotone transformations of
the r.v.'s. For this purpose the concept of copula will be extreme
ly useful (Sklar (1959), Schweizer and Sklar (1983), Schweizer and
Wolff (1976), (1981)).

Definition 2. A function ¢:R2 + R is called quasi-monotone if

d(x,y) = ¢(x',y) ~¢(x,y')+¢(x',y') = 0 whenever x = x'; y = y'.



Marco Scarsini 204

We note that a function ¢ is quasi-monotone if and only if
exp{$} is totally positive of order 2 (see Karlin (1968)).

Definition 3. A (two-dimensional) copula is a map C:[O,l]2+ [0,1]
such that

1) ¢(u,0) = ¢(0,u) =0 and C(u,1) = C€(1,u) = u, for all ueg[0,1].

2) € is quasi-monotone.

We list some important properties of the copula C:

a) C is continuous.

b) ¢ (u,v) 2 max(0,u + v - 1) < C(u,v) < C+(u,v) 4 min(u,v), for
all u, velo0,11].

c) tf (X,Y) is a pair of r,v,'s with d.f. Hel(F,G), then there
exists a copula CXY such that:

Hix,y) = CXY(F(x),G(y)), for all x, yeR.

If F and G are continuous, then CXY is unique. Otherwise it is
uniquely determined on Ran(F) x Ran(G), where Ran(f) denotes the

range of the function f.

d) If f and g are strictly increasing on Ran(X), Ran (Y), respec

tively, then cf(x)g(Y) = CXY'

e) If f is strictly decreasing on Ran(X), then Cf(X)Y(u’V) = v
- CXY(I - u,v).

f) If F and G are continuous, then CXY is the restriction to the
unit square of the joint d.f. of the r.v.'s F(X) and G(Y).

g) If f is strictly increasing (decreasing) on Ran(X), and Y=f(X),

+ -
Then CXY =Cc (Cc).

The copula represents the association between two r.v.'s,
eliminating the influence of the marginals and hence of any mono-
tone transformation on the marginals. It is therefore possible to

reformulate concordance as a principle of stochastic dominance,
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with respect to copulas and no joint d.f.'s.

Definition 4. Let (X,Y) and (W,Z) be two pairs of r.v.'s with

d.f.'s H and H', respectively (H and H' continuous). Then H is

more concordant than H' if CXY(u,v) > sz(u,v), for all u,ve[0,1].

In the following the expressions "(X,Y) is more concordant
than (wW,z2)", “CXY is more concordant than sz”, “"H is more con-
cordant than H'" will be used indifferently. The symbol = will

mean '""more concordant than'.

Definition 4 is consistent with Definition 1 when H and H'

belong to the same Fréchet class.

A still more general definition, valid also for discontinu-

ous d.f.'s, will be provided in Section 3.

2. Measures of concordance.

Consider the space H of joint d.f's with continuous margi-
nals. The relation 2 introduced in Definition 4 is a partial or-
der in H. The problem of measuring concordance may be viewed as
that of establishing a total order on H consistent with the par-
tial order =. This total order may be constructed by means of a
map J:H > A, where A is a totally ordered set (usually an inter
val in R). This map J is called a measure of concordance if it sa
tisfies the following axioms (most of them are self-evident). Let
(X,Y) be distributed according to the d.f. H (indicate this as
(X,Y) ~ H), and define [(X,Y) as J(H).

1. Domain: |(X,Y) is defined for any (X,Y) with continuous d.f.
2. Symmetry: 1(X,Y) = 1(Y,X).

3. Coherence: I1(X,Y) is monotone in C i.e

Xy . ifCy, =>¢
1(X,Y) = 1(w,2).

XY then

Wz’

4. Range: -1 < I(X,Y) < 1.

5. Independence: 1(X,Y)=0 if X and Y are stochastically independent
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6. Change of sign: I(-X,Y) = =1(X,Y).

7. Continuity: If (X,Y) ~ H and (xn’Yn) ~ HY (n ¢ N), and if H,
converges pointwise to H (Hn and H continuous), then
Tim I(Xn,Yn) = 1(X,Y).

n+o

Theorem 1. Let |(X,Y) satisfy axioms 1-7. Then

a) if f and g are both strictly increasing or decreasing on
Ran(X), Ran(Y), then I1(f(X),g(Y)) = 1(X,Y).

b) 1(X,Y) =1 (-1) if Y = f(X) with f a.s. strictly increasing

(decreasing) on Ran(X).

Proof. a) Let W = f(X) and Z = g(Y) with f and g both strict

ly increasing on Ran(X), Ran(Y). Then Cyy = sz i.e., CXY > Cuz
and €, > Cyy . By Axiom 3. 1(X,Y) = 1(W,Z) and 1(X,Y) < 1(W,2),
i.e., 1{XA,Y) = 1(W,2). Now let f and g be decreasing, whence -f

and -g are increasing. By Axiom 6. (applied twice) I(-f(X),-g(Y))
= 1(F(X),g(Y)) = 1(X,Y) (the second equality given by a)).

v b) If f is increasing (decreasing), then fo(x)=c+ (c7). By
3 and 4, 1(cY) =1, 1(c7) = -1. :

The problem is now to find a class of measures that satisfy
1-7. We shall make use of some results concerning quasi-monotone

functions.

Theorem 2. (Cambanis, Simons and Stout (1976), Tchen (1980)). Let

¢ be quasi-monotone, and H, H' el (F,G) such that H = H'. Then

S 2¢dH = [ 2¢dH' provided the integrals exist. Conversely, if

R R
s 2¢dH =/ 2¢dH‘ for any H,'H' such that H = H', then ¢ is quasi-
R R

monotone.

Theorem 3. Let I(X,Y) satisfy axioms 1 -7. |f the joint d.f. of

(X,Y) is normal, with correlation coefficient r, then |(X,Y) is

an increasing function of r.
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Proof. Let H be bivariate normal. Assume, without any loss

of generality, that H is standard. Then r = [ 2 XY dH(x,y) is mo

R
notone in H and is a one-to-one function from the space of stan-

dard bivariate normal d.f.'s to [-l,l].Sincer=féféN-1hﬂN-]0AdC(u,v),
" where N is the standard univariate normal, then r is also a mono
tone one-to-one function from the space of copulas of normal dis
tributions to [-1,1]. Thus 1(X,Y) is monotone in CXY and hence
monotone in r.

The following theorem describes a class of measure of concor

dance:

Theorem 4. Let 1y be a bounded monotone odd function defined on

[- %,%]. Then 1(X,Y) satisfies axioms 1-7 if

LG Y) = SO0 kwlu = Dulv - 3 dey (u,v) (n

with k = (55 ¥%(u - 3) du)”.

Proof. 1) Since ¢y is bounded, the integral in (1) exists for

any copula CXY'
2) Evident, since CXY(u,v) = CYX(v,u).

3) The function ¢ (u,v) 4 p(u - %)w(v - %) is quasi monotone,
since y is monotone; so Theorem 1 applies.

L) 1(X,Y) is included between two extremes, attained at C
and ¢¥ (-1 and 1, respectively). We recall that ¢’ concentrates
the mass on the diagonal u = v, and €™ concentrates the mass on

the diagonal u =1 - v.

5) If X and Y are stochastically independent, then
= 1,1 -1 -1 = Lot - Hdu)?=
Cyylusv) = uv, so Josp k ylu = (v - 3) dudv = k (Jou(u - 3)du)™=0,
since  is odd.

6) C-XY(U’V) = v - CXY(‘ - u,v). Hence



Marco Scarsint 208

L-X,Y) = Jh00 K w(u = 3dlv - ey (1-u,v)

XY

MLk e - Dty - 3 deygy (1-u,v)

=-Iéfé k (-z +Dulv - %) dCyy (2,v)

= -1(X,Y).

1,1 1 1
1) HOLY) = TSy kvl - DYy - ) dey ().

1 f Hn + H pointwise (with H continuous), then anYn+ CXY point-

wise. The theorem of Helly-Bray gives the desired continuity re-
sult:

l(Xn,Yn) > 1(X,Y).

The class of measures (1) does not exhaust the family of mea
sures of concordance. |t contains measures such as Blomquist g

(choose P(x) = sgn(x)), and Spearman's p (¥ = identity function)
c 2 S - Yy - )
p =12 fofo(u 2)(v 2) dC(u,v).

This expression is equivalent to the following (Schweizer and
Wolff (1981))

p = IZAIAIé(C(U,V) - uv) du dv.

Equivalence may be proved either by integrating by parts the bi-
variate integral in any of the two formulae (see Picone and Vio-
la (1952) for the integration by parts of bivariate integrals),

or by using a lemma of Hoeffding (see Lehmann (1966)). The class
(1) contains neither Kendall's T nor Gini's cograduation coeffi-

cient G. These two measures also satisfy axioms 1-7, as is shown
by

Theorem 5. a) Kendall's T, which is given by
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1,1
T =4 fofo CXY(u,v) dCXY(u,v) -1 (2)

satisfies axioms 1-7.

b) Gini's G, which is given by

G =2 féfé (v = w = vl = Ju-vpde, (u,v) (3)

satisfies axioms 1-7.

Proof. a) Except for 3 and 7, all of the properties either
are trivial, have already been proved by Kruskal (1958), or may
be proved by considerations similar to those given in the proof
of Theorem 2. Thus we need only prove 3 and 7. Here and in the

following, integrals of the form Jf¢dC are over [0,1] x [0,1].

3. Let CXY = Cw Then

z

dc,, <J c,.dC

JCyz 90y ST €0y xv9Cxy

WZ

where first inequality holds by virtue of the quasi-monotonicity
of Cw

Z .
7. If H, > H pointwise (with H continuous), then anYn+ CXY
pointwise. It is necessary to prove that ICXnYndCXnYn > chYdCXY‘

We use the following lemma (a more general form of which is pro-
ved in Serfozo (1982)).

Lemma 1. (Serfozo (1982), Theorem 3.5) Let f, f], f2,.. be nonne -

gative. |If W, T u weakly (where M,, W are probability measures on
k . . .
X CRY), fn + f continuously (i.e., lim fn(xn) = f(x) for any

n--o
XX, X €X) and ffndun< ©, n 21, then the following statements
are equivalent:

i) ffndun + [ f du <=,

ii) fn is uniformly {u_}-integrable (i.e., lim supS
n a+o n

Ifn|>a lfnldun=y
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If we choose [0,1]2 as X, C as fn' and the measure indu

Xy

nn
ced on [0,1]2 by Cx y 23S U, then the hypotheses of Lemma 2 are

nn

satisfied and ii) holds, since Cx y are uniformly bounded. Hen-

nn
ce i) holds, as well, and

J CX v dCX v - [ CXY dCXY.
nn nn

b) The proof of each of the properties is similar to that of

Theorem 2, or can be achieved by straighforward calculations.

Before we end this section some comment is necessary about
Axiom 5. Independence is sufficient for the vanishing of a measu
re of concordance but is not necessary. Imposing independence - as
a necessary and sufficient condition for a measure of concordan-
ce to the zero would be incompatible with any of the measures we

have considered.

Theorem 4. Let 1(X,Y) = f¢dCXY<w with ¢ quasi-monotone. Then
1(X,Y) = 0 does not imply that X and Y are stochastically inde-

pendent.

Proof. Let C°(u,v) = uv be the copula of (X,Y) when they are

stochastically independent. We then have:

ne>
+

1" 8 5 ¢ dcT< s $dc®< s pact

Now suppose J ¢dC® = 0 and let ¢ = {Ca:Ca= at” +(1-a)c™,

a e[0,11}. Clearly, such Ca €p is a copula and c® £y . Consider
the function Y:[0,1] » R so defined:

V(o) s ¢dca

afedc” + (1 - a)f ¢dc”

al” + (1 —a)t’t.
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It is evident that § is a continuous function, whose range is
. - + .
the interval [1 ,1 ]. Then there exists a copula Ca* # ¢° such

A
that |, = fédc , = 0.

Rényi (1959) gave a set of axioms for measures of dependen-
ce. Schweizer and Wolff (1976), (1981) modified them in order to

obtain axioms for monotone dependence.

Dependence is a matter of association of X and Y along any
(measurable) function, i.e., the more X and Y tend to cluster
around the graph of a function, either y = f(x), or x = g(y),
the more they are depehdent. Monotone dependence is a matter of
association with respect to a (strictly) monotone function (indi
fferently increasing or decreasing). The minimum dependence, as
well as the minimum of monotone dependence, corresponds to inde-

pendence.

Concordance, on the other hand, takes into account the kind
of monotonicity (whether increasing or decreasing), so that the
maximum of concordance is attained when a strictly monotone in-
creasing relation exists between the variables, and the minimum
of concordance (viz. perfect discordance) is attained when a re-

lation exists that is strictly monotone decreasing.

3. Discrete case.

A problem arises in extending the definitions and theorems
given in the preceding sections to the case of discontinuous jo-
int d.f.'s. Even the definition of concordance is no longer accep
table as stated. The source of trouble is the non-unicity of the
copula in the general case. Definition 3 must therefore be repla
ced by a (necessarily) more complicated one. First of all we have

to define a subcopula.

Definition 5. Let AAand B be two subsets of [0,1], containing 0
and 1.
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A subcopula is a function C*:A x B [0,1] which satisfies

the following conditions

i) C* is quasi monotone.

ii) €*(u,1) = u for all u € A.
¢%(1,v) = v for all v € B.

Definition 6. Let (X,Y) and (W,Z) be two pairs of r.v.'s with
d.f.'s H and H' respectively (H € T(F,G); H'e T(F',G')). Let
Cgy and C{j; be the respective subcopulas defined on Ran(F)xRan(G)

and Ran(F')x Ran(G') respectively. Let w;Y be the family of copu-

las CXY’

such that, for any C which satisfies

XY
C;Y(u,v) = C§Y(u,v) = CXY(u,v) for all (u,v)e [Ran(F) x Ran(G)]

the inequality

C;Y(u,v) = CXY(u,v) for all (u,v)e [0,1]2

is impossible.

+

Wz such that, for any C

Let ¢;Z be the family of copulas C
which satisfies

Wz

C;Z(U,v) = Cﬁz(u,v) = sz(u,v) for all (u,v)e [Ran(F') x Ran(G') ]

the inequality

Cyz (V) < ¢y (u,v) for all (u,v) ef0,1]?

is impossible.

1 f, y €, N + +

for an CXY E¢xv and sz ewwz
coy(u,v) = ct (u,v)
Xy'=’ wz*'

for all (u,v)e {[Ran(F) x Ran(G) ]V [Ran(F') x Ran(G') 1}, then
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(X,Y) is said to be more concordant than (W,Z).

The meaning of the definition is this: whenever the compa-
rison between subcopulas is possible, then this is considered;
otherwise each subcopula is compared with the 'worst' copula com
patible with the other subcopula. Definition 4 and Definition 6
coincide when H and H' are continuous.

Definition 6 is cumbersome and concordance is not easily
testable through it in practice. In fact, the classes v;Y and
¢;Z contain more than one copula, for which no explicit formula
is obtainable, in general.

Difficulties grow when measures of concordance are examined.

Consider expression (1). If H is continuous, this may be written:

HOGY) = ST 5 K (F(x)- DY) - Pdklx,y) . (8)

When H is discontinuous, the integral in (4) cannot be con-
sidered in the Riemann-Stieltjies sense, because the integrand
and the integrator in general have common one-sided discontinui-
ty points. If it is intended in the Lebesgue-Stielthes sense,
then its value depends on the definition of a d.f., e.,e.,

H(x,y) = Pri{X < x;Y <y} or H(x,y) = Pr{X<x;¥<yl. Even the defi
nition of the normalizing constant k becomes difficult. These un
pleasant features are not overcome by using copulas and the mea
sure in the form (1), because there exist many copulas compati-
ble with a joint d.f. and these different copulas give different
values of the measure |. In the following, a criterion for choo-
sing one copula among the admissible ones is proposed. In this
way the problem of computing the measure of concordance is solved
through (1), or through any other expression of a measure of con-

cordance which involves only copulas (e.g. (3) and (4)).

The procedure that we are going to illustrate is the one
used in Schweizer and Sklar (1974) to prove that every subcopula

can be extended to a copula.

The criterion can be described as follows: Let He r(f,G).
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Split the unit square [0,1]2 into four regions:
A
A = Ran(F) x Ran(G),

4 Ran(F) x {[0,1 N\Ran(G)},

@
i

>

D {blo,i NRan(F)} x Ran(G),

£ 2 {[0,1 \Ran(F)} x {[0,1 NRan(6)}.

On A a subcopula is uniquely defined.

The region B is the (at most countable) union of intervals
[a,b] x (c,d) (a <b;c < d), such that (u,c), (u,d) € A for all
u ela,b]l. On each of these intervals in B we define a subcopula

in this way:
C(u,v) = aC(u,;) + (1-a)c(u,d),

where v = oc + (1- a)d (0 <o < 1).

We use an analogous procedure for D (interchanging the coor-

dinates).

To complete the procedure we need only define a subcopula
on E. This can be done in a similar way, taking into account the
subcopulas defined on A, B and D.

Combining the subcopulas defined on A, B, D and E we obtain
a copula compatible with the original d.f. H. This copula (indicg
te it as CgY) may be justified as follows: Consider the d.f. H;
then spread the mass concentrated by H on vertical segments uni-
formly on the rectangles with base 1/n on the left of these seg-
ments: spread the mass on horizontal segments uniformly on the
rectangles with height 1/n below these segments; spread the mass
of atoms uniformly on the square with side 1/n south-west of the
atoms; call the d.f. that corresponds to this new situation Hn’

Each of the Hn so obtained has continuous marginals and hence an
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unique copula Cn (say). By letting n go to the infinity, Hn + H

. . o _ .
weakly, and we obtain the desired copula CXY = lim cn

In other words we approximate H (which has discontinuous
marginals) with a converging sequence of d.f.'s Hn which have
continuous marginals. We consider the sequence of corresponding
copulas Cn and choose the limit of Cn as the copula of H. The 1i
mit copula is -evidently- dependent on the sequence Hn' in that
two different sequences {Hn} and {H;} both converging weakly to
H may generate two different limit copulas and a converging se-
quence {H”} might even have no limit copula (e.g., take

= = H!
HY = H HY Hn)'

2n n’ "2n+1

Our criterion ensures the existence of the limit copula:

the one described above.

When (X,Y) consists of n atoms ((xi,yi), i =2,...,n) each
i # yj i #j, i.e.,
formulae exist for computing some usual measures of concordance

with mass 1/n and X; # xj, y there are no ties,
such as Kendall's T, Spearman's p, etc. (see Kruskal (1958)).
shall compare results obtained by use of these formulae with

those obtained by use of the limit copula ch

Kendall's 1. The copula CXY is uniquely defined on Jn x J
where J = (0,1/n,...,1). tet (i/n,w(i)/n) be the points of

Jn x Jn that correspond to the n atoms of H. Obviously

n

{m(1),n(2),...7(n)} is a permutation of {1,2,...,n}. We say that

(x Y ) and (XJ’Y ) are concordant, if (x - xj)-(yi - y.) > 0.
Def{ne Q & (# concordant (x Y5 ) (x Y )y, i< j).
We have:
1.1 .0 0o _ (|+1)/n (m(i)+1)/n . .
Tolo Cxy 9Cxy = Z ”./n Tagiyin 0 Cxyli/n,m(i)/n)

+ n(u - i/n)(v - 7(i)/n)) d(n(u - i/n){v - w(i)/n))]

[}

n-
,Eolfé/nf;/n nz uv du dv] + -Eolfllnfé/n CXYU/n,ﬂU)hﬁn du dv]

1/(4n) + (1/nd)Q
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0 0
Lrr CXY dCXY -1

A
[}

1/n + (4/02)0 - 1.

]

When calculated by the usual formula, T (indicate it as 15) is:

-
L}

4Q/(n(n - 1)) - 1.

Hence

-
]

Ts(n - 1)/n.

Spearman's op.

1.1 0
p = 12 fofo uv dCXY(u,v) -3

n .
12 s/

m(i)/ )
i=1 (i-1)/n f(n;i)f])/nuvln du dv 1 3

No2i-1y 2w (i) -1
12 ¢ (—-'2—)(—"—;—) -3

i=1 2n 2n
1 n 2
—3[12 L in(i) - 3n(n + 1)°1.

n i=1

When calculated by the usual formula, p (indicate it as ps)

_ 1 .y L 2
P = __-7__—(]2 roiw(i) 3n(n + 1)%).
n{n-1) i=1

Hence
p = ps(n2 - l)/nz.
In both cases the measures of concordance calculated by means

of copulas differ from the usual ones by a factor k(n), say (diffe

rent in each case), such that k(n) - 1, as n + =,
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The advantage of calculating a measure of concordance by
means of copulas is that it is not necessary to know the number

of observations n, but just the joint d.f..

When calculation of measures of concordance is preformed
according to our criterion, atoms are considered as if they were
square intervals, within which the two r.v.'s are independent.
Therefore a measure of concordance of a discrete distribution may
be less than one, even if the ranks of the x's and the ranks of
the y's match perfectly. Since in such a case it is usually re-
quired to a measure of concordance to be one, then it is possi-
ble to "normalize'" the measure of concordance by means of the fac
tor k(n). The behavior of k(n) may be explained as follows: if
there are n observations with no ties, then each arom of the d.f.
has mass 1/n. As n increases the mass of each atom decrases and
the range of the unnormalized measure of concordance enlarge, and

the limit range is just [-1,1].
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